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There is at present a school of mathematicians
sive growth of jargon within mathematics
purpose in this note to continue the work
terminology itself can lead to results of
I first consolidate some results of Baker
a class of connected snarfs as follows: S
is a Boolean left subideal, we have:

∇Sα =

∫ ∫ ∫
E(Ω)

B(γβ0

Rearranging, transposing, and collecting
The significance of this is obvious, for if
our result shows that its union is an utterly
surface in quasi-quasi space.
We next use a result of Spyrpt [4] to deriv
topologies. Let ξ be the null operator
super-linear space. Let {Pγ} be the collection
vex, bounded, compact, circled, symmetric,
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mathematicians which holds that the explo-
mathematics is a deplorable trend. It is our

the work of Redheffer [1] in showing how
results of great elegance.
of Baker [2] and McLelland [3]. We define

follows: Sα = Ω(γβ). Then if B = (⊗,→, θ)
ve:

B(γβ0
, γβ0

) dσdφdρ −
19

51
Ω.

collecting terms, we have: Ω = Ω0.
vious, for if {Sα} be a class of connected snarfs,

is an utterly disjoint subset of a π-hedral

[4] to derive a property of wild cells in door
operator on a door topology, 2, which is a

the collection of all nonvoid, closed, con-
symmetric, connected, central, Z-directed,



surface in quasi-quasi space.
We next use a result of Spyrpt [4] to deriv
topologies. Let ξ be the null operator
super-linear space. Let {Pγ} be the collection
vex, bounded, compact, circled, symmetric,
meager sets in 2. Then P = ∪Pγ is perfect.
is superb.

Proof. The proof uses a lemma due to
states that any unbounded fantastic set

⇒ P ∼ ξ(P

After some manipulation we obtain

1
3 = 1

3

I have reason to believe [6] that this implies
superb. Moreover, if 2 is a T2 space, P
the proof.
Our final result is a generalization of a
some comments on the work of Beaman
Let Ω be any π-hedral surface in a semi-quasi
nonnegatively homogeneous subadditive
that f violently suppresses Ω. Then f

Proof. Suppose f is not the Jolly function.
void. Hence f is morbid. This is a con
is the Jolly function. Moreover, if Ω is
spear, then f is uproarious.
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[4] to derive a property of wild cells in door
operator on a door topology, 2, which is a

the collection of all nonvoid, closed, con-
symmetric, connected, central, Z-directed,
Pγ is perfect. Moreover, if P 6= φ, then P

due to Sriniswamiramanathan [5]. This
tastic set it closed. Hence we have

∼ ξ(Pγ) − 1
3 .

obtain

1
3 = 1

3

that this implies P is perfect. If P 6= φ, P is
space, P is simply superb. This completes

generalization of a theorem of Tz, and encompasses
Beaman [7] on the Jolly function.
a semi-quasi space. Define a nonnegative,

subadditive linear functional f on X ⊃ Ω such
Then f is the Jolly function.

Jolly function. Then {Λ,@, ξ} ∩ {∆,Ω,⇒} is
is a contradiction, of course. Therefore, f
if Ω is a circled husk, and ∆ is a pointed
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void. Hence f is morbid. This is a con
is the Jolly function. Moreover, if Ω is
spear, then f is uproarious.
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