The zeckendorf package

Jean-François Burnol jfbu (at) free (dot) fr

Package version: 0.9d (2025/11/16)

From source file zeckendorf.dtx of 16-11-2025 at 18:36:26 CET

Warning

This package is still in alpha stage. Any or all of the user interface may change in backwards incompatible ways at each release.

Suggestions for new features are most welcome!

Mathematical background \ldots 1, $\mathfrak p$). 2
References	р. 6
Part I. User manual	
Use on the command line). 7
The core package features	. 7
Algebra in $\mathbf{Q}(\phi)$, extensions to the \xinteval syntax $\ldots \ldots 3.1$, [р. 7
Fibonacci numbers	. 10
Zeckendorf representation	. 11
Knuth Fibonacci Multiplication	. 13
Bergman phi-representation	. 15
Typesetting	. 20
Use as a LATEX package 4, p.	21
Use with Plain $arepsilon$ -TEX	21
Changes	22
License	23
Part II. Commented source code	
Core code	24
Interactive code	55
ATEX code 10 n	61

Let us recall that the Fibonacci sequence starts with $F_0=0$, $F_1=1$, and obeys the recurrence $F_n=F_{n-1}+F_{n-2}$ for $n\geq 2$. So $F_2=1$, $F_3=2$, $F_4=3$ and by a simple induction $F_k=k-1$. Ahem, not at all! Here are the first few, starting at $F_2=1$:

The ratios of consecutive Fibonacci numbers are the convergents of the golden ratio ϕ .

$$\phi = \frac{\text{1+sqrt(5)}}{\text{2}} \approx \text{1.618,033,988,749,894,848,204,586,834,37}.$$

The Fibonacci recurrence can also be prolungated to negative n's, and it turns out that $F_{-n}=(-1)^{n-1}F_n$.

Let us a give a few equations which are constantly in use. The first one implies explicitly, in particular, that $\mathbf{Z}[\phi]$ (i.e. all polynomial expression in ϕ with integer coefficients) is $\mathbf{Z} + \mathbf{Z} \phi$.

$$\forall n \in \mathbf{Z} \quad \phi^{n} = \mathbf{F}_{n-1} + \mathbf{F}_{n}\phi . \tag{1}$$

Applying the $\phi\leftrightarrow\psi=-\phi^{-1}=1$ – ϕ automorphism of the ring $\mathbf{Z}[\phi]$ and adding we obtain the Lucas numbers:

$$L_n = \phi^n + \psi^n = 2F_{n-1} + F_n = F_{n-1} + F_{n+1}.$$
 (2)

If subtracting, we obtain the **Binet** formula:

$$F_n = \frac{\phi^n - \psi^n}{\phi - \psi} . \tag{3}$$

Of course one should always keep in mind that -1 < ψ < 0. And perhaps also that ϕ - ψ = $\sqrt{5}$.

Finally, there is an important formula using 2×2 -matrices, closely related with equation (1) and the recurrence relation of the Fibonacci numbers:

$$\forall n \in \mathbf{Z} \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix} \,. \tag{4}$$

Zeckendorf's Theorem (**Lekkerkerker**'s [1] in 1952 (preprint 1951) attributes the result to Zeckendorf; Zeckendorf, who was not in academia, published [2] only later in 1972) says that any positive integer has a unique representation as a sum of the Fibonacci numbers F_n , $n \geq 2$, under the conditions that no two indices differ by one, and that no index is repeated. For example:

$$10 = 8 + 2 = F_6 + F_3$$

$$100 = 89 + 8 + 3 = F_{11} + F_6 + F_4$$

$$1,000 = 987 + 13 = F_{16} + F_7$$

$$10,000 = 6765 + 2584 + 610 + 34 + 5 + 2 = F_{20} + F_{18} + F_{15} + F_9 + F_5 + F_3$$

```
100,000 = 75025 + 17711 + 6765 + 377 + 89 + 21 + 8 + 3 + 1
= F_{25} + F_{22} + F_{20} + F_{14} + F_{11} + F_8 + F_6 + F_4 + F_2
1,000,000 = 832040 + 121393 + 46368 + 144 + 55
= F_{30} + F_{26} + F_{24} + F_{12} + F_{10}
10,000,000 = 9227465 + 514229 + 196418 + 46368 + 10946 + 4181 + 377 + 13 + 3
= F_{35} + F_{29} + F_{27} + F_{24} + F_{21} + F_{19} + F_{14} + F_{7} + F_{4}
100,000,000 = F_{39} + F_{37} + F_{35} + F_{32} + F_{30} + F_{28} + F_{23} + F_{21} + F_{15} + F_{13} + F_{11} + F_{9} + F_{4}
```

This is called the Zeckendorf representation, and it can be given either as above, or as the list of the indices (in decreasing or increasing order), or as a binary word which in the examples above are

```
10 = 10010_{zeck}
100 = 1000010100_{zeck}
1,000 = 100000000100000_{zeck}
10,000 = 101001000001001010_{zeck}
100,000 = 100101000001001010101_{zeck}
1,000,000 = 1000101000000000001010000000_{zeck}
10,000,000 = 100000101001001010000100100100100_{zeck}
100,000,000 = 101010010101000010100001010100001001_{zeck}
1,000,000,000 = 1010000100100001010100000100101000101001_{zeck}
```

The least significant digit says whether the Zeckendorf representation uses F_2 and so on from right to left (one may prefer to put the binary digits in the reverse order, but doing as above is more reminiscent of binary, decimal, or other representations using a given radix).

In a Zeckendorf binary word the sub-word 11 never occurs, and this, combined wih the fact that the leading digit is 1, characterizes the Zeckendorf words.

Donald Knuth (whose name may ring some bells to T_EX users) has defined in 1988 a **Fibonacci multiplication** ([3]) of positive integers via the formula

$$a \circ b = \sum_{i,j} F_{a_i + b_j} , \qquad (5)$$

where a = $\sum F_{a_i}$ and b = $\sum F_{b_j}$ are the Zeckendorf representations of the positive integers a and b. Although it is sometimes true that formula (5) remains valid when using non-Zeckendorf expressions of a and/or b as sums of Fibonacci numbers, this is not a general rule. The next identity by Knuth, which applies whenever three positive integers a, b, c are expressed via their Zeckendorf representations, is thus non-trivial:

$$(a \circ b) \circ c = \sum_{i,j,k} F_{a_i + b_j + c_k}.$$
(6)

From it, the associativity of the Fibonacci multiplication follows immediately, the same as commutativity followed immediately from (5).

Knuth's proof is combinatorial in nature. **Pierre Arnoux** ([4]) obtained in 1989 a non-combinatorial proof of associativity based upon the identification of a certain subset (or subsets) of the ring $\mathbf{Z}[\phi]$, closed under multiplication, and indexed by the positive integers. The circle-product on the indices is mapped to the standard multiplication of these algebraic integers A_n : $A_nA_m = A_{n \circ m}$. As by-product of this, he obtained the following remarkable alternative formula for the Knuth product:

$$a \circ b = ab + a \sum_{j} F_{b_{j}-1} + b \sum_{i} F_{a_{i}-1}$$
 (7)

Again, here we use the Zeckendorf representations of the positive integers a and b. Clearly formula (7) is advantageous numerically compared to original definition (5). Arnoux also re-interpreted a ``star-product'' which had been defined by Horacio Porta and Kenneth Stolarsky ([5]).

Donald Knuth (see [6, 7.1.3]) has shown that any relative integer has a unique representation as a sum of the ``NegaFibonacci'' numbers F_{-n} , $n \geq 1$, again with the condition that no index is repeated and no two indices differ by one. In the special case of zero, the representation is an empty sum. Here is the sequence of these ``NegaFibonacci'' numbers starting at n = -1:

$$1, -1, 2, -3, 5, -8, 13, -21, 34, -55, 89, -144, 233, -377, 610, -987...$$

In 1957, the twelve-year-old **George Bergman** ([7]) introduced the notion of a ``base ϕ '' number system. This uses 0 and 1 as digits but with the ambiguity rule 011 \leftrightarrow 100 due to $\phi^2 = \phi + 1$. He proved that any positive integer can be represented this way finitely, i.e. is a *finite* sum of powers ϕ^k , with decreasing relative integers as exponents (i.e. each power occurring at most once and it is crucial that negative powers are allowed). For example:

$$100 = \phi^9 + \phi^6 + \phi^3 + \phi^1 + \phi^{-4} + \phi^{-7} + \phi^{-10} = 1001001010.0001001001_{\phi}.$$

Such a finite ``phi-ary'' representation (it seems ``phi-representation'' is the more commonly used term in academia) is unique if one adds the condition that no two exponents differ by one. This is equivalent to requiring that the number of terms is minimal. The real numbers which can be represented by such finite sums are exactly the positive numbers in $\mathbf{Z}[\phi]$, i.e. all combinations $\mathbf{p} + \mathbf{q}\phi$ with \mathbf{p} and \mathbf{q} relative integers which turn out to be strictly positive.

$$100 - 30\phi = \phi^8 + \phi^3 + \phi^{-3} + \phi^{-10} = 100001000.0010000001_{\phi}.$$

The naive approach to obtain the finite phi-representations, and actually prove that they do exist for all positive integers, is to show how to repeatedly add 1 (hence also powers of ϕ). One then only needs to explain how to subtract 1 (hence also powers of ϕ) to deduce that all p + q ϕ > 0 are representable. This is actually what Bergman did. If one wants, as we do, to be able to obtain the representations for integers having say more than a few decimal digits, this theoretical approach is simply not feasible as is, one needs a bit more thinking.

A theoretical way, called the ``greedy'' algorithm, is based upon the fact that for any $\mathbf{x} = \mathbf{p} + \mathbf{q}\phi > \mathbf{0}$, the maximal exponent $\mathbf{k} \in \mathbf{Z}$ in its minimal representation is characterized by $\phi^{\mathbf{k}} \leq \mathbf{x} < \phi^{\mathbf{k}+1}$. So one only needs to get \mathbf{k} and then replace \mathbf{x} by $\mathbf{x} - \phi^{\mathbf{k}}$. Doing this using floating point number calculations will only be able to handle integers with few enough digits to be exactly representable, and may lead at some point to a negative \mathbf{x} , hence fail, due to rounding errors. So here again one has to think a bit.

This has been done by the author, and the resulting algorithm is implemented (expandably) here in ε -TeX. Of course this is only elementary mathematics and it would be extremely surprising if the algorithm was not in the literature. Inputs of hundreds of digits are successfully handled. The same, implemented in C or other language with a library for big integers, would of course go way beyond and be a thousand times faster.

An `integer-only'' algorithm (i.e. an algorithm which can be made to process only integers, but is in fact restricted to them; to compare, the approach described in the previous paragraph is in principle also implementable using integers only, but it applies to all $x=p+q\phi>0$ not only to integers) to obtain the Bergman minimal ϕ -representation of a positive integer N is explained by **Donald Knuth** in the solution to Problem 35 of section 1.2.8 from [8] (there is a typographical error with a missing negative sign in an exponent there, on page 495; this has been reported to the author). It starts with the position of N with respect to Lucas numbers, the more subtle case being when N follows an odd indexed Lucas number.

One has to think a bit how to find efficiently the largest Lucas number at most equal to N, when N has hundreds of digits. This is about the same as identifying the maximal k such as $\phi^k \leq N$, as $\phi^k + (-1)^k \phi^{-k} = L_k$ is an integer. It is also very similar to finding the Zeckendorf maximal index which essentially means to locate $\sqrt{5}N$ with respect to powers of ϕ (as ϕ^k - $(-1)^k \phi^{-k}$ for $k \geq 1$ belongs to $\sqrt{5}\,\text{N})$.

For x = N an **integer** (at least 2) it can be proven that the smallest contribution $\phi^{-\ell}$ to the minimal Bergman representation is with ℓ = k if k is even and ℓ = k + 1 is k is odd. Otherwise stated ℓ is the smallest even integer at least

 $^{^1}$ As the intrepid reader will see if looking at the code, this uses a little bit floating point logarithms with mantissas of eight decimal digits. This is because we have arbitrary precision logarithm available from xintexpr, with the fastest being with eight decimal digits precision, and after all we were not preparing a reference paper for Mathematics of Computation but simply aiming at computing for fun as efficiently as we could using tools at our disposal. This shortcut induces a theoretical upper bound on the size of the starting x: if it is an integer it must have less than say about one million decimal digits (see subsubsection 8.4.2 for details). As we can do computations (with TFXLive 2025 default memory settings) only up to about 13000 decimal digits (and in reasonable time up to less than 1000 digits), this is not a problem to us. And if we were to use logarithms with about 16 decimal digits of precision, the theoretical limit would raise to say inputs of less than about 1014 decimal digits. Each of our decimal digit occupies one word of computer memory, and even if we were using a programming language manipulating binary numbers, we would need more than 37 terabytes of computer memory to store the binary representation of (one less than) 10 to the power 1014, so using double precision floats (which are close to having 16 decimal digits of precision) is largely enough to cover real-life cases. Nevertheless, in the 0.9d code comments we briefly describe how we could proceed all the way using only integer arithmetic with no theoretical limit on input size. See subsubsection 8.4.2. Similar remarks apply to Zeckendorf representations.

REFERENCES

equal to k. (So we can always find the location of the radix separator if we had lost it).

Christiane Frougny and Jacques Sakarovitch ([9]) showed that there exists a (non explicited) finite two-tape automaton which converts the Zeckendorf expansion of a positive integer into the Bergman representation (where the part with negative exponents is ``folded'' across the radix point to sit on top (or below) the part with positive exponents). Very recently Jeffrey Shallit ([10]) has revisited this topic and constructed explicitly a Frougny-Sakarovitch automaton.

References

- [1] C. G. Lekkerkerker. Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci. Simon Stevin, 29:190--195, 1951-1952.
- [2] E. Zeckendorf. Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas. Bull. Soc. Roy. Sci. Liège, 41:179--182, 1972.
- [3] Donald E. Knuth. Fibonacci multiplication. *Appl. Math. Lett.*, 1(1):57-60, 1988.
- [4] Pierre Arnoux. Some remarks about Fibonacci multiplication. *Appl. Math. Lett.*, 2(4):319--320, 1989.
- [5] H. Porta and K. B. Stolarsky. The edge of a golden semigroup. In Number theory, Vol. I (Budapest, 1987), volume 51 of Colloq. Math. Soc. János Bolyai, pages 465--471. North-Holland, Amsterdam, 1990.
- [6] Donald E. Knuth. The art of computer programming. Vol. 4A. Combinatorial algorithms. Part 1. Addison-Wesley, Upper Saddle River, NJ, 2011.
- [7] George Bergman. A number system with an irrational base. *Math. Mag.*, 31:98--110, 1957/58.
- [8] Donald E. Knuth. *The art of computer programming. Vol. 1.* Addison-Wesley, Reading, MA, third edition, 1997. Fundamental algorithms.
- [9] Christiane Frougny and Jacques Sakarovitch. Automatic conversion from Fibonacci representation to representation in base ϕ , and a generalization. volume 9, pages 351--384. 1999. Dedicated to the memory of Marcel-Paul Schützenberger.
- [10] Jeffrey Shallit. Proving properties of φ -representations with the Walnut theorem-prover. *Commun. Math.*, 33(2):Paper No. 3, 33, 2025.

Part I. User manual

2. Use on the command line

Open a command line window and execute:

etex zeckendorf

then follow the displayed instructions.

The (T_EX Live) *tex executables are not linked with the readline library, and this makes interactive use quite painful. If you are on a decent system, launch the interactive session rather via

rlwrap etex zeckendorf

for a smoother experience.

3. The core package features

3.1. Algebra in $Q(\phi)$, extensions to the \xinteval syntax

The \xinteval syntax is extended in the following manner:

1. Bracketed pairs [a, b] represent $a+b\phi$, where ϕ is the golden ratio, and one can operate on them with +, - (also as prefix unary operator), *, /, and ^ (or **) to do additions, subtractions, multiplications, divisions and powers with integer exponents.

So ${\tt a}$ and ${\tt b}$ can be rational numbers and are not limited to integers for these computations.

phi stands for [0,1] and its conjugate psi = [1, -1] is defined also. One can use on input a + b phi, which on output will be printed as $[a, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \]$.

DO NOT USE \phi OR \psi... except if redefined to expand to the letters phi and psi but this not recommended...!

```
\xinteval{phi^50, psi^50, phi^50 * psi^50}
[7778742049, 12586269025], [20365011074, -12586269025], [1, 0]
```

\xinteval{(1+phi)(10-7phi)(3+phi)/(2+phi)^3}
[87/25, -59/25]

 $\xinteval{add(phi^n, n = -4, -7, -10, 1, 3, 6, 9)}$ [100, 0]

\xinteval{phi^20 / phi^10}

[34, 55]

TeX-nical note: When dividing, and except if both operands are scalars, the coefficients of the result are reduced to their smallest terms; but for scalar-only division, one needs to use the reduce() function explicitly.

The [0, 0] acts as 0 in operations, but is not automatically replaced by it, if produced by a subtraction for example. It is not allowed as an exponent for powers.

The functions phisign(), phiabs(), phinorm(), phiconj() do what one expects.

Attention: \mintexal functions are always used with parentheses, not with curly braces, contrarily to macros!

```
\xinteval{phisign(10000 - 6180 phi)}
1;

\xinteval{phisign(10000 - 6181 phi)}
-1;

\xinteval{phiabs(10000 - 6181 phi)}
[-10000, 6181]

\xinteval{phinorm(10000 - 6180 phi)}
7600

\xinteval{(10000 - 6180 phi) * phiconj(10000 - 6180 phi)}
[7600, 0]
```

3. The function fib() computes the Fibonacci numbers (also for negative indices), and fibseq(a,b) will compute a consecutive stretch of them from index a to index b (one may also have b=a, or b<a).

```
\xinteval{seq(fib(n), n=-5..5, 10, 20, 100)}
5, -3, 2, -1, 1, 0, 1, 1, 2, 3, 5, 55, 6765, 354224848179261915075
\xinteval{seq(fib(2^n), n=1..7)}
1, 3, 21, 987, 2178309, 10610209857723, 251728825683549488150424261
```

TeX-nical note: In the next example, \xintFor expands only once, but \xinteval needs two expansion steps so we use \expanded wrapper. We could have used \xintFor* but then we need \xintCSVtoList wrapper. We also could have used some \romannumeral-\0 prefix but I figured \expanded looked less scary. For details on \xintFor/\xintFor* check the xinttools documentation.

```
\xintFor #1 in {\expanded{\xinteval{*fibseq(100, 110)}}}%
\do{#1\xintifForLast{.\par}{,\newline}}
354224848179261915075,
573147844013817084101,
927372692193078999176,
1500520536206896083277,
2427893228399975082453,
3928413764606871165730,
6356306993006846248183,
10284720757613717413913,
16641027750620563662096,
26925748508234281076009,
43566776258854844738105.
In the previous example, note the syntax *fibseq(100,110). Indeed fibseq(a,b) produces a nutple (see xintexpr documentation), i.e. the output
```

will display brackets [...] (even if a=b):

```
\xinteval{fibseq(20, 25)}
[6765, 10946, 17711, 28657, 46368, 75025]
```

With the * prefix the brackets are removed.

4. The zeckindices() function computes the indices needed for the Zeckendorf representation. The input must be an integer. If negative, it is replaced by its opposite. The zero input gives an empty output (i.e. is printed as []).

```
\xinteval{zeckindices(123456789)}
[40, 36, 34, 28, 26, 24, 18, 16, 13, 7, 5, 2]
```

We use the * prefix to not have brackets in the output.

```
\xinteval{*zeckindices(123456789123456789123456789)}
126, 123, 119, 117, 109, 104, 101, 95, 93, 90, 86, 84, 81, 76, 72, 69, 63, 61, 59, 55, 52, 50, 46, 41, 39, 37, 35, 33, 31, 29, 27, 25, 23, 20, 14, 11, 9, 6, 4, 2
```

```
\xinteval{*zeckindices(1e40)}
```

```
193, 186, 176, 174, 167, 163, 161, 159, 157, 153, 150, 147, 145, 143, 141, 139, 136, 134, 130, 126, 119, 115, 113, 110, 108, 106, 103, 101, 98, 95, 93, 91, 89, 86, 83, 78, 73, 67, 65, 63, 60, 57, 55, 52, 50, 47, 45, 39, 37, 32, 28, 23, 21, 19, 16, 13, 5
```

It is easy with this syntax to manipulate the indices in various ways. Let's print them from smallest to largest:

```
\xinteval{*reversed(zeckindices(123456789123456789123456789))}
2, 4, 6, 9, 11, 14, 20, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 46, 50,
52, 55, 59, 61, 63, 69, 72, 76, 81, 84, 86, 90, 93, 95, 101, 104, 109,
117, 119, 123, 126
```

The power of \minteval, always eager to prove A=A, can be demonstrated:

```
\xinteval{add(fib(n), n = *zeckindices(123456789))}
123456789
```

```
\xinteval{add(fib(n), n = *zeckindices(123456789123456789123456))}
123456789123456789123456
```

5. the \$ is added as infix operator on *positive* integers (it will error if used with non-positive integers), to compute the Knuth Fibonacci multiplication. It does it using the Arnoux formula (7). The \$\$ does the same but using the original Knuth formula (5).

For examples see subsubsection 3.4.1.

6. The phiexponents() function computes the exponents in the Bergman ϕ -representation of its input. This input must be either an integer or a bracketed pair [a,b] or equivalently a+b phi, standing for $a+b\phi$ with a and b relative integers. It $a+b\phi<0$ it is replaced by its opposite. The output is the empty nutple [] if input is zero. Non-integer input is truncated to integers.

The phiexponents() function produces a bracketed list.

```
\xinteval{phiexponents(100)}\newline
\xinteval{phiexponents(100 - 50phi)}\newline
\xinteval{phiexponents(-100 + 50phi)}\newline
\xinteval{phiexponents(100 - 50psi)}

[9, 6, 3, 1, -4, -7, -10]

[6, 0, -4, -10]

[6, 0, -4, -10]

[10, 4, 0, -6]
```

We can use * prefix as already indicated if we prefer not to see the brackets:

```
\xinteval{*phiexponents(3141592653)}
45, 42, 31, 29, 27, 25, 21, 18, 6, 1, -2, -6, -19, -23, -32, -43, -46
```

The added \xinteval syntax elements are also sometimes examplified alongside their respective matching macros. Not all macros defined by the package are documented, because documentation takes incredible amount of times and induces costly maintenance. See the commented source code.

Important

The added syntax elements are only defined for \minteval. It is possible though to access them inside of \mintfloateval using the lower-level \mintexpr. Here is an example:

```
\xintfloateval{\xintexpr fib(100) / fib(99)\relax}
```

1.618033988749895

The variables phi and psi can not be used for operations directly inside of \xintfloateval. And they should not be redefined as floating point variables, as this would break their usage in \xinteval. But one can transfer computations after having defined first an auxiliary \xintfloateval function:

3.2. Fibonacci numbers

3.2.1. \ZeckTheFN

This macro computes Fibonacci numbers.

```
\ZeckTheFN{100}
354224848179261915075
\ZeckTheFN{100 + 15}
483162952612010163284885
```

As shown, the argument can be an integer expression (only in the sense of \inteval, not in the one of \xinteval, for example you can not have powers only additions and multiplications). Negative arguments are allowed:

0, 1, -1, 2, -3

fib()

The syntax of \mathbb{xinteval} is extended via addition of a fib() function, which gives a convenient interface. See its documentation in subsection 3.1.

3.2.2. \ZeckTheFSeq

This computes not only one but a whole contiguous series of Fibonacci numbers but its output format is a sequence of braced numbers, and tools such as those of xinttools are needed to manipulate its output. For this reason it is not further documented here.

fibseq()

```
The syntax of \mintexal is extended via addition of a fibseq() function, which gives a convenient interface:
\mintexal{fibseq(10,20)}

[55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765]

Notice the square brackets used on output. In the terminology of mintexpr, the function produces a nutple. Use the * prefix to remove the brackets:
\mintexal{*fibseq(-10,-20)}

-55, 89, -144, 233, -377, 610, -987, 1597, -2584, 4181, -6765
```

3.3. Zeckendorf representation

3.3.1. \ZeckIndices

This computes the Zeck representation as a comma separated list of indices. The input is only f-expanded, if you need it to be an expression you must wrap it in \times inteval. A negative input will be replaced by its absolute value. A vanishing input gives an empty output.

```
The macro is also known as \ZeckZeck.
\ZeckZeck{123456789123456789123456789}
126, 123, 119, 117, 109, 104, 101, 95, 93, 90, 86, 84, 81, 76, 72, 69, 63, 61, 59, 55, 52, 50, 46, 41, 39, 37, 35, 33, 31, 29, 27, 25, 23, 20, 14, 11, 9, 6, 4, 2
```

zeckindices()

The syntax of \mathbb{xinteval} is extended via addition of a zeckindices() function, which gives a more convenient interface.

3.3.2. \ZeckWord

This computes the Zeck representation as a binary word. The input is only f-expanded, if you need it to be an expression you must wrap it in \times inteval.

A zero input gives an empty output and a negative input is replaced by its absolute value.

As TEX does not by default split long strings of digits at the line ends, we gave so far only some small examples. See <u>xint</u> or <u>bnumexpr</u> documentations for a \printnumber macro able to add linebreaks. Using such an auxiliary (a bit refined) we can for example obtain this:

```
\ZeckWord{\xinteval{2^100}}
```

Compare the above with the list of indices in the Zeckendorf representation: 145, 143, 137, 134, 131, 129, 127, 125, 123, 120, 111, 108, 105, 102, 100, 98, 94, 92, 89, 84, 81, 78, 76, 73, 64, 62, 57, 54, 52, 50, 48, 41, 39, 36, 32, 22, 19, 16, 12, 9, 6, 4.

3.3.3. \ZeckNFromIndices

This computes an integer from a list of (comma separated) indices. These indices do not have to be positive, their order is indifferent and they can be repeated or differ by only one unit. The list is allowed to be empty. Contiguous commas (or commas separated only by space characters) act as a single one, a final comma is tolerated. A new f-expansion is done at each item, they can be (f-expandable) macros.

```
\ZeckNFromIndices{}\newline
\ZeckNFromIndices{100, ,,, 90, 80, 70, 60, 50, 40, 30 , , ,,,}
0
357128524055170099155
\ZeckIndices{357128524055170099155}
100, 90, 80, 70, 60, 50, 40, 30
\ZeckIndices{\ZeckNFromIndices{100, 90, 80, 70, 60, 50, 40, 30}}
100, 90, 80, 70, 60, 50, 40, 30
\ZeckNFromIndices{3,-1,4,-1,5,-9,2,-6,5,-3}
46
```

```
Emulation inside \xinteval
```

```
There is no associated \xinteval function but the functionality is a one-liner in its syntax: \xinteval{add(fib(i), i= 100, 90, 80, 70, 60, 50, 40, 30)} 357128524055170099155 \xinteval{add(fib(i), i= 3, -1, 4, -1, 5, -9, 2, -6, 5, -3)}
```

3.3.4. \ZeckNfromWord

This computes a positive integer from a binary word. The word can be arbitrary apart from not being empty.

3.4. Knuth Fibonacci Multiplication

3.4.1. \ZeckKMul, \ZeckAMul

Both compute the Knuth multiplication of its two **positive** integer arguments. The former, using formula (5), the latter using (7). The two arguments are only f-expanded, you need to wrap each in an \times if it is an expression. $\ZeckKMul\{100\}\{200\}$, $\ZeckAMul\{100\}\{200\}$

```
44800, 44800

\ZeckKMul{\ZeckKMul{100}{200}}{300},

\ZeckAMul{\ZeckKMul{100}{200}}{300}

30079200, 30079200

\ZeckKMul{100}{\ZeckKMul{200}{300}},

\ZeckAMul{100}{\ZeckKMul{200}{300}}

30079200, 30079200
```

\$, \$\$

The syntax of \xinteval is extended via addition of a \$ infix operator computing according to the Arnoux formula (7), and \$\$ computing according to the Knuth formula (5).

```
\xinteval{(100 $ 200) $ 300, 100 $ (200 $ 300), 100 $$ 200 $$ 300} 30079200, 30079200, 30079200
```

Let us mention here that we could have defined a knuth() function easily
using the powerful \xinteval syntax:
\xintNewFunction{knuth}[2]

```
{add(fib(x), x = flat(ndmap(+, *zeckindices(#1); *zeckindices(#2);)))}
\xinteval{knuth(100,200), knuth(knuth(100,200),300),
knuth(100,knuth(200,300))}
44800, 30079200, 30079200
```

TeX-nical note: We could not have used \mintdeffunc here to define knuth(), so we used the \mintdewFunction interface. The sole inconvenient is that when using knuth() it is as if we injected by hand the replacement expression, which will have to be parsed by \mintdewinterial.

About using ndmap() with + as first argument, it is related to xintexpr having defined a `+` function. So we can also use * here, but not - or /.

The advantage is that we have now the means to check the validity of Knuth's triple product formula (6):

3.4.2. \ZeckSetAsKnuthOp, \ZeckSetAsArnouxOp

This takes as input a character, or multiple characters, and turns them (as a unit) into an infix operator computing the Knuth multiplication, respectively according to the original Knuth definition (5) or to the Arnoux formula (7). The pre-defined meanings of \$ or \$\$ for this will not be canceled. One may use $\ZeckDeleteOperator\{\langle operator \rangle\}$ to delete the existing meaning of an \xinteval operator.

IMPORTANT

There is NO WARNING if you override a pre-existing operator from the \mathbb{xinteval} syntax, and not all such operators are user-documented because some exist for internal purposes only. But if done inside a group or environment, the former meaning will be recovered on exit.

There are a few important points to be aware of:

You can use a letter such as o as operator but it then must be used prefixed by \string which is not convenient:

```
\ZeckSetAsArnouxOp{o}
\xinteval{100 \string o 200 \string o 300}
30079200
```

• With a Unicode engine, they are plenty of available characters that are already of catcode 12. For example:

```
\ZeckSetAsArnoux{⊙}
\xinteval{100 ⊙ 200 ⊙ 300}
30079200
```

You can also use letters from Greek or other scripts, but make sure they have catcode 12.

- It is not possible to use as operator a control sequence such as \odo\odo\odo
 t. It has to be one or more non-letter characters. It can not be the
 period (full stop) which, although not being a predefined operator is
 recognized as decimal separator.
- In case your document is compiled with pdflatex or latex and uses Babel, some characters may be catcode active. To make them part of a name of an operator defined by \ZeckSetAsKnuthOp, each such catcode active character has to be prefixed with \string in the argument of \ZeckSetAs\Understand KnuthOp. But \string is then unneeded inside \xinteval (since xintexpr 1.4n).

3.5. Bergman phi-representation

3.5.1. \PhiExponents

It has a unique mandatory argument which can be (or expand too) either an integer a, or two braced integers $\{a\}\{b\}$.

It outputs the comma separated list of the exponents from the minimal Bergman representation of the absolute value of $a+b\phi$. If $a+b\phi<0$, this list will be prefixed by a period. If a=b=0, the output is empty.

phiexponents()

The syntax of \mathbb{xinteval} is extended via addition of a phiexponents() function, which gives a more convenient interface.

Contrarily to the macro, it loses the information about the sign of the input and tacitly replaces it with its absolute value.

See subsection 3.1 for examples.

```
\label{eq:continuous} $$ [100\rightarrow 9,6,3,1,-4,-7,-10] $$ $$ 100 \rightarrow 9,6,3,1,-4,-7,-10 $$ $$ [100\phi\rightarrow \PhiExponents{\{0\}\{100\}\}\]} $$ $$ 100\phi \rightarrow 10,7,4,2,-3,-6,-9 $$ $$ [1000000\rightarrow \PhiExponents{1000000}\] $$ 1000000 \rightarrow 28,26,20,16,13,8,4,0,-4,-9,-11,-14,-16,-20,-26,-28 $$
```

\$10^{20}\rightarrow{}\$ \PhiExponents{\xinteval{10^20}}.

```
10^{20} \rightarrow 95, 93, 86, 84, 67, 65, 62, 60, 45, 41, 38, 31, 28, 23, 21, 16, 12, 6, 4, -4, -6, -12, -17, -19, -24, -29, -32, -39, -43, -46, -60, -63, -68, -84, -87, -89, -91, -96.
```

We did not use math mode for the longer output, because TeX needs extra instructions to wrap the line. But the separator can be customized to this aim: \renewcommand\PhiExponentsSep

```
{,\allowbreak\hskip0pt plus 1pt\relax} $10^{50}\rightarrow \PhiExponents{\xinteval{10^50}}$. $10^{50} \rightarrow \PhiExponents{\xinteval{10^50}}$. $10^{50} \rightarrow \239, 234, 232, 226, 223, 219, 217, 212, 205, 202, 200, 196, 192, 189, 186, 177, 173, 169, 165, 161, 159, 152, 149, 146, 144, 138, 131, 129, 127, 123, 120, 116, 114, 109, 107, 105, 103, 100, 98, 96, 94, 88, 86, 84, 82, 79, 76, 74, 72, 65, 63, 61, 57, 55, 53, 48, 41, 35, 33, 30, 28, 26, 22, 16, 14, 12, 9, 6, 4, 2, -2, -4, -7, -10, -12, -14, -16, -22, -26, -28, -31, -37, -39, -42, -49, -51, -59, -66, -72, -74, -77, -80, -82, -84, -86, -88, -94, -96, -98, -101, -110, -114, -116, -121, -125, -132, -138, -144, -147, -150, -153, -155, -157, -163, -167, -171, -175, -178, -187, -190, -192, -196, -200, -203, -206, -213, -215, -221, -224, -226, -232, -235, -237, -240.
```

The attentive reader will have noticed though that our math mode does not differ much from our nice monospace text mode. Maybe look at some other \mbox{LTEX} package by the author to find some clues explaining this top-quality type-setting.

3.5.2. \PhiBasePhi

It has a unique mandatory argument which can be (or expand two) either an integer a, or two braced integers $\{a\}\{b\}$.

It computes the Bergman ϕ -representation of $x=a+b\phi$ if x turns out to be positive, outputs 0 if both a and b vanish, and outputs a minus sign followed with the expansion of the opposite of x if x<0.

The output for positive x is a sequence of 1's and 0's with possibly a period as radix separator (it can be customized, see next), which either starts with a leading 1 or with zero followed by the radix separator 0.. It always ends with a 1. No 1 is repeated.

The arguments are x-expanded, if you need them to be expressions you must wrap them using \times inteval.

```
\phi^{12} = 10000000000000_{\phi}
                                                         \phi^{-5} = 0.00001_{\phi}
\phi^{11} = 1000000000000
                                                         \phi^{-6} = 0.000001_{\phi}
\phi^{10} = 10000000000_{\phi}
                                                         \phi^{-7} = 0.0000001_{\phi}
                                                         \phi^{-8} = 0.00000001_{\phi}
\phi^9 = 10000000000_{\phi}
\phi^8 = 100000000_{\phi}
                                                         \phi^{-9} = 0.000000001_{\phi}
\phi^7 = 10000000_{\phi}
                                                         \phi^{-10} = 0.0000000001_{\phi}
\phi^6 = 1000000_{\phi}
                                                         \phi^{-11} = 0.00000000001_{\phi}
\phi^5 = 100000_{\phi}
                                                         \phi^{-12} = 0.000000000001_{\phi}
\phi^4 = 10000_{\phi}
                                                         \phi^{-13} = 0.0000000000001_{\phi}
\phi^3 = 1000_{\phi}
                                                         \phi^{-14} = 0.00000000000001_{\phi}
\phi^2 = 100_{\phi}
                                                         \phi^{-15} = 0.000000000000001_{\phi}
\phi^{1} = 10_{\phi}
                                                         \phi^{-16} = 0.00000000000000001_{\phi}
\phi^{0} = 1_{\phi}
                                                         \phi^{-17} = 0.000000000000000001_{\phi}
\phi^{-1} = 0.1_{\phi}
                                                         \phi^{-2}=0.01_{\phi}
                                                         \phi^{-3} = 0.001_{\phi}
                                                         \phi^{-21} = 0.00000000000000000000000001_{\phi}
\phi^{-4} = 0.0001_{\phi}
```

The radix separator is customizable as \PhiBasePhiSep. It defaults to a period .. If, for example, you use the package numprint, you could do \makeatletter\renewommand{\PhiBasePhiSep}{\nprt@decimal}\makeatother for the output to use the radix separator as set via \npdecimalsign command. It is easier to simply wrap usage of \PhiBasePhi inside of \numprint (or shortcut \np) command of that package.

TEX-nical note: For fancy set-ups, for example for a radix separator using color, it is recommended to use \RenewDocumentCommand. Indeed, it turns out that \PhiBasePhi will trigger an expansion context, and the radix separator has to be compatible with it.

```
% or \protected\def if not using LaTeX
\RenewDocumentCommand\PhiBasePhiSep{}{{\mathcolor{blue}{.}}}
\begin{gather*}
\xintFor #1 in {1, 10, 100, 10000, 100000, 1000000}\do{%
#1 = \PhiBasePhi{#1}_\phi \xintifForLast{}{\\}}
\end{gather*}
```

Tip

The radix separator is somewhere in the middle.

TeX-nical note: Maybe this 10^{50} gives opportunity to stress the following: in \xinteval, braces $\{...\}$ are removed, so for example 2^{10-1} is same as 2^{10-1} and not at all 2^{10-1} . It is easy to forget this when doing both TeX typesetting and \xinteval calculations at the same time. By the way, 2^{50} is accepted syntax in \xinteval, parentheses as in 2^{6-50} are not mandatory.

3.5.3. \PhiXfromExponents

 $010100000100101001_{\phi}$.

This computes a ϕ -integer from an arbitrary list of (comma separated) exponents, not necessarily ordered. The output {a}{b} is not destined for direct typesetting, one needs for this to wrap usage of the macro inside of \PhiTyp\end{abelian} esetX.

The list input is allowed to be empty. A period upfront the input signals to change the sign of the output to its opposite.

TeX-nical note: When using the interactive interface, such a leading period in the list of exponents will be produced on output from an a+b phi if $a+b\phi<0$, but when converting in the other direction, from a list of exponents to some a+b phi, a leading period will cause the first exponent to be replaced with zero, if it is non-negative, and will cause a crash if the first listed exponent is negative.

Contiguous commas (or commas separated only by space characters) act as a single one, a final comma is tolerated. A new f-expansion is done at each item, they can be (f-expandable) macros.

```
For these next two examples:
$\PhiTypesetX{\PhiXfromExponents{\PhiExponents{1000}}}$\newline
$\PhiTypesetX{\PhiXfromExponents{\PhiExponents{{1000}}{-1000}}}}}$
We have to be careful that we previously customized \PhiExponentsSep like
this:
\renewcommand\PhiExponentsSep
     {,\allowbreak\hskip0pt plus 1pt\relax}
But this will break \PhiXfromExponents because it really needs its argument,
after expansion, to be a genuine comma separated list (possibly with extra
spaces, they do not matter). So we now reset \PhiExponentsSep to its default,
and we can execute successfully the next instructions confirming this package
is excellent at doing nothing:
\renewcommand\PhiExponentsSep{, }%
$\PhiTypesetX{\PhiXfromExponents{\PhiExponents{1000}}}$\newline
$\PhiTypesetX{\PhiXfromExponents{\PhiExponents{\1000}{-1000}}}}$
1000
1000 - 1000\phi
```

3.5.4. \PhiXfromBasePhi

This computes an element from $\mathbf{Z}[\phi]$ from a Bergman ϕ -representation. The input is allowed to be empty. If it contains a radix separator, it must be a period, and that period must be preceded by at least one 0 or 1. It is allowed for 1's to be consecutive. A leading minus sign is allowed.

The output {a}{b} is not destined for direct typesetting one needs to wrap it inside of \PhiTypesetX.

```
\edef\x{\PhiXfromBasePhi{}, \PhiXfromBasePhi{0}, \PhiXfromBasePhi{-0}}
\meaning\x\newline
$\PhiTypesetX{\PhiXfromBasePhi{10.01}}$\newline
$\PhiTypesetX{\PhiXfromBasePhi{101000100010.0010000100001}}$\newline
$\PhiTypesetX{\PhiXfromBasePhi{-101000100010.0010001000011}}$
\macro:->{0}{0}, {0}{0}, {0}{0}
```

288 89 - 233φ

3.6. Typesetting

3.6.1. \ZeckPrintIndexedSum

```
This is a typesetting utility which produces (expandably), by default, F_a
+ F_{a'} + . . . from a, a', . . . .
$\ZeckPrintIndexedSum{\ZeckIndices{1000000000000000000}}$.
F_{92} + F_{89} + F_{87} + F_{64} + F_{62} + F_{57} + F_{54} + F_{51} + F_{48} + F_{45} + F_{43} + F_{41} + F_{38} + F_{35} + F_{32} + F_{30} +
F_{27} + F_{22} + F_{20} + F_{16} + F_{14} + F_{9} + F_{7}.
  The + is injected by \ZeckPrintIndexedSumSep whose default definition is:
\def\ZeckPrintIndexedSumSep{+\allowbreak}
Each index from the input list is given as argument to \ZeckPrintOne whose
default definition requires math mode:
\def\ZeckPrintOne#1{F_{#1}}
If one wants explicit Fibonacci numbers, one can do this:
$\def\ZeckPrintOne{\ZeckTheFN}
\ZeckPrintIndexedSum{\ZeckIndices{1000000000000000000}}$.
7540113804746346429+1779979416004714189+679891637638612258+10610209857723+
4052739537881 + 365435296162 + 86267571272 + 20365011074 + 4807526976 + 1134903170 +
433494437 + 165580141 + 39088169 + 9227465 + 2178309 + 832040 + 196418 + 17711 +
6765 + 987 + 377 + 34 + 13.
  However, as one can see above and was already mentioned, TeX and MTeX do not
know out-of-the-box to split strings of digits at line endings. Hence the
first two lines are squeezed, but still overflow, which is not pleasing.
  With the help of a xinttools utility we can redefine \ZeckPrintOne to inject
breakpoints in-between consecutive digits:
\renewcommand\ZeckPrintOne[1]
   {\xintListWithSep{\allowbreak}{\ZeckTheFN{#1}}}
$\ZeckPrintIndexedSum{\ZeckIndices{1000000000000000000}}$.
7540113804746346429 + 1779979416004714189 + 679891637638612258 + 10610209857
```

Expert MTEX users will know how to achieve a result such as this one, which pleasantly decorate the linebreaks:

 $723 + 4052739537881 + 365435296162 + 86267571272 + 20365011074 + 4807526976 + 1\\134903170 + 433494437 + 165580141 + 39088169 + 9227465 + 2178309 + 832040 + 19641$

7540113804746346429 + 1779979416004714189 + 679891637638612258 + 10610209852 7723 + 4052739537881 + 365435296162 + 86267571272 + 20365011074 + 4807526976 + 2134903170 + 433494437 + 165580141 + 39088169 + 9227465 + 2178309 + 832040 + 1964218 + 17711 + 6765 + 987 + 377 + 34 + 13.

3.6.2. \PhiPrintIndexedSum

8 + 17711 + 6765 + 987 + 377 + 34 + 13.

It is actually a clone of \ZeckPrintIndexedSum which only differs from it via separate configuration macros:

\def\PhiPrintIndexedSumSep{+\allowbreak}% same as \ZeckPrintIndexedSumSep \def\PhiPrintOne#1{\phi^{#1}}% powers of phi rather than Fibonacci

% numbers.

As for \ZeckPrintIndexedSum the default configuration is thus math mode only. \[2025 = \PhiPrintIndexedSum{\PhiExponents{2025}}\]

$$2025 = \phi^{15} + \phi^{13} + \phi^{10} + \phi^{5} + \phi^{3} + \phi^{1} + \phi^{-6} + \phi^{-11} + \phi^{-16}$$

It is important in the above example that \PhiExponentsSep has its default definition because \PhiPrintIndexedSum needs to see real commas.

TODO?

Maybe let it recognize an upfront period (as produced by \PhiExponents if $x = a + b\phi < 0$) in the input, and then use minus signs in the output?

3.6.3. \PhiTypesetX

This is supposed to receive as (single) argument two braced relative integers $\{a\}\{b\}$.

The default output is math-mode only, as it is of the type $a+b\phi$, with simplifications for zero or negative coefficients. This is decided by the two-arguments macro \PhiTypesetXPrint which can be redefined.

For examples, see the documentation of \PhiXfromExponents and \PhiXfromBa\colon sePhi.

4. Use as a LATEX package

As expected, add to the preamble:

\usepackage{zeckendorf}

There are no options.

5. Use with Plain ε -T_FX

You will need to input the core code using:

\input zeckendorfcore.tex

IMPORTANT

After this \input, the catcode regimen is a specific one (for example _, :, and ^ all have catcode letter). So, you will probably want to emit \ZECKrestorecatcodes immediately after this import, it will reset all modified catcodes to their values as prior to the import.

Then you can use the exact same interface as described in the previous section.

6. Changes

0.9d (2025/11/16) Breaking changes:

- The radix separator used by default by \PhiBasePhi on output and expected by \PhiXfromBasePhi on input is now a period, not a comma (the comma was used by accident by the author due to patriotism).
- \ZeckIndices and \ZeckWord both replace a negative argument by its absolute value, rather than returning an empty output as so far.

New feature: Macros to support Zeckendorf and Bergman representations using hexadecimal digits. For lack of time, the PDF doc is not updated, please use the interactive interface or check the source code for the macro names. Thanks to **Laurent Barme** for the feature request.

Bug fix: After the 0.9c transition from \mintieval to \minteval, the \$ and \$\$ infix operators were broken with operands such as (2+3) in place of lone integers.

Improvements:

- The fibseq(a,b) function can now be used also with a < b and a = b.
- Under-the-hood polishing for efficiency, improved code comments and documentation of the main algorithms.
- $0.9c\ (2025/10/17)$ This adds many new features and has some breaking changes due to renamings, not listed here.
 - It is not \xintiieval but \xinteval's syntax which is now extended.
 - Variables phi and psi are defined and one can do algebra with +, -, *, / and ^ on them in $\mathbf{Q}(\phi)$.
 - The Bergman ϕ -representation is added for elements of $\mathbf{Z}[\phi]$ in particular for integers.
 - The \$ character doing the Knuth Fibonacci multiplication on positive integers now uses the (more efficient) Arnoux formula. The \$\$ computes out of deference according to the original Knuth definition.
 - The PDF documentation section on the mathematical background has been extended and includes bibliographical references.
 - The interactive interface integrates all novelties.

0.9b (2025/10/07)

Bug fixes:

■ The instructions for interactive use mentioned 1e100 as possible input, but the author had forgotten that this syntax is not legitimate in \xintiieval (for example 1+1e10 crashes immediately). This remark is obsolete as of 0.9c because the interactive mode now uses \xinteval, not \xintiieval.

7. License

■ The code tries at some locations to be compatible with xintexpr versions earlier than 1.4n. But these versions did not load xintbinhex automatically and the needed \RequirePackage or \input for Plain T_EX was lacking from the zeckendorf code.

Other changes: In the interactive interface, the input may now start with an \xintiieval function such as binomial whose first letter coincides with one of the letter commands without it being needed to for example add some \empty control sequence first. On the other hand, it was possible to use the full command names, now only their first letters (lower or uppercase) are recognized as such.

0.9alpha (2025/10/06) Initial release.

7. License

Copyright (c) 2025 Jean-François Burnol

```
| This Work may be distributed and/or modified under the | conditions of the LaTeX Project Public License 1.3c. | This version of this license is in
```

> <http://www.latex-project.org/lppl/lppl-1-3c.txt>

```
| and version 1.3 or later is part of all distributions of | LaTeX version 2005/12/01 or later.
```

This Work has the LPPL maintenance status "author-maintained".

The Author and Maintainer of this Work is Jean-François Burnol.

This Work consists of the main source file and its derived files

```
zeckendorf.dtx,
zeckendorfcore.tex, zeckendorf.tex, zeckendorf.sty,
README.md, zeckendorf-doc.tex, zeckendorf-doc.pdf
```

Part II.

Commented source code

Core code	24
Interactive code	55
LATEX code	61
8. Core code	
Loading xintexpr and setting catcodes	
Fibonacci numbers	. 25
Zeckendorf representation	. 28
Bergman representation	. 33
The Knuth Fibonacci multiplication	41
Typesetting	42
Extensions of the \xinteval syntax	
Extracts to zeckendorfcore.tex. A general remark is that expandable macros (usually) f-expand their arguments, a	and

most are f-expandable. Usually, the CamelCase macro (with neither @ nor _ in their names) expands to either \romannumeral0 or \expanded followed with a lowercase macro. Macros destined to be used in typesetting context usually omit any such construct and may require x-expansion. They remain fully expandable as long as some user level cus-

may require x-expansion. They remain fully expandable as long as some user level customization (for example for the radix separator) has not injected things not compatible with an \setminus edef.

For variety we use here sometimes @ in macro names, whereas xint uses only _ (and sometimes some other a priori non-letter characters).

8.1. Loading xintexpr and setting catcodes

- 1 \input xintexpr.sty
- 2 \input xintbinhex.sty
- 3 \wlog{Package: zeckendorfcore 2025/11/16 v0.9d (JFB)}%
- 4 \edef\ZECKrestorecatcodes{\XINTrestorecatcodes}%
- $\verb§5 \def\ZECKrestorecatcodesendinput{\ZECKrestorecatcodes\endinput}\%$

6 \XINTsetcatcodes%

Small helpers related to \expanded-based methods. But the package only has a few macros and these helpers are used only once or twice, most macros using own custom terminators adapted to their own optimizations.

```
7 \def\zeck_done#1\xint:{\iffalse{\fi}}%
8 \let\zeck_abort\zeck_done
```

8.2. Fibonacci numbers

8.2.1. \ZeckTheFN

37 }%

The multiplicative algorithm is as in the bnumexpr manual (at 1.7b), or since about ten years in the xint manual (at 1.4o or earlier) but termination is different and simply leaves $\{F_n\}\{F_n-1\}$ in input stream. We do not use \csname...\endcsname branching here, for variety. Also, we replaced usage of chained expressions handled via \xinti\lambda iexpro with direct usage of the xintcore macros, for optimized efficiency, and taking into account that \expanded now helps doing this without intermediate step.

\Zeck@FPair and \Zeck@@FPair are not public interface. The former is allows a negative or zero argument, the latter is positive only.

```
9 \def\Zeck@FPair#1{\expandafter\zeck@fpair\the\numexpr #1.}%
10 \def\zeck@fpair #1{%
     \xint_UDzerominusfork
12
        #1-\zeck@fpair_n
13
        0#1\zeck@fpair_n
14
        0-\zeck@fpair_p
15
     \krof #1%
16 }%
17 \def\zeck@fpair_p #1.{\Zeck@@FPair{#1}}%
18 \def\zeck@fpair_n #1.{%
      \ifodd#1 \expandafter\zeck@fpair_ei\else\expandafter\zeck@fpair_eii\fi
      \romannumeral`&&@\Zeck@@FPair{1-#1}%
20
21 }%
22 \def\zeck@fpair_ei{\expandafter\zeck@fpair_fi}%
23 \def\zeck@fpair_eii{\expandafter\zeck@fpair_fii}%
24 \def\zeck@fpair_fi#1#2{\expanded{{#2}{\XINT_0pp#1}}}%
25 \def\zeck@fpair_fii#1#2{\expanded{{\XINT_Opp#2}{#1}}}%
26 \def\Zeck@@FPair#1{%
      \expandafter\zeck@@fpair@start
      \romannumeral0\xintdectobin{\the\numexpr#1\relax};%
28
29 }%
Inlining here at start the \zeck@@fpair@again because we don't want the \expandafter's
here, due to current \XINTfstop definition.
30 \def\zeck@@fpair@start 1#1{%
      \xint_gob_til_sc#1\zeck@@fpair@done;%
32
      \xint_UDzerofork
          #1\zeck@@fpair@zero
33
           0\zeck@@fpair@one
34
      \krof
35
      {1}{0}%
36
```

Prior to 0.9d we were using coding like this, as it has been easier to use expressions (the xint documentation had such code for more than ten years, precisely to illustrate chaining of expressions, and at a time when \expanded was not available, and of course we simply took it over initially).

```
\romannumeral0\xintiiexpro (#1+2*#2)*#1\expandafter\relax\expandafter;%
\romannumeral0\xintiiexpro #1*#1+#2*#2\relax;%
```

or

```
\romannumeral0\xintiiexpro 2*(#1+#2)*#1+#2*#2\expandafter\relax\expandafter;%
\romannumeral0\xintiiexpro (#1+2*#2)*#1\relax;%
```

At 0.9d we go directly to the xintcore core macros for optimal efficiency. This required a few adjustments elsewhere and the removal from code comments of some technical discusions about \xintthe. The also dropped semi-colons as we are already using braces.

```
38 \def\zeck@@fpair@zero #1#2#3{%
      \zeck@@fpair@again#3%
39
40
      \expanded{%
        {\xintiiMul{#1}{\xintiiAdd{#1}{\xintDouble{#2}}}}%
41
42
        {\xintiiAdd{\xintiiSqr{#1}}{\xintiiSqr{#2}}}%
      }%
43
44 }%
45 \def\zeck@@fpair@one #1#2#3{%
      \zeck@@fpair@again#3%
46
47
      \expanded{%
        {\xintiiAdd{\xintDouble{\xintiiMul{\xintiiAdd{#1}{#2}}{#1}}}%
48
49
                    {\xintiiSqr{#2}}}%
        {\xintiiMul{#1}{\xintiiAdd{#1}{\xintDouble{#2}}}}%
50
      }%
51
52 }%
53 \def\zeck@@fpair@again#1{%
      \xint_gob_til_sc#1\zeck@@fpair@done;%
54
      \xint_UDzerofork
55
          #1{\expandafter\zeck@@fpair@zero}%
56
57
           0{\expandafter\zeck@@fpair@one}%
58
      \krof
59 }%
60 \def\zeck@@fpair@done#1\krof{}%
```

For individual Fibonacci numbers, we have non public \Zeck@@FN which only works on positive input and has a braced output. We also have non-public \Zeck@FN and \Zeck@Q FNminusOne which accept negative input, and whose output is also braced. And we have public \ZeckTheFN which accepts negative input and whose output is not braced.

The reason for strange name \ZeckTheFN is that originally \Zeck@FPair produced its output using a special xintexpr format, which needs to be prefixed with \xintthe to get resolved into only digits. We have now modified the structure by-pass this but the name sticks.

```
61 \def\zeck@bracedfirstoftwo #1#2{{#1}}%
62 \def\zeck@bracedsecondoftwo #1#2{{#2}}%
63 \def\Zeck@FN{%
64 \expandafter\zeck@bracedfirstoftwo\romannumeral`&&@\Zeck@FPair
```

```
65 }%
66 \def\Zeck@FNminusOne{%
67 \expandafter\zeck@bracedsecondoftwo\romannumeral`&&@\Zeck@FPair
68 }%
69 \def\ZeckTheFN{\expandafter\xint_firstoftwo\romannumeral`&&@\Zeck@FPair}%
70 \def\Zeck@GFN{\expandafter\zeck@bracedfirstoftwo\romannumeral`&&@\Zeck@GFPair}%
```

8.2.2. \ZeckTheFSeq

The computation of stretches of Fibonacci numbers is not needed for the package, but is provided for user convenience. This is lifted from the development version of the \mintum{xintname} user manual, which refactored a bit the code which has been there for over ten years.

The two arguments may be negative, and since 0.9d they do not have to be ordered.

```
71 \def\ZeckTheFSeq#1#2{%
      \expanded\bgroup\expandafter\zeckthefseq_a
      \the\numexpr #1\expandafter.\the\numexpr #2.%
73
74 }%
75 \def\zeckthefseq_a#1.#2.{\expandafter\zeckthefseq_b\the\numexpr#2-#1.#1.}%
76 \def\zeckthefseq_b #1{%
      \xint_UDzerominusfork
77
       0#1\zeckthefseq_n
78
79
       #1-\zeckthefseq_one
       0-\zeckthefseq_p
80
      \krof #1%
81
82 }%
83 \def\zeckthefseq_one0.#1.{{\ZeckTheFN{#1}}\iffalse{\fi}}%
The #1+1 is because \Zeck@FPair{N} expands to \{F_{N}\}\{F_{N-1}\}\, so here we will have
F_{A+1}; F_{A+1}; as starting point. We want up to F_B. If B=A+1 there will be nothing
more to do.
84 \def\zeckthefseq_p #1.#2.{%
      \expandafter\zeckthefseq_loop
      \the\numexpr #1-1\expandafter.%
86
87
      \romannumeral`&&@\expandafter\zeck@sep@with@sc
88
      \romannumeral`&&@\Zeck@FPair{#2+1}\xintiiadd
89 }%
90 \def\zeck@sep@with@sc #1#2{#1;#2;}%
We will have F_{A-1}; F_{A}; as starting point. We want down to F_{B}. If B=A-1 there
will be nothing more to do.
91 \def\zeckthefseq_n -#1.#2.{%
      \expandafter\zeckthefseq_loop
92
93
      \the\numexpr #1-1\expandafter.%
      \romannumeral`&&@\expandafter\zeck@exch@with@sc
94
95
      \romannumeral`&&@\Zeck@FPair{#2}\xintiisub
96 }%
97 \def\zeck@exch@with@sc #1#2{#2;#1;}%
```

Now leave in stream one (braced) number, and test if we have reached B and until then apply standard Fibonacci recursion. This is all done using a single looping macro, only termination branches to another one.

We add a bit sub-optimality in having one single macro handling both increasing and decreasing indices.

```
98 \def\zeckthefseq_loop #1.#2;#3;#4{%

99 {#3}\ifnum #1=\z@ \expandafter\zeckthefseq_end\fi

100 \expandafter\zeckthefseq_loop\the\numexpr #1-1\expandafter.%

101 \romannumeral0#4{#3}{#2};#2;#4%

102 }%

103 \def\zeckthefseq_end#1;#2;#3{{#2}\iffalse{\fi}}%
```

8.3. Zeckendorf representation

8.3.1. \ZeckNearIndex, \ZeckMaxK

If the ratio of logarithms $\log(\sqrt{5}x)/\log\phi$ was the exact mathematical value it would be certain (via rough estimates valid at least for say $x \geq 10$, and even smaller, but anyhow we can check manually it does work) that its integer rounding gives an integer K such that either K or K-1 is the largest index J with $F_J \leq x$. But the computation is done with only about 8 decimal digits of precision. So this assumption fails certainly for x having more than one hundred million decimal digits, and quite probably with an input having ten million digits, as we do not want to exceed $\phi^{10^7}/\sqrt{5} \approx 1.13 \times 10^{2.089,876}$. But with one million decimal digits we are safe (see subsubsection 8.4.2 for related comments).

As anyhow xint can handle multiplications only with operands of about up to 13000 digits (with TEXLive 2025 default memory settings), and computation times limit reasonable inputs to less than 1000 digits, there is no worry for us.

xintfrac's \xintiRound{0} is guaranteed to round correctly the input it has been given. This input is some approximation to an exact theoretical value involving ratio of logarithms (and square root of 5). Prior to rounding the computed numerical approximation, we are close to the exact theoretical value, where `close' means we expect to have about 8 leading digits in common (and we have already limited our scope so that we are talking about a value quite less than 100000 at any rate). If the computed rounding differs from the exact rounding of the exact value it must be that argument x is about mid-way (in log scale) between two consecutive Fibonacci numbers. The conclusion is that the integer we obtain after rounding can not be anything else than either J or J+1.

The argument is more subtle than it looks. The conclusion is important to us as it means we do not have to add extraneous checks involving computation of one or more additional Fibonacci numbers.

The formula with macros was obtained via an \mathbb{xintdeffloatfunc} and \mathbb{xintverbosetrue} after having set \mathbb{xintDigits* to 8, and then we optimized a bit manually. The advantage here is that we don't have to set ourself \mathbb{xintDigits} and later restore it.

We can not use (except if only caring about interactive sessions where we control entirely the whole environment) \XINTinFloatDiv or \XINTinFloatMul if we don't set \xintDigits (which is user customizable) because they hardcode usage of \XINTdigits. This is e.g. why we use \PoorManLogBaseTen_raw and not \PoorManLogBaseTen.

```
104 \def\ZeckNearIndex#1{\xintiRound{0}{%}
105 \xintFloatDiv[8]{\PoorManLogBaseTen_raw{\xintFloatMul[8]{2236068[-6]}{#1}}}%
106 {20898764[-8]}%
107 }%
```

```
108 }%
```

Now we compute the actual maximal index. This macro is now only for user interface, as we dropped at 0.9c adding a maxk() function to the \xinteval interface.

With 0.9d replace negative input by its absolute value.

```
109 \def\ZeckMaxK{\expanded\zeckmaxk}%
110 \def\zeckmaxk#1{\expandafter\zeckmaxk_fork\romannumeral`&&@#1\xint:}%
111 \def\zeckmaxk_fork#1{%
    \xint_UDzerominusfork
112
113
       #1-{\bgroup\zeck_abort}%
       0#1\zeckmaxk_a
114
115
       0-\{\zeckmaxk_a#1\}\%
    \krof
116
117 }%
118 \def\zeckmaxk_a #1\xint:{%
       \expandafter\zeckmaxk_b
119
       \the\numexpr\ZeckNearIndex{#1}\xint:#1\xint:
120
121 }%
122 \def\zeckmaxk_b #1\xint:{%
123
       \expandafter\zeckmaxk_c
       \romannumeral`&&@\Zeck@@FPair{#1}#1\xint:
124
125 }%
126 \def\zeckmaxk_c #1#2#3\xint:#4\xint:{%
       \xintiiifGt{#1}{#4}%
127
          {{\expandafter}\the\numexpr#3-1\relax}%
128
129
130 }%
```

8.3.2. \ZeckIndices

This starts by computing the maximal index. It then subtracts the Fibonacci number from the input and loops.

At 0.9d let it (rather than returning empty output) accept a negative argument (silently replaced by its absolute value).

```
131 \def\ZeckIndices{\expanded\zeckindices}%
132 \let\ZeckZeck\ZeckIndices
133 \def\zeckindices#1{\bgroup\expandafter\zeckindices_fork\romannumeral`&&@#1\xint:}%
134 \def\zeckindices_fork#1{%
     \xint_UDzerominusfork
135
       #1-\zeck_abort
136
       0#1\zeckindices_a
137
       0-{\zeckindices_a#1}%
138
    \krof
139
140 }%
141 \def\zeckindices_a #1\xint:{%
       \expandafter\zeckindices_b
142
       \the\numexpr\ZeckNearIndex{#1}\xint:#1\xint:
143
144 }%
145 \def\zeckindices_b #1\xint:{%
       \expandafter\zeckindices_c
146
147
       \romannumeral`&&@\Zeck@@FPair{#1}#1\xint:
148 }%
```

```
149 \def\zeckindices_c #1#2#3\xint:#4\xint:{%
       \xintiiifGt{#1}{#4}\zeckindices_A\zeckindices_B
151
       #1;#2;#3\xint:#4\xint:
152 }%
153 \def\zeckindices_A#1;#2;#3\xint:{%
       \the\numexpr#3-1\relax\zeckindices_loop{#2}%
154
155 }%
156 \def\zeckindices_B#1;#2;#3\xint:{%
       #3\zeckindices_loop{#1}%
157
158 }%
159 \def\zeckindices_loop #1#2\xint:{%
160
       \expandafter\zeckindices_loop_i
161
       \romannumeral0\xintiisub{#2}{#1}\xint:
162 }%
163 \def\zeckindices_loop_i#1{%
       \xint_UDzerofork#1\zeck_done 0{, \zeckindices_a#1}\krof
165 }%
```

8.3.3. \ZeckBList

189 }%

This is the variant which produces the results as a sequence of braced indices.

Originally in xint, xinttools, the term ``list'' is used for braced items. In the user manual of this package I have been using ``list'' more colloquially for comma separated values. Here I stick with xint conventions but use BList (short for ``list of Braced items'') and not only ``List'' in the name.

At 0.9d let it (rather than returning empty output) accept a negative argument (silently replaced by its absolute value).

```
166 \def\ZeckBList{\expanded\zeckblist}%
167 \def\zeckblist#1{\bgroup\expandafter\zeckblist_fork\romannumeral`&&@#1\xint:}%
168 \def\zeckblist_fork#1{%
    \xint_UDzerominusfork
169
       #1-\zeck_abort
170
       0#1\zeckblist_a
171
       0-{\zeckblist_a#1}%
172
    \krof
173
174 }%
175 \def\zeckblist_a #1\xint:{%
       \expandafter\zeckblist_b
176
177
       \the\numexpr\ZeckNearIndex{#1}\xint:#1\xint:
178 }%
179 \def\zeckblist_b #1\xint:{%
       \expandafter\zeckblist_c
180
       \romannumeral`&&@\Zeck@@FPair{#1}#1\xint:
181
182 }%
183 \def\zeckblist_c #1#2#3\xint:#4\xint:{%
184
       \xintiiifGt{#1}{#4}\zeckblist_A\zeckblist_B
185
       #1;#2;#3\xint:#4\xint:
186 }%
187 \def\zeckblist_A#1;#2;#3\xint:{%
188
       {\the\numexpr#3-1\relax}\zeckblist_loop{#2}%
```

```
190 \def\zeckblist_B#1;#2;#3\xint:{%
       {#3}\zeckblist_loop{#1}%
192 }%
193 \def\zeckblist_loop#1#2\xint:{%
       \expandafter\zeckblist_loop_i
194
       \romannumeral0\xintiisub{#2}{#1}\xint:
195
196 }%
197 \def\zeckblist_loop_i#1{\xint_UDzerofork#1\zeck_done 0{\zeckblist_a#1}\krof}%
8.3.4. \ZeckWord
This is slightly more complicated than \ZeckIndices and \ZeckBList because we have to
keep track of the previous index to know how many zeros to inject.
198 \def\ZeckWord{\expanded\zeckword}%
199 \def\zeckword#1{\bgroup\expandafter\zeckword_fork\romannumeral`&&@#1\xint:}%
200 \def\zeckword_fork#1{%
    \xint_UDzerominusfork
201
       #1-\zeck_abort
202
203
       0#1\zeckword_a
       0-{\zeckword_a#1}%
204
    \krof
205
206 }%
207 \def\zeckword_a #1\xint:{%
208
       \expandafter\zeckword_b\the\numexpr\ZeckNearIndex{#1}\xint:
       #1\xint:
209
210 }%
211 \def\zeckword_b #1\xint:{%
       \expandafter\zeckword_c\romannumeral`&&@\Zeck@@FPair{#1}#1\xint:
212
213 }%
214 \def\zeckword_c #1#2#3\xint:#4\xint:{%
       \xintiiifGt{#1}{#4}\zeckword_A\zeckword_B
       #1;#2;#3\xint:#4\xint:
216
217 }%
218 \def\zeckword_A#1;#2;#3\xint:#4\xint:{%
219
       \expandafter\zeckword_d
       \romannumeral0\xintiisub{#4}{#2}\xint:
220
       \the\numexpr#3-1.%
221
222 }%
223 \def\zeckword_B#1;#2;#3\xint:#4\xint:{%
       \expandafter\zeckword_d
224
       \romannumeral0\xintiisub{#4}{#1}\xint:
225
       #3.%
226
227 }%
228 \def\zeckword_d #1%
       {\xint_UDzerofork#1\zeckword_done0{1\zeckword_e}\krof #1}%
230 \def\zeckword_done#1\xint:#2.{1\xintReplicate{#2-2}{0}\iffalse{\fi}}%
231 \def\zeckword_e #1\xint:{%
       \expandafter\zeckword_f\the\numexpr\ZeckNearIndex{#1}\xint:
```

\expandafter\zeckword_g\romannumeral`&&@\Zeck@@FPair{#1}#1\xint:

#1\xint:

235 \def\zeckword_f #1\xint:{%

233 234 **}%**

```
237 }%
238 \def\zeckword_g #1#2#3\xint:#4\xint:{%
239
       \xintiiifGt{#1}{#4}\zeckword_gA\zeckword_gB
240
       #1;#2;#3\xint:#4\xint:
241 }%
242 \def\zeckword_gA#1;#2;#3\xint:#4\xint:{%
       \expandafter\zeckword_h
243
       \the\numexpr#3-1\expandafter.%
244
       \romannumeral0\xintiisub{#4}{#2}%
245
       \xint:
246
247 }%
248 \def\zeckword_gB#1;#2;#3\xint:#4\xint:{%
       \expandafter\zeckword_h
250
       \the\numexpr#3\expandafter.%
       \romannumeral0\xintiisub{#4}{#1}%
251
252
       \xint:
253 }%
254 \def\zeckword_h #1.#2\xint:#3.{%
       \xintReplicate{#3-#1-1}{0}%
256
       \zeckword_d #2\xint:#1.%
257 }%
8.3.5. \ZeckHexWord
258 \def\ZeckHexWord{\romannumeral0\zeckhexword}%
259 \def\zeckhexword#1{%
    \xintbintohex{%
       \expanded\bgroup\expandafter\zeckword_fork\romannumeral`&&@#1\xint:
    }%
262
263 }%
8.3.6. \ZeckNFromIndices
Spaces before commas are not a problem they disappear in \numexpr.
   Extraneous commas are skipped, in particular a final comma is allowed.
   Each item is f-expanded to check not empty, but perhaps we could skip expanding, as
they end up in \numexpr. Advantage of expansion of each item is that at any location is
that can generate multiple indices from some macro expansion inserting commas dynami-
```

```
cally.

264 \def\ZeckNFromIndices{\romannumeral0\zecknfromindices}%

265 \def\zecknfromindices{\zeck@applyandiisum\Zeck@FN}%

266 \def\zeck@applyandiisum {%

267 \expandafter\xintiisum\expanded\zeck@applytocsv

268 }%

Macro #1 is assumed to output something within braces.
```

```
269 \def\zeck@applytocsv #1#2{%
270          {{\expandafter\zeck@applytocsv_a\expandafter#1%
271          \romannumeral`&&@#2,;}}%
272 }%
273 \def\zeck@applytocsv_a #1#2{%
274     \if;#2\expandafter\zeck@applytocsv_done\fi
```

```
275
       \if,#2\expandafter\zeck@applytocsv_skip\fi
       \zeck@applytocsv_b #1#2%
276
277 }%
278 \def\zeck@applytocsv_b #1#2,{%
279
       #1{#2}%
       \expandafter\zeck@applytocsv_a\expandafter#1\romannumeral`&&@%
280
281 }%
282 \def\zeck@applytocsv_done#1\zeck@applytocsv_b#2;{}%
283 \def\zeck@applytocsv_skip #1#2,{%
       \expandafter\zeck@applytocsv_a\expandafter#2\romannumeral`&&@%
285 }%
8.3.7. \ZeckNfromWord
The \xspace will f-expand its argument.
286 \def\ZeckNfromWord{\romannumeral0\zecknfromword}%
287 \def\zecknfromword#1{%
       \expandafter\zecknfromword_a\romannumeral0\xintreversedigits{#1};%
289 }%
290 \def\zecknfromword_a{%
       \expandafter\xintiisum\expanded{{\iffalse}}\fi\zecknfromword_b 2.%
292 }%
293 \def\zecknfromword_b#1.#2{%
       \if;#2\expandafter\zecknfromword_done\fi
294
       \if#21\Zeck@@FN{#1}\fi
295
       \expandafter\zecknfromword_b\the\numexpr#1+1.%
296
297 }%
298 \def\zecknfromword_done#1.{\iffalse{{\fi}}}%
8.3.8. \ZeckNfromHexWord
Added at 0.9d.
299 \def\ZeckNfromHexWord{\romannumeral0\zecknfromhexword}%
300 \def\zecknfromhexword#1{%
       \expandafter\zecknfromword_a\romannumeral0\xintreversedigits{\xintHexToBin{#1}}};%
301
302 }%
8.4. Bergman representation
8.4.1. \PhiIISign_ab
\PhiIISign_ab is for use with two already expanded arguments {a} {b} and which are strict
integers.
   The general macro which accepts both one (unbraced) integer or two (braced) integers
is defined later for support of the phisign() function.
303 \def\PhiIISign_ab {\romannumeral0\phiiisign_ab}%
304 \def\phiiisign_ab #1#2{%
305
       \xintiiifsgn{#1}%
       {% a < 0}
306
        \xintiiifSgn{#2}%
307
```

{-1}%

308

```
{-1}%
309
               {\% a < 0, b > 0, return 1 iff a^2+ab<b^2}
310
                \xintiiifLt{\xintiiMul{#1}{\xintiiAdd{#1}{#2}}}{\xintiiSqr{#2}}%
311
312
                {1}%
                {-1}%
313
               }%
314
       }%
315
       {\xintiiSgn{#2}}%
316
       { a > 0 }
317
         \xintiiifSgn{#2}%
318
               {\% a > 0, b < 0, return 1 iff a^2+ab>b^2}
319
                \xintiiifGt{\xintiiMul{#1}{\xintiiAdd{#1}{#2}}}{\xintiiSqr{#2}}%
320
                {1}%
321
                {-1}%
322
               }%
323
               {1}%
324
               {1}%
325
       }%
326
327 }%
```

8.4.2. \PhiMaxE

We want the greatest k with $\phi^k \leq a+b\phi$, assuming that the latter is strictly positive. We will do this using a careful computation (i.e. avoiding `catastrophic cancellations' if a and b are of opposite signs) of the base-ten logarithm of $a+b\phi$, with about 8 decimal digits of precision. Rounding the quotient by $\log_{10}\phi$ to the nearest integer we obtain a candidate K. We compute ϕ^K using Fibonacci numbers and compare (using integer-only arithmetic). If this is larger than $a+b\phi$ the seeked k is K-1 else it is K. For why, see the explanations relative to the computation of the Zeckendorf representation and the next paragraph about theoretical limitation.

The rounding to an integer of $\log(a+b\phi)/\log(\phi)$ obtained with 8 decimal digits of precision will not error by 2 units or more if the input was less than ϕ^{10^7} , so for an x which is an integer having less than two million decimal digits, or say one million, this is safe. And xint can only do computations with operands having less than about 13000 digits (with TeXLive 2025 default memory settings). If using another programming context not having such limitations, and using rather double precision floats, which gives slightly less than 16 decimal digits of floating point precision, the upper bound would raise to about $\phi^{10^{15}}$, and inputs with at most 10^{14} decimal digits are safe, i.e. all real life inputs are safe.

Let us nevertheless explain how we could do without logarithms and without any upper bound on size of the input. Let $x=a+b\phi$, assumed to be positive. First, we test if x<1. We can do this using integers only. If true, we multiply x by ϕ , ϕ^2 , ϕ^4 , using algebra in $\mathbf{Z}[\phi]=\mathbf{Z}+\mathbf{Z}\phi$, until finding the smallest power of 2 such that $\phi^{2^n}x=x'\geq 1$. The powers of ϕ are computed by repeated squarings (and they can be pre-stored up to certain reasonable maximal n, but we are discussing here a ``no prior bound'' situation). The searched-for exponent $\mathbf{k}(x)$ is $\mathbf{k}(x')-2^n$. So we are reduced to the $x\geq 1$ case. If $x<\phi$, then $\mathbf{k}(x)=0$. If $x\geq \phi=\phi^{2^0}$, repeated squaring of ϕ and comparisons with x using $\mathbf{u}+\mathbf{v}\phi$ representations will give us the smallest $\mathbf{n}\geq \mathbf{0}$ with $\phi^{2^{n+1}}>x$. Then

divide x by ϕ^{2^n} (or rather multiply with ϕ^{-2^n}), again using $\mathbf{Z}[\phi]$ algebra, obtaining some \mathbf{x}' with $1 \leq \mathbf{x}' < \phi^{2^n}$ and $\mathbf{k}(\mathbf{x}) = \mathbf{k}(\mathbf{x}') + 2^n$ with $0 \leq \mathbf{k}(\mathbf{x}') < 2^n$. After finitely many steps we will have reduced to $[1, \phi)$ and the algorithm ends.

The macro helpers handling the computation of the ratio of logarithms should not make assumptions about \xintDigits. Here is the original source as it was used to create the code (not any AI would be able to do that... but xintexpr succeeds!). In particular note the impressive nesting of \xintiiexpr inside \xintfloatexpr. The log output (thanks to \xintverbosetrue) was then edited by hand to not use macros using tacitly \XINTdigits, and to reduce to 8 digits of precision as this is enough.

```
\xintverbosetrue
      \xintdeffloatvar Phi := (1 + sqrt(5))/2;
      \xintdeffloatvar Psi := (1 - sqrt(5))/2;
      \xintdeffloatvar logPhi := log10(Phi);% would have been precomputed anyhow
      \xintdefiifunc greedyA(a,b):= \xintfloatexpr
              round(log10(a+b*Phi) / logPhi)\relax;
      \xintdefiifunc greedyB(a,b):= \xintfloatexpr
        round(log10(\xintiiexpr (a*(a+b) -sqr(b))\relax/(a+b*Psi))
              / logPhi)\relax;
328 \def\bergman_nearindex_A#1;#2;{%
     \xintiRound {0}{%
329
330
      \xintFloatDiv[8]{%
       \PoorManLogBaseTen_raw
331
        {\xintFloatAdd[8]{#1}%
332
                          {\xintFloatMul[8]{#2}{1618034[-6]}}}%
333
334
       }%
       {20898764[-8]}%
335
    }%
336
337 }%
338 \def\bergman_nearindex_B#1;#2;{%
     \xintiRound {0}{%
339
      \xintFloatDiv[8]{%
340
        \PoorManLogBaseTen_raw
341
        {\xintFloatDiv[8]%
342
             {\xintiiSub
343
                 {\xintiiMul {#1}{\xintiiAdd{#1}{#2}}}%
344
345
                 {\xintiiSqr {#2}}%
             }%
346
             {\xintFloatAdd[8]%
347
                 {#1}{\xintFloatMul[8]{#2}{-618034[-6]}}%
348
349
        }%
350
       }%
351
       {20898764[-8]}%
352
353
     }%
354 }%
355 \def\PhiMaxE{\the\numexpr\phimaxe}%
356 \def\phimaxe #1{%
       \expandafter\phimaxe_a\expanded{{#1}}%
357
359 \def\phimaxe_a #1{\expandafter\phimaxe_b\string#1;}%
360 \catcode`[=1 \catcode`]=2 \catcode`\{=12 % }
```

```
361 \def\phimaxe_b #1[\if#1{\expandafter\phimaxe_X % }
                      \else\expandafter\phimaxe_N\fi #1]%
363 \catcode`[=12 \catcode`\{=1 % }
364 \def\phimaxe_N #1;{\phimaxe_ab {#1}{0};}%
365 \def\phimaxe_X #1{\expandafter\phimaxe_ab\expandafter{\iffalse}\fi}%
366 \def\PhiMaxE_ab {\romannumeral0\phimaxe_ab}%
367 \def\phimaxe_ab #1#2; {%
       \expandafter\phimaxe_i\romannumeral`&&@%
368
       \ifnum\numexpr\xintiiSgn{#1}*\xintiiSgn{#2}\relax=-1
369
370
             \expandafter\bergman_nearindex_B
371
       \else \expandafter\bergman_nearindex_A
372
       \fi #1;#2;;#1;#2;%
373 }%
374 \def\phimaxe_i #1;{%
       \expandafter\phimaxe_j\romannumeral`&&@\zeck@fpair #1.#1;%
376 }%
377 \def\phimaxe_j #1#2#3;#4;#5;{%
378
       #3\ifnum
           \expandafter\PhiIISign_ab
379
           \expanded{{\xintiiSub{#2}{#4}}{\xintiiSub{#1}{#5}}}>\xint_c_
380
       -1\fi\relax
381
382 }%
8.4.3. \PhiBList
Will serve (or rather a close derivative) as support for the phiexponents() function in
\xinteval, and is used both by \PhiExponents and \PhiBasePhi.
383 \def\PhiBList{\expanded\phiblist}%
384 \def\phiblist #1{%
       \expandafter\phiblist_a\expanded{{#1}}%
385
386 }%
387 \def\phiblist_a #1{\expandafter\phiblist_b\string#1;}%
388 \catcode`[=1 \catcode`]=2 \catcode`\{=12 % }
389 \def\phiblist_b #1[\if#1{\expandafter\phiblist_X % }
                      \else\expandafter\phiblist_N\fi #1]%
391 \catcode`[=12 \catcode`]=12 \catcode`\{=1 % }
392 \def\phiblist_N #1;{\phiblist_ab {#1}{0};}%
393 \def\phiblist_X #1{\expandafter\phiblist_ab\expandafter{\iffalse}\fi}%
394 \def\PhiBlist_ab {\expanded\phiblist_ab}%
395 \def\phiblist_ab #1#2;{{%
       \ifcase\PhiIISign_ab{#1}{#2} %
396
        0\expandafter\phiblist_stop
397
398
       \or
        +\expandafter\phiblist_i
399
400
       \else
        -\expandafter\phiblist_neg
401
402
       \fi
       #1;#2;%
403
404 }}%
405 \def\phiblist_stop#1;#2;{}%
Attention that adding minus signs here would fool \xintiiSgn which makes no normaliza-
```

tion and looks only at first token.

```
TODO: check if it is more efficient to do \expanded{\noexpand\foo...} rather than
\expandafter\foo\expanded{...}.
406 \def\phiblist_neg#1;#2;{%
       \expandafter\phiblist_i\expanded{\XINT_Opp#1;\XINT_Opp#2;}%
408 }%
409 \def\phiblist_i#1;#2;{%
410
       \expandafter\phiblist_j\romannumeral`&&@%
       \ifnum\numexpr\xintiiSgn{#1}*\xintiiSgn{#2}\relax=-1
411
             \expandafter\bergman_nearindex_B
412
413
       \else \expandafter\bergman_nearindex_A
       \fi #1;#2;;#1;#2;%
414
415 }%
416 \def\phiblist_j #1;{%
       \expandafter\phiblist_k\romannumeral`&&@\zeck@fpair #1.#1;%
417
418 }%
419 \def\phiblist_k #1#2#3;#4;#5;{%
420
       \if1\expandafter\PhiIISign_ab
421
           \expanded{{\xintiiSub{#2}{#4}}{\xintiiSub{#1}{#5}}}%
422
         \expandafter\phiblist_ci
       \else
423
         \expandafter\phiblist_cii
424
       \fi
425
426
       #1;#2;#3;#4;#5;%
427 }%
428 \def\phiblist_ci #1;#2;#3;#4;#5;{%
       {\the\numexpr#3-1\relax}%
430
       \expandafter\phiblist_again\expanded{%
         {\xintiiSub{\xintiiAdd{#2}{#4}}{#1}}%
431
432
         {\xintiiSub{#5}{#2}}%
433
434 }%
435 \def\phiblist_cii #1;#2;#3;#4;#5;{%
436
       {#3}%
       \expandafter\phiblist_again
437
         {\xintiiSub{#4}{#2}}%
438
         {\xintiiSub{#5}{#1}}%
439
440 }%
441 \def\phiblist_again #1#2{%
       \if0\PhiIISign_ab{#1}{#2}%
442
           \expandafter\phiblist_stop
443
444
       \else
           \expandafter\phiblist_i
445
       \fi
446
       #1;#2;%
447
448 }%
```

8.4.4. \PhiExponents

As this depends upon \PhiBList it will have to unbrace at each step to check sign of the exponent.

```
449 \def\PhiExponents{\expanded\phiexponents}%
450 \def\phiexponents#1{{%
```

```
451
      \expandafter\phiexponents_a
      \expanded\expandafter\phiblist_a\expanded{{#1}}%
452
453
454 }}%
455 \def\phiexponents_a #1{\if-#1.\fi\phiexponents_b}%
456 \def\phiexponents_b #1{%
       \if;#1\expandafter\phiexponents_done\fi
457
       #1\phiexponents_c
458
459 }%
460 \def\phiexponents_c #1{%
       \if;#1\expandafter\phiexponents_done\fi
       \PhiExponentsSep#1\phiexponents_c
463 }%
464 \def\phiexponents_done#1\phiexponents_c{}%
465 \def\PhiExponentsSep{, }%
8.4.5. \PhiBasePhi
As this depends upon \PhiBList it will have to unbrace at each step to check sign of the
466 \def\PhiBasePhi{\expanded\phibasephi}%
467 \def\phibasephi#1{{%
      \expandafter\phibasephi_a
      \expanded\expandafter\phiblist_a\expanded{{#1}}%
469
      ;%
470
471 }}%
472 \def\phibasephi_a #1{%
473
       \if-#1-\fi
       \if0#1\expandafter\xint_gob_til_sc\fi
474
475
       \phibasephi_b
476 }%
477 \def\phibasephi_b #1{\phibasephi_c #1.}%
478 \def\phibasephi_c #1#2.{%
479
     \if-#1%
        0\PhiBasePhiSep\xintReplicate{#2-1}{0}%
480
        1\expandafter\phibasephi_n
481
     \else
482
        1\expandafter\phibasephi_p
483
     \fi
484
     #1#2.%
485
486 }%
487 \def\phibasephi_p #1.#2{\phibasephi_pa #1.#2\xint:}%
488 \def\phibasephi_pa #1.#2{%
     \if;#2\xintReplicate{#1}{0}\expandafter\xint_gob_til_xint:\fi
489
490
    \phibasephi_pb #1.#2%
491 }%
492 \def\phibasephi_pb #1.#2#3\xint:{%
493
       \xintReplicate{#1}{0}\PhiBasePhiSep\xintReplicate{#3-1}{0}%
494
       1\expandafter\phibasephi_n
495
496
     \else
       \xintReplicate{#1-#2#3-1}{0}%
497
```

```
1\expandafter\phibasephi_p
498
499
    \fi
    #2#3.%
500
501 }%
502 \def\phibasephi_n #1.#2{\phibasephi_na #1.#2\xint:}%
503 \def\phibasephi_na #1.#2{%
     \if;#2\expandafter\xint_gob_til_xint:\fi
504
     \phibasephi_nb #1.#2%
505
506 }%
507 \def\phibasephi_nb #1.#2#3\xint:{%
    \xintReplicate{#1+#3-1}{0}%
    1\phibasephi_n #2#3.%
510 }%
511 \def\PhiBasePhiSep{.}%
8.4.6. \PhiBaseHexPhi
Broken if \PhiBasePhiSep is not default.
   Attention for fractional part that we must first extend with trailing zeros if needed
to make it have 4N digits. (Expansion of integers will have an even number of fractional
digits, but of course this is not true of general a + b phi.
512 \def\PhiBaseHexPhi{\expanded\phibasehexphi}%
513 \def\phibasehexphi#1{\expandafter\phibasehexphi_a\expanded{%
      \expandafter\phibasephi_a
514
      \expanded\expandafter\phiblist_a\expanded{{#1}}%
515
516
      ;}..,;%
517 }%
MEMO: fortunately the second \xintBinToHex will not trim leading zeros which were orig-
inally zeros after the radix separator. But we also must make sure to apply it to an
input having a multiple of four number of binary digits.
518 \def\phibasehexphi_a #1.#2.#3#4;{{%
       \xintBinToHex{#1}%
519
       \if.#3.\xintBinToHex{\expanded{#2\expandafter\phibasehexphi_aux
520
            \romannumeral0\xintlength{#2}.}}\fi
521
522 }}%
523 %
         \end{macrocode}
524 % Here |#1| is at least one.
         \begin{macrocode}
526 \def\phibasehexphi_aux #1.{\xintReplicate{4*((#1+1)/4) - #1}{0}}%
8.4.7. \PhiXfromExponents
If the list starts with period, it means it represents a negative number (or perhaps
zero is there is nothing else).
527 \def\PhiXfromExponents{\expanded\phixfromexponents}%
528 \def\phixfromexponents#1{%
       \expandafter\phixfromexponents_a\romannumeral`&&@#1,;%
529
```

530 **}%**

531 \def\phixfromexponents_a #1{%

\if.#1\expandafter\phixfromexponents_n

8.4.8. \PhiXfromBasePhi

The radix separator must be an explicit period. There must be at least one digit before the period, if the latter is there. Empty input is allowed. Input must f-expand completely thus input such as $\mbox{\mbox{\mbox{macro}A.\mbox{$

Coded the lazy way by first converting to comma separated list of exponents. The phiexponentsfromrep's output has a final comma but this is ok.

```
544 \def\PhiXfromBasePhi{\expanded\phixfrombasephi}%
545 \def\phixfrombasephi{\expandafter\phixfromexponents\expanded\phiexponentsfromrep}%
546 \def\phiexponentsfromrep#1{%
547
       {{\iffalse}\fi\expandafter\phiexponentsfromrep_a\romannumeral`&&@#1.;\xint:}%
548 }%
549 \def\phiexponentsfromrep_a #1{%
       \if-#1.\xint_dothis\phiexponentsfromrep_a\fi
550
       \if.#1\xint_dothis\zeck_done\fi
551
552
       \xint_orthat{\phiexponentsfromrep_b #1}%
553 }%
554 \def\phiexponentsfromrep_b #1.#2{%
       \expandafter\phiexponentsfromrep_c\romannumeral0\xintreversedigits{#1};%
556
       \if;#2\expandafter\zeck_done\else
             \expandafter\phiexponentsfromrep_i\fi #2%
557
558 }%
559 \def\phiexponentsfromrep_c{\phiexponentsfromrep_d 0.}%
560 \def\phiexponentsfromrep_d#1.#2{%
       \if;#2\expandafter\xint_gob_til_dot\fi
561
562
       \if#21#1,\fi
563
       \expandafter\phiexponentsfromrep_d\the\numexpr#1+1.%
564 }%
565 \def\phiexponentsfromrep_i{\phiexponentsfromrep_j -1.}%
566 \def\phiexponentsfromrep_j#1.#2{%
       \if;#2\expandafter\zeck_done\fi
567
568
       \if#21#1,\fi
       \expandafter\phiexponentsfromrep_j\the\numexpr#1-1.%
569
570 }%
```

8.4.9. \PhiXfromBaseHexPhi

```
Added at 0.9d.
```

571 \def\PhiXfromBaseHexPhi{\expanded\phixfrombasehexphi}%

```
572 \def\phixfrombasehexphi{\expandafter\phixfromexponents
                            \expanded\phiexponentsfromhexrep}%
574 \def\phiexponentsfromhexrep#1{%
       {{\iffalse}\fi\expandafter\phiexponentsfromhexrep_a\romannumeral`&&@#1.;\xint:}%
576 }%
577 \def\phiexponentsfromhexrep_a #1{%
       \if-#1.\xint_dothis\phiexponentsfromhexrep_a\fi
578
       \if.#1\xint_dothis\zeck_done\fi
579
       \xint_orthat{\phiexponentsfromhexrep_b #1}%
580
581 }%
582 \def\phiexponentsfromhexrep_b #1.#2{%
583
       \expandafter\phiexponentsfromrep_c
584
           \romannumeral0\xintreversedigits{\xintHexToBin{#1}};%
585
       \if;#2\expandafter\zeck_done\else
             \expandafter\phiexponentsfromhexrep_i\fi #2%
586
587 }%
Attention that conversion from hexadecimal to binary must preserve leading zeros!
588 \def\phiexponentsfromhexrep_i#1; {%
       \expanded{\noexpand\phiexponentsfromrep_j -1.\xintCHexToBin{#1}};%
590 }%
```

8.5. The Knuth Fibonacci multiplication

609 \def\zeckkmul_done#1; {\iffalse{{\fi}}}%

8.5.1. \ZeckKMul: Knuth definition

Here a \romannumeral0 trigger is used to match \xintiisum. Although it induces defining one more macro we obide by the general coding style of xint with a CamelCase then a lowercase macro, rather than having them merged as only one.

For the \xinteval we need a variant applying \xintNum to its arguments.

```
591 \def\ZeckKMul{\romannumeral0\zeckkmul}%
592 \def\zeckkmul#1#2{\expandafter\zeckkmul_a
                      \expanded{\ZeckIndices{#1}%
593
594
                                ,;%
                                 \ZeckIndices{#2}%
595
                                 ,,}%
596
597 }%
598 \def\ZeckKMulNum#1#2{\romannumeral0\zeckkmul{\xintNum{#1}}{\xintNum{#2}}}}%
The space token at start of #2 after first one is not a problem as it ends up in a \numexpr
anyhow.
599 \def\zeckkmul_a{\expandafter\xintiisum\expanded{{\iffalse}}\fi
                    \zeckkmul_b}%
601 \def\zeckkmul_b#1;#2,{%
602
       \if\relax#2\relax\expandafter\zeckkmul_done\fi
       \zeckkmul_c{#2}#1,\zeckkmul_b#1;%
603
604 }%
605 \def\zeckkmul_c#1#2, {%
       \if\relax#2\relax\expandafter\xint_gobble_iv\fi
606
607
       \Zeck@@FN{#1+#2}\zeckkmul_c{#1}%
608 }%
```

8.5.2. \ZeckAMul: Arnoux formula

8.5.3. \ZeckB: B operator

Here a \romannumeral0 trigger is used to match \xintiisum. It is a fact of life that \xi\rangle ntiiSum needs to grab something at each item before expanding it, rather than expanding prior to grabbing. So we use an \expanded wrapper.

```
618 \def\ZeckB{\romannumeral0\zeckb}%
619 \def\zeckb#1{\xintiisum{\expanded{\iffalse}\fi
620 \expandafter\zeckb_a\expanded\zeckindices{#1},,}}%
#1-1 is always positive.
621 \def\zeckb_a#1,{%
622 \if\relax#1\relax\expandafter\zeckb_done\fi
623 \Zeck@@FN{#1-1}\zeckb_a
624 }%
625 \def\zeckb_done#1\zeckb_a{\iffalse{\fi}}%
```

8.6. Typesetting

8.6.1. \ZeckPrintIndexedSum

Expandable, but needs x-expansion. The default requires math mode, at it uses \slash sb. We do not use $_$ here due to its current catcode. It only f-expands its argument. No repeated or final comma is allowed.

```
626 \def\ZeckPrintIndexedSumSep{+\allowbreak}%
627 \def\ZeckPrintOne#1{F\sb{#1}}%
628 \def\ZeckPrintIndexedSum#1{%
       \expandafter\zeckprintindexedsum\romannumeral`&&@#1,;%
629
630 }%
631 \def\zeckprintindexedsum#1{%
       \if,#1\expandafter\xint_gob_til_sc\fi \zeckprintindexedsum_a#1%
632
633 }%
634 \def\zeckprintindexedsum_a#1,{\ZeckPrintOne{#1}\zeckprintindexedsum_b}%
635 \def\zeckprintindexedsum_b #1{%
       \if;#1\expandafter\xint_gob_til_sc\fi
636
637
       \ZeckPrintIndexedSumSep\zeckprintindexedsum_a#1%
638 }%
```

8.6.2. \PhiPrintIndexedSum

A clone of \ZeckPrintIndexedSum with its own namespace.

```
639 \let\PhiPrintIndexedSumSep\ZeckPrintIndexedSumSep
640 \def\PhiPrintOne#1{\phi\sp{#1}}%
641 \def\PhiPrintIndexedSum#1{%
       \expandafter\phiprintindexedsum\romannumeral`&&@#1,;%
643 }%
644 \def\phiprintindexedsum#1{%
       \if,#1\expandafter\xint_gob_til_sc\fi \phiprintindexedsum_a#1%
645
646 }%
647 \def\phiprintindexedsum_a#1, {\PhiPrintOne{#1}\phiprintindexedsum_b}%
648 \def\phiprintindexedsum_b #1{%
       \if;#1\expandafter\xint_gob_til_sc\fi
       \PhiPrintIndexedSumSep\phiprintindexedsum_a#1%
651 }%
8.6.3. \PhiTypesetX
652 \def\PhiTypesetX #1{%
653
       \expandafter\PhiTypesetXPrint\expanded{#1}%
654 }%
655 \def\PhiTypesetXPrint #1#2{%
656
       \xintiiifSgn{#1}%
         {#1\xintiiifSgn{#2}{#2\phi}{}{+#2\phi}}%
657
658
         {\xintiiifSgn{#2}{#2\phi}{0}{#2\phi}}%
         {#1\xintiiifSgn{#2}{#2\phi}{}{+#2\phi}}%
659
660 }%
```

8.7. Extensions of the \xinteval syntax

Initially functions and Knuth operator were added to \xintiieval only, but when it was decided to overload the infix operators to handle inputs from $\mathbf{Z}[\phi]$, it felt awkward not to include the division so finally we support $\mathbf{Q}(\phi)$ algebra, and for this had to switch to \xinteval .

8.7.1. Provisory ad hoc support for adding xintexpr operators

Unfortunately, contrarily to bnumexpr, xintexpr (at 1.4o) has no public interface to define an infix operator, and the macros it defines to that end have acquired another meaning at end of loading xintexpr.sty, so we have to copy quite a few lines of code. This is provisory and will be removed when xintexpr.sty will have been udpated. We also copy/adapt \bnumdefinfix.

We test for existence of \xintdefinfix so as to be able to update upstream and not have to sync it immediately. But perhaps upstream will choose some other name than \xintdefinfix ...

```
661 \ifdefined\xintdefinfix
662 \def\zeckdefinfix{\xintdefinfix {expr}}%
663 \else
664 \ifdefined\xint_noxpd\else\let\xint_noxpd\unexpanded\fi % support old xint
665 \def\ZECK_defbin_c #1#2#3#4#5#6#7#8%
666 {%
667 \XINT_global\def #1##1% \XINT_#8_op_<op>
668 {%
```

\romannumeral`&&@\expandafter#3\romannumeral`&&@\XINT_expr_getnext

\expanded{\xint_noxpd{#2{##1}}\expandafter}%

669 670

671

```
\XINT_global\def #2##1##2##3##4% \XINT_#8_exec_<op>
672
673
       \expandafter##2\expandafter##3\expandafter
674
         {\romannumeral`&&@\XINT:NEhook:f:one:from:two{\romannumeral`&&@#7##1##4}}%
675
676
     }%
     \XINT_global\def #3##1% \XINT_#8_check-_<op>
677
678
       \xint_UDsignfork
679
         ##1{\expandafter#4\romannumeral`&&@#5}%
680
681
           -{#4##1}%
       \krof
682
     }%
683
     \XINT_global\def #4##1##2% \XINT_#8_checkp_<op>
684
685
       \ifnum ##1>#6%
686
         \expandafter#4%
687
         \romannumeral`&&@\csname XINT_#8_op_##2\expandafter\endcsname
688
689
         \expandafter ##1\expandafter ##2%
690
691
       \fi
     }%
692
693 }%
ATTENTION there is lacking at end here compared to the bnumexpr version an adjustment
for updating minus operator, if some other right precedence than 12, 14, 17 is used.
Doing this would requiring copying still more, so is not done.
694 \def\ZECK_defbin_b #1#2#3#4#5%
695 {%
     \expandafter\ZECK_defbin_c
696
     \csname XINT_#1_op_#2\expandafter\endcsname
697
     \csname XINT_#1_exec_#2\expandafter\endcsname
698
     \csname XINT_#1_check-_#2\expandafter\endcsname
699
     \csname XINT_#1_checkp_#2\expandafter\endcsname
700
     \csname XINT_#1_op_-\romannumeral\ifnum#4>12 #4\else12\fi\expandafter\endcsname
701
     \csname xint_c_\romannumeral#4\endcsname
702
703
     #5%
     {#1}% #8 for \ZECK_defbin_c
704
     \XINT_global
705
     \expandafter
706
     \let\csname XINT_expr_precedence_#2\expandafter\endcsname
707
         \csname xint_c_\romannumeral#3\endcsname
708
709 }%
```

These next two currently lifted from bnumexpr with some adaptations, see previous comment about precedences.

We do not define the extra \chardef's as does bnumexpr to allow more user choices of precedences, not only because nobody will ever use the feature, but also because it needs extra configuration for minus unary operator. (as mentioned above)

```
710 \def\zeckdefinfix #1#2#3#4%
711 {%
```

```
\edef\ZECK_tmpa{#1}%
712
713
       \edef\ZECK_tmpa{\xint_zapspaces_o\ZECK_tmpa}%
       \edef\ZECK_tmpL{\the\numexpr#3\relax}%
714
715
       \edef\ZECK_tmpL
            {\ifnum\ZECK_tmpL<4 4\else\ifnum\ZECK_tmpL<23 \ZECK_tmpL\else 22\fi\fi}%
716
       \edef\ZECK_tmpR{\the\numexpr#4\relax}%
717
       \edef\ZECK_tmpR
718
            {\ifnum\ZECK_tmpR<4 4\else\ifnum\ZECK_tmpR<23 \ZECK_tmpR\else 22\fi\fi}%</pre>
719
       \ZECK_defbin_b {expr}\ZECK_tmpa\ZECK_tmpL\ZECK_tmpR #2%
720
       \expandafter\ZECK_dotheitselves\ZECK_tmpa\relax
721
     \unless\ifcsname
722
       XINT_expr_exec_-\romannumeral\ifnum\ZECK_tmpR>12 \ZECK_tmpR\else 12\fi
723
724
     \endcsname
       \xintMessage{zeckendorf}{Error}{Right precedence not among accepted values.}%
725
       \errhelp{Accepted values include 12, 14, and 17.}%
726
       \errmessage{Sorry, you can not use \ZECK_tmpR\space as right precedence.}%
727
728
     \ifxintverbose
729
       \xintMessage{zeckendorf}{info}{infix operator \ZECK_tmpa\space
730
       \ifxintglobaldefs globally \fi
731
732
           \xint_noxpd{#2}\MessageBreak with precedences \ZECK_tmpL, \ZECK_tmpR;}%
733
734
    \fi
735 }%
736 \def\ZECK_dotheitselves#1#2%
737 {%
       \if#2\relax\expandafter\xint_gobble_ii
738
739
       \else
     \XINT_global
740
         \expandafter\edef\csname XINT_expr_itself_#1#2\endcsname{#1#2}%
741
742
         \unless\ifcsname XINT_expr_precedence_#1\endcsname
743
     \XINT_global
           \expandafter\edef\csname XINT_expr_precedence_#1\endcsname
744
                            {\csname XINT_expr_precedence_\ZECK_tmpa\endcsname}%
745
     \XINT_global
746
           \expandafter\odef\csname XINT_expr_op_#1\endcsname
747
                            {\csname XINT_expr_op_\ZECK_tmpa\endcsname}%
748
         \fi
749
750
       \fi
       \ZECK_dotheitselves{#1#2}%
751
752 }%
There is no ``undefine operator'' in <a href="mailto:bnumexpr">bnumexpr</a> currently. Experimental, I don't want to
spend too much time. I sense there is a potential problem with multi-character opera-
tors related to ``undoing the itselves'', because of the mechanism which allows to use
for example ;; as short-cut for ;;; if ;; was not pre-defined when ;;; got defined. To
undefine ;;, I would need to check if it really has been aliased to ;;;, and I don't do
the effort here.
753 \def\ZECK_undefbin_b #1#2%
754 {%
     \XINT_global\expandafter\let
755
       \csname XINT_#1_op_#2\endcsname\xint_undefined
756
```

```
\XINT_global\expandafter\let
757
       \csname XINT_#1_exec_#2\endcsname\xint_undefined
758
759
     \XINT_global\expandafter\let
       \csname XINT_#1_check-_#2\endcsname\xint_undefined
760
     \XINT_global\expandafter\let
761
       \csname XINT_#1_checkp_#2\endcsname\xint_undefined
762
     \XINT_global\expandafter\let
763
       \csname XINT_expr_precedence_#2\endcsname\xint_undefined
764
     \XINT_global\expandafter\let
765
       \csname XINT_expr_itself_#2\endcsname\xint_undefined
766
767 }%
768 \def\zeckundefinfix #1%
769 {%
770
       \edef\ZECK_tmpa{#1}%
       \edef\ZECK_tmpa{\xint_zapspaces_o\ZECK_tmpa}%
771
       \ZECK_undefbin_b {expr}\ZECK_tmpa
772
773 %%
      \ifxintverbose
       \xintMessage{zeckendorf}{Warning}{infix operator \ZECK_tmpa\space
774
           has been DELETED!}%
775
776 %% \fi
777 }%
778 \fi
779 \def\ZeckDeleteOperator#1{\zeckundefinfix{#1}}%
Attention, this is like \bnumdefinfix and thus does not have same order of arguments as
the \ZECK_defbin_b above.
780 \def\ZeckSetAsKnuthOp#1{\zeckdefinfix{#1}{\ZeckKMulNum}{14}{14}}%
781 \def\ZeckSetAsArnouxOp#1{\zeckdefinfix{#1}{\ZeckAMulNum}{14}{14}}%
8.7.2. The $ and $$ as infix operator for the Knuth multiplication
782 \ZeckSetAsArnouxOp{$}% $ (<-only to tame Emacs/AUCTeX highlighting)</pre>
783 \ZeckSetAsKnuthOp{$$}% $$
8.7.3. Support macros for Q(\phi) algebra
\PhiSgn
784 \def\PhiSign{\romannumeral0\phisign}%
785 \def\phisign #1{%
786
       \expandafter\phisign_a\expanded{{#1}}%
787 }%
788 \def\phisign_a #1{\expandafter\phisign_b\string#1;}%
789 \catcode`[=1 \catcode`]=2 \catcode`\{=12 % }
790 \def\phisign_b #1[\if#1{\expandafter\phisign_X % }
                      \else\expandafter\phisign_N\fi #1]%
792 \catcode`[=12 \catcode`\{=1 % }
793 \def\phisign_N #1;{\XINT_sgn #1\xint:}%
794 \def\phisign_X #1{\expandafter\phisign_ab\expandafter{\iffalse}\fi}%
795 \def\PhiSign_ab {\romannumeral0\phisign_ab}%
796 \def\phisign_ab #1#2{%
797
       \xintiiifsgn{#1}%
798
       {% a < 0}
```

```
799
        \xintiiifSgn{#2}%
800
              {-1}%
              {-1}%
801
              {\% a < 0, b > 0, return 1 iff a^2+ab<b^2}
802
               \xintifLt{\xintMul{#1}{\xintAdd{#1}{#2}}}{\xintSqr{#2}}%
803
804
               {1}%
               {-1}%
805
              }%
806
       }%
807
       {\xintiiSgn{#2}}%
808
       {% a > 0}
809
        \xintiiifSgn{#2}%
810
811
              {\% a > 0, b < 0, return 1 iff a^2+ab>b^2}
               \xintifGt{\xintMul{#1}{\xintAdd{#1}{#2}}}{\xintSqr{#2}}%
812
               {1}%
813
               {-1}%
814
              }%
815
816
              {1}%
              {1}%
817
       }%
818
819 }%
\PhiAbs
820 \def\PhiAbs{\romannumeral0\phiabs}%
821 \def\phiabs #1{%
       \expandafter\phiabs_a\expanded{{#1}}%
822
823 }%
824 \def\phiabs_a #1{\expandafter\phiabs_b\string#1}%
825 \catcode`[=1 \catcode`]=2 \catcode`\{=12 % }
826 \def\phiabs_b #1[\if#1{\expandafter\phiabs_X % }
                     \else\expandafter\phiabs_N\fi #1]%
828 \catcode`[=12 \catcode`\{=1 % }
829 \let\phiabs_N \XINT_abs
830 \def\phiabs_X #1{\expandafter\phiabs_x\expandafter{\iffalse}\fi}%
831 \def\phiabs_x #1#2{\expanded{%
      \ifnum\PhiSign_ab {#1}{#2}<\xint_c_
       \expandafter\xint_firstoftwo\else\expandafter\xint_secondoftwo\fi
833
       {{\XINT_Opp#1}{\XINT_Opp#2}}{{#1}{#2}}%
834
835
836 }%
\PhiNorm
837 \def\PhiNorm{\romannumeral0\phinorm}%
838 \def\phinorm #1{%
       \expandafter\phinorm_a\expanded{{#1}}%
839
840 }%
841 \def\phinorm_a #1{\expandafter\phinorm_b\detokenize{#1;}{#1}}%
842 \catcode`[=1 \catcode`]=2 \catcode`\{=12 % }
843 \def\phinorm_b #1#2;[\if#1{\expandafter\phinorm_X % }
                        \else\expandafter\phinorm_N\fi]%
845 \catcode`[=12 \catcode`\{=1 % }
```

```
846 \let\phinorm_N\xintsqr
847 \def\phinorm_X #1{\phinorm_x #1}%
848 \def\phinorm_x #1#2{\xintsub
     {\xintMul{#1}{\xintAdd{#1}{#2}}}%
     {\xintSqr{#2}}%
851 }%
\PhiConj
852 \def\PhiConj{\romannumeral0\phiconj}%
853 \def\phiconj #1{%
       \expandafter\phiconj_a\expanded{{#1}}%
854
855 }%
856 \def\phiconj_a #1{\expandafter\phiconj_b\detokenize{#1;}#1}%
857 \catcode`[=1 \catcode`]=2 \catcode`\{=12 % }
858 \def\phiconj_b #1#2;[\if#1{\expandafter\phiconj_X % }
                        \else\expandafter\phiconj_N\fi]%
860 \catcode`[=12 \catcode`\{=1 % }
861 \let\phiconj_N\space
862 \def\phiconj_X #1#2{\expanded{%
863 {\xintAdd{#1}{#2}}{\XINT_Opp #2}%
864 }}%
\Phi0pp
865 \def\PhiOpp{\romannumeral0\phiopp}%
866 \def\phiopp #1{%
       \expandafter\phiopp_a\expanded{{#1}}%
867
868 }%
869 \def\phiopp_a #1{\expandafter\phiopp_b\string#1}%
870 \catcode`[=1 \catcode`]=2 \catcode`\{=12 % }
871 \def\phiopp_b #1[\if#1{\expandafter\phiopp_X % }
                     \else\expandafter\phiopp_N\fi #1]%
873 \catcode`[=12 \catcode`]=12 \catcode`\{=1 % }
874 \let\phiopp_N \XINT_opp
875 \def\phiopp_X #1{\expandafter\phiopp_x\expandafter{\iffalse}\fi}%
876 \def\phiopp_x #1#2{\expanded{%
       {\XINT_Opp #1}{\XINT_Opp #2}%
878 }}%
\PhiAdd
879 \def\PhiAdd{\romannumeral0\phiadd}%
880 \def\phiadd #1#2{%
       \expandafter\phiadd_a\expanded{{#1}{#2}}%
881
882 }%
883 \def\phiadd_a #1{\expandafter\phiadd_b\string#1;}%
884 \catcode`[=1 \catcode`]=2 \catcode`\{=12 % }
885 \def\phiadd_b #1[\if#1{\expandafter\phiadd_X % }
                     \else\expandafter\phiadd_N\fi #1]%
887 \def\phiadd_N #1;#2[\expandafter\phiadd_n\string#2;[#1]]%
888 \def\phiadd_n #1[\if#1{\expandafter\phiadd_nX % }
                     \else\expandafter\phiadd_nn\fi #1]%
889
890 \def\phiadd_nX #1[\expandafter\phiadd_nx\expandafter[\iffalse]\fi]%
```

```
891 \def\phiadd_X #1[\expandafter\phiadd_x\expandafter[\iffalse]\fi]%
#1={a}{b}.
892 \def\phiadd_x #1;#2[\expandafter\phiadd_xa\string#2;#1]%
893 \def\phiadd_xa#1[\if#1{\expandafter\phiadd_XX % }
                     \else\expandafter\phiadd_xn\fi #1]%
895 \def\phiadd_XX #1[\expandafter\phiadd_xx\expandafter[\iffalse]\fi]%
896 \catcode`[=12 \catcode`]=12 \catcode`\{=1 % }
897 \def\phiadd_nn #1;{\xintadd{#1}}%
898 \def\phiadd_nx #1#2;#3{\expandafter
899
      {\romannumeral0\xintadd{#1}{#3}}{#2}%
900 }%
901 \def\phiadd_xn #1;#2{\expandafter
      {\romannumeral0\xintadd{#1}{#2}}%
903 }%
904 \def\phiadd_xx #1#2;#3#4{\expanded{%
       {\xintAdd{#1}{#3}}%
       {\xintAdd{#2}{#4}}%
906
907 }}%
\PhiSub
908 \def\PhiSub{\romannumeral0\phisub}%
909 \def\phisub #1#2{%
       \expandafter\phisub_a\expanded{{#1}{#2}}%
911 }%
912 \def\phisub_a #1{\expandafter\phisub_b\string#1;}%
913 \catcode`[=1 \catcode`]=2 \catcode`\{=12 % }
914 \def\phisub_b #1[\if#1{\expandafter\phisub_X % }
915
                     \else\expandafter\phisub_N\fi #1]%
916 \def\phisub_N #1;#2[\expandafter\phisub_n\string#2;[#1]]%
917 \def\phisub_n #1[\if#1{\expandafter\phisub_nX % }
                     \else\expandafter\phisub_nn\fi #1]%
919 \def\phisub_nX #1[\expandafter\phisub_nx\expandafter[\iffalse]\fi]%
920 \def\phisub_X #1[\expandafter\phisub_x\expandafter[\iffalse]\fi]%
#1={a}{b}.
921 \def\phisub_x #1;#2[\expandafter\phisub_xa\string#2;#1]%
922 \def\phisub_xa#1[\if#1{\expandafter\phisub_XX % }
                     \else\expandafter\phisub_xn\fi #1]%
923
924 \def\phisub_XX #1[\expandafter\phisub_xx\expandafter[\iffalse]\fi]%
925 \catcode`[=12 \catcode`\{=1 % }
926 \def\phisub_nn #1;#2{\xintsub{#2}{#1}}%
927 \def\phisub_nx #1#2;#3{\expanded{%
928
      {\xintSub{#3}{#1}}{\XINT_Opp#2}%
929 }}%
930 \def\phisub_xn #1;#2{\expandafter
      {\romannumeral0\xintsub{#2}{#1}}%
932 }%
933 \def\phisub_xx #1#2;#3#4{\expanded{%
934
       {\xintSub{#3}{#1}}%
935
       {\xintSub{#4}{#2}}%
936 }}%
```

```
\PhiMul
937 \def\PhiMul{\romannumeral0\phimul}%
938 \def\phimul #1#2{%
       \expandafter\phimul_a\expanded{{#1}{#2}}%
939
940 }%
941 \def\phimul_a #1{\expandafter\phimul_b\string#1;}%
942 \catcode`[=1 \catcode`]=2 \catcode`\{=12 % }
943 \def\phimul_b #1[\if#1{\expandafter\phimul_X % }
                     \else\expandafter\phimul_N\fi #1]%
945 \def\phimul_N #1;#2[\expandafter\phimul_n\string#2;[#1]]%
946 \def\phimul_n #1[\if#1{\expandafter\phimul_nX % }
                     \else\expandafter\phimul_nn\fi #1]%
948 \def\phimul_nX #1[\expandafter\phimul_nx\expandafter[\iffalse]\fi]%
949 \def\phimul_X #1[\expandafter\phimul_x\expandafter[\iffalse]\fi]%
#1={a}{b}.
950 \def\phimul_x #1;#2[\expandafter\phimul_xa\string#2;#1]%
951 \def\phimul_xa#1[\if#1{\expandafter\phimul_XX % }
                     \else\expandafter\phimul_xn\fi #1]%
953 \def\phimul_XX #1[\expandafter\phimul_xx\expandafter[\iffalse]\fi]%
954 \catcode`[=12 \catcode`\{=1 % }
955 \def\phimul_nn#1; {\xintmul{#1}}%
956 \def\phimul_nx#1#2;#3{\expanded{%
       {\xintMul{#1}{#3}}{\xintMul{#2}{#3}}%
957
958 }}%
959 \def\phimul_xn#1;#2#3{\expanded{%
960
       {\xintMul{#1}{#2}}{\xintMul{#1}{#3}}%
961 }}%
962 \def\phimul_xx #1#2;#3#4{%
963
       \expandafter\phimul_xx_a\expanded{%
         \xintMul{#1}{#3};% ca
964
         \xintMul{#2}{#4};% db
965
966
         \xintMul{#1}{#4};% da
         \xintMul{#2}{#3};% cb
967
       }%
968
969 }%
970 \def\phimul_xx_a #1;#2;#3;#4;{\expanded{%
       {\xintAdd{#1}{#2}}%
971
972
       {\xintAdd{#3}{\xintAdd{#4}{#2}}}%
973 }}%
\PhiDiv
974 \def\PhiDiv{\romannumeral0\phidiv}%
975 \def\phidiv #1#2{%
976
       \expandafter\phidiv_a\expanded{{#1}{#2}}%
977 }%
978 \def\phidiv_a #1{\expandafter\phidiv_b\string#1;}%
979 \catcode`[=1 \catcode`]=2 \catcode`\{=12 % }
980 \def\phidiv_b #1[\if#1{\expandafter\phidiv_X % }
                     \else\expandafter\phidiv_N\fi #1]%
982 \def\phidiv_N #1;#2[\expandafter\phidiv_n\string#2;[#1]]%
983 \def\phidiv_n #1[\if#1{\expandafter\phidiv_nX % }
```

```
\else\expandafter\phidiv_nn\fi #1]%
985 \def\phidiv_nX #1[\expandafter\phidiv_nx\expandafter[\iffalse]\fi]%
986 \def\phidiv_X #1[\expandafter\phidiv_x\expandafter[\iffalse]\fi]%
 #1={a}{b}.
987 \def\phidiv_x #1;#2[\expandafter\phidiv_xa\string#2;#1]%
988 \def\phidiv_xa#1[\if#1{\expandafter\phidiv_XX % }
                      \else\expandafter\phidiv_xn\fi #1]%
990 \def\phidiv_XX #1[\expandafter\phidiv_xx\expandafter[\iffalse]\fi]%
991 \catcode`[=12 \catcode`\{=1 % }
992 \def\phidiv_nn#1;#2{\xintdiv{#2}{#1}}%
993 \def\phidiv_nx#1#2{%
        \expandafter\phidiv_nx_a\expanded{%
994
         {\xintSub}{\xintMul}{\#1}{\xintAdd}{\#1}{\#2}}}{\xintSqr}{\#2}}
995
        }{#1}{#2}%
996
997 }%
998 \def\phidiv_nx_a#1#2#3;#4{\expanded{%
        {\xintIrr{\xintDiv{\xintMul{#4}{\xintAdd{#2}{#3}}}{#1}}[0]}%
999
        {\xintIrr{\xintOpp{\xintDiv{\xintMul{#4}{#3}}{#1}}}[0]}%
1000
1001 }}%
1002 \def\phidiv_xn #1;#2#3{\expanded{%
        {\xintIrr{\xintDiv{#2}{#1}}[0]}%
1003
1004
        {\xintIrr{\xintDiv{#3}{#1}}[0]}%
1005 }}%
1006 \def\phidiv_xx #1#2;#3#4{%
        \expandafter\phidiv_xx_a\expanded{%
1007
1008
         \expandafter\phimul_xx
           \expanded{{\xintAdd{#1}{#2}}{\XINT_Opp #2}};{#3}{#4}%
1009
         {\xintSub{\xintMul{#1}{\xintAdd{#1}{#2}}}}\xintSqr{#2}}}%
1010
1011
1012 }%
1013 \def\phidiv_xx_a #1#2#3{%
        \expanded{%
1014
        {\xintIrr{\xintDiv{#1}{#3}}[0]}%
1015
1016
        {\xintIrr{\xintDiv{#2}{#3}}[0]}%
1017
      }%
1018 }%
 \PhiPow
1019 \def\PhiPow{\romannumeral0\phipow}%
1020 \def\phipow #1#2{%
1021
        \expandafter\phipow_a\expanded
        {{#1}{\xintNum{#2}}}%
1022
1023 }%
1024 \def\phipow_a #1{\expandafter\phipow_b\string#1;}%
1025 \catcode`[=1 \catcode`]=2 \catcode`\{=12 % }
1026 \def\phipow_b #1[\if#1{\expandafter\phipow_X % }
1027
                      \else\expandafter\phipow_N\fi #1]%
1028 \catcode`[=12 \catcode`]=12 \catcode`\{=1 % }
1029 \def\phipow_N #1;{\xintpow{#1}}%
1030 \def\phipow_X #1{\expandafter\phipow_x\expandafter{\iffalse}\fi}%
 Let's handle negative exponents too, now that we use \xinteval.
```

```
1031 \def\phipow_x #1;#2{\phipow_fork #2;#1}%
1032 \def\phipow_fork #1{%
1033
        \xint_UDzerominusfork
           0#1\phipow_neg
1034
1035
           #1-\phipow_zero
            0-\phipow_pos
1036
        \krof #1%
1037
1038 }%
1039 \def\phipow_zero 0;#1#2{{1}{0}}%
1040 \def\phipow_neg -{%
1041
        \expandafter\phiinv_ab\romannumeral0\phipow_pos
1042 }%
1043 \def\phiinv_ab #1#2{%
1044
        \expandafter\phiinv_c\expanded{%
         {\xintSub{\xintMul{#1}{\xintAdd{#1}{#2}}}}{\xintSqr{#2}}}%
1045
1046
        }{#1}{#2}%
1047 }%
1048 \def\phiinv_c #1#2#3{\expanded{%
        {\xintIrr{\xintDiv{\xintAdd{#2}{#3}}{#1}}[0]}%
1049
1050
        {\xintIrr{\xintOpp{\xintDiv{#3}{#1}}}[0]}%
1051 }}%
1052 \def\phipow_pos #1;{%
1053
        \expandafter\phipow_xa
1054
        \expanded{10\xintDecToBin{#1}},;%
1055 }%
1056 \def\phipow_xa #1#2#3#4;{%
      \if#3,\expandafter\phipow_done\fi
1057
1058
      \if#31\expandafter\phipow_xo
1059
      \else\expandafter\phipow_xe\fi
      {#1}{#2}#4;%
1060
1061 }%
1062 \def\phipow_done \if#1\fi #2#3;#4#5{{#2}{#3}}%
1063 \def\phipow_xo #1#2{%
      \expandafter\phipow_xo_a\expanded{%
1064
      \xintSqr{#1};\xintMul{#1}{#2};\xintSqr{#2};%
1065
1066
     }%
1067 }%
1068 \def\phipow_xo_a #1;#2;#3;{%
      \expandafter\phipow_xo_b\expanded{%
      \xintAdd{#1}{#3};\xintAdd{#2}{\xintAdd{#2}{#3}};%
1070
1071
     }%
1072 }%
1073 \def\phipow_xo_b#1;#2;#3;#4#5{%
      \expandafter\phipow_xa\romannumeral0%
1074
1075
      \phimul_xx {#1}{#2};{#4}{#5}#3;{#4}{#5}%
1076 }%
1077 \def\phipow_xe #1#2{%
      \expandafter\phipow_xe_a\expanded{%
1078
      \xintSqr{#1};\xintMul{#1}{#2};\xintSqr{#2};%
1079
     }%
1080
1082 \def\phipow_xe_a #1;#2;#3;{%
```

```
\expandafter\phipow_xa\expanded{%
1083
      {\xintAdd{#1}{#3}}{\xintAdd{#2}{\xintAdd{#2}{\#3}}}%
1084
1085
     }%
1086 }%
 8.7.4. Overloading +, -, *, /, ^, and **
 The ** is pre-aliased to ^ at xintexpr level via \XINT_expr_itself_**, so nothing to do
 here once ^ is handled.
   The unary - requires extra care.
1087 \zeckdefinfix{+}{\PhiAdd}{12}{12}%
1088 \zeckdefinfix{-}{\PhiSub}{12}{12}%
1089 \xintFor #1 in {xii,xiv,xvii}\do{%
        \expandafter\def\csname XINT_expr_exec_-#1\endcsname
1090
        ##1##2##3%
1091
        {%
1092
1093
          \expandafter ##1\expandafter ##2\expandafter
1094
            \romannumeral`&&@\XINT:NEhook:f:one:from:one
1095
            {\romannumeral`&&@\PhiOpp##3}%
1096
           }%
1097
        }%
1098
1099 }%
1100 \zeckdefinfix{*}{\PhiMul}{14}{14}%
1101 \zeckdefinfix{/}{\PhiDiv}{14}{14}%
1102 \zeckdefinfix{^}{\PhiPow}{18}{17}%
```

8.7.5. Variables and functions for \xinteval

The macros computing Fibonacci numbers, Zeckendorf indices, and Bergman exponents, were done originally assuming to be used with arguments in strict integer format. But when operations are executed in \xinteval the intermediate results will use the ``raw'' format described in the xintexpr manual, not the ``strict integer format''. We thus need wrappers to apply \xintNum for normalization, even though this adds annoying overhead. These wrappers can assume that the argument is already expanded.

For macros handling input being either one unbraced integer or a pair of braced integers this is more complicated. We separated \PhiIISign_ab from \PhiSign to this aim. The former for optimized internal usage, only using integer algebra. The latter uses the xintfrac macros, so there is no problem and we do not want to truncate arguments to integers. Similarly for \PhiAbs no need to do something special.

\PhiMaxE is integer-only, but in the end I decided to not provide an \xinteval interface and to remove the one for \ZeckMaxK.

For the support for phiexponents(), which is also integer only we have to use \xintNu

m, the problem is that we can't do that prior to know if used with an integer or a nutple.

So \Phi@BList was done to handle that.

```
1103 \xintdefvar phi:=[0,1];%
1104 \xintdefvar psi:=[1,-1];%
1105 \def\XINT_expr_func_phinorm #1#2#3%
1106 {%
```

```
1107
        \expandafter #1\expandafter #2\expandafter{%
        \romannumeral`&&@\XINT:NEhook:f:one:from:one
1108
        {\romannumeral`&&@\PhiNorm#3}}%
1109
1110 }%
1111 \def\XINT_expr_func_phiconj #1#2#3%
1112 {%
        \expandafter #1\expandafter #2\expandafter{%
1113
        \romannumeral`&&@\XINT:NEhook:f:one:from:one
1114
        {\romannumeral`&&@\PhiConj#3}}%
1115
1116 }%
1117 \def\XINT_expr_func_phisign #1#2#3%
1118 {%
1119
        \expandafter #1\expandafter #2\expandafter{%
1120
        \romannumeral`&&@\XINT:NEhook:f:one:from:one
        {\romannumeral`&&@\PhiSign#3}}%
1121
1122 }%
1123 \def\XINT_expr_func_phiabs #1#2#3%
1124 {%
        \expandafter #1\expandafter #2\expandafter{%
1125
1126
        \romannumeral`&&@\XINT:NEhook:f:one:from:one
        {\romannumeral`&&@\PhiAbs#3}}%
1127
1128 }%
1129 \def\ZeckTheFNNum#1{\ZeckTheFN{\xintNum{#1}}}%
1130 \def\XINT_expr_func_fib #1#2#3%
1131 {%
        \expandafter #1\expandafter #2\expandafter{%
1132
        \romannumeral`&&@\XINT:NEhook:f:one:from:one
1133
1134
        {\romannumeral`&&@\ZeckTheFNNum#3}}%
1135 }%
1136 \def\ZeckTheFSeqNum#1#2{\ZeckTheFSeq{\xintNum{#1}}}{\xintNum{#2}}}%
1137 \def\XINT_expr_func_fibseq #1#2#3%
1138 {%
1139
        \expandafter #1\expandafter #2\expandafter{%
        \romannumeral`&&@\XINT:NEhook:f:one:from:two
1140
        {\romannumeral`&&@\ZeckTheFSeqNum#3}}%
1141
1142 }%
1143 \def\ZeckBListNum #1{%
     \expanded\bgroup\expandafter\zeckblist_fork\romannumeral0\xintnum{#1}\xint:
1144
1145 }%
1146 \def\XINT_expr_func_zeckindices #1#2#3%
1147 {%
        \expandafter #1\expandafter #2\expandafter{%
1148
1149
        \romannumeral`&&@\XINT:NEhook:f:one:from:one
        {\romannumeral`&&@\ZeckBListNum#3}}%
1150
1151 }%
```

TODO: I have forgotten now but I vaguely remember if compatibility with usage of the defined function in \xintdeffunc is hoped for that it should first expand its argument even though in our context if purely numerical this is unneeded (and f-expansion will end up hitting a brace if the input is a nutple). Adding anyhow. I have other things in mind currently, to examine later, already quite enough hours on this package.

1152 \def\Phi@BList#1{\expandafter\expandafter\expandafter

```
\phi@blist_b\expandafter\string\romannumeral`&&@#1;}%
1154 \catcode`[=1 \catcode`]=2 \catcode`\{=12 % }
1155 \def\phi@blist_b #1[\if#1{\expandafter\phi@blist_X % }
                         \else\expandafter\phi@blist_N\fi #1]%
1157 \catcode`[=12 \catcode`]=12 \catcode`\{=1 % }
1158 \def\phi@blist_N #1;{%
        \expandafter\xint_gobble_i\expanded
1159
        \expandafter\phiblist_ab \expanded{{\xintNum{#1}}}{0};%
1160
1161 }%
1162 \def\phi@blist_X #1{%
        \expandafter\phi@blist_x\expandafter{\iffalse}\fi
1163
1164 }%
1165 \def\phi@blist_x #1#2;{%
1166
        \expandafter\xint_gobble_i\expanded
        \expandafter\phiblist_ab \expanded{{\xintNum{#1}}}{\xintNum{#2}}};%
1167
1168 }%
1169 \def\XINT_expr_func_phiexponents #1#2#3%
1170 {%
        \expandafter #1\expandafter #2\expandafter{%
1171
1172
        \romannumeral`&&@\XINT:NEhook:f:one:from:one
        {\romannumeral`&&@\Phi@BList#3}}%
1173
1174 }%
```

ATTENTION! we leave the modified catcodes in place! (the question mark has regained its catcode other though).

9. Interactive code

```
Extracts to zeckendorf.tex.
1 \input zeckendorfcore.tex
2 \let\xintfirstoftwo\xint_firstoftwo
3 \let\xintsecondoftwo\xint_secondoftw
4 \let\zeckexprmapwithin\XINT:expr:mapwithin
5 \def\zeckNumbraced#1{{\xintNum{#1}}}
6 \xintexprSafeCatcodes
8 \let\ZeckShouldISayOrShouldIGo\iftrue
9 \def\ZeckCmdQ{\let\ZeckShouldISayOrShouldIGo\iffalse}
10 \let\ZeckCmdX\ZeckCmdQ
11 \let\ZeckCmdx\ZeckCmdQ
12 \let\ZeckCmdq\ZeckCmdQ
14 \newif\ifzeckphimode
15 \newif\ifzeckindices
16 \zeckindicestrue
17 \newif\ifzeckfromN
18 \zeckfromNtrue
19 \newif\ifzeckmeasuretimes
20 \newif\ifzeckevalonly
21 \newif\ifzeckhex
23 \def\ZeckCmdP{%
```

```
\zeckphimodetrue
      \ifzeckindices\ZeckCmdL\else\Zeck@CmdB\fi
25
26 }
27 \let\ZeckCmdp\ZeckCmdP
28 \def\ZeckCmdZ{%
      \zeckphimodefalse
      \ifzeckindices\ZeckCmdL\else\Zeck@CmdB\fi
30
31 }
32 \let\ZeckCmdz\ZeckCmdZ
34 \def\PhiTypesetXPrint #1#2{a=#1, b=#2}
35 \def\ZeckCmdL{%
      \zeckindicestrue
37
      \ifzeckphimode
        \def\ZeckFromN{\PhiExponents}%
38
        \def\ZeckToN##1{\PhiTypesetX{\PhiXfromExponents{##1}}}%
39
40
        \def\ZeckFromN{\ZeckIndices}%
41
        \def\ZeckToN{\ZeckNFromIndices}%
42
      \fi
43
44 }
45 \let\ZeckCmdl\ZeckCmdL
47 \def\ZeckCmdB{%
      \zeckindicesfalse
48
      \zeckhexfalse
49
      \Zeck@CmdB
50
51 }
52 \def\Zeck@CmdB{%
      \ifzeckphimode
53
        \ifzeckhex
54
55
          \def\ZeckFromN{\PhiBaseHexPhi}%
          \def\ZeckToN##1{\PhiTypesetX{\PhiXfromBaseHexPhi{##1}}}%
56
57
           \def\ZeckFromN{\PhiBasePhi}%
58
          \def\ZeckToN##1{\PhiTypesetX{\PhiXfromBasePhi{##1}}}%
        \fi
60
      \else
61
        \ifzeckhex
62
          \def\ZeckFromN{\ZeckHexWord}%
63
          \def\ZeckToN{\ZeckNfromHexWord}%
64
        \else
65
           \def\ZeckFromN{\ZeckWord}%
66
           \def\ZeckToN{\ZeckNfromWord}%
67
68
        \fi
      \fi
69
70 }
71 \let\ZeckCmdW\ZeckCmdB
72 \let\ZeckCmdb\ZeckCmdB
73 \let\ZeckCmdw\ZeckCmdB
75 \def\ZeckCmdC{%
```

9. Interactive code

```
\zeckindicesfalse
76
       \zeckhextrue
77
       \Zeck@CmdB
78
79 }
80 \let\ZeckCmdc\ZeckCmdC
82 \def\ZeckConvert{%
       \csname Zeck\ifzeckfromN From\else To\fi N\endcsname
83
84 }
85 \def\ZeckCmdT{\ifzeckfromN\zeckfromNfalse\else\zeckfromNtrue\fi}
86 \let\ZeckCmdt\ZeckCmdT
88 \expandafter\def\csname ZeckCmd@\endcsname{%
89
     \ifdefined\xinttheseconds
         \ifzeckmeasuretimes\zeckmeasuretimesfalse
90
             \else
                             \zeckmeasuretimestrue
91
         \fi
92
93
     \else
         \immediate\write128{Sorry, this requires xintexpr 1.4n or later.}%
94
95
     \fi
96 }
97
98 \def\ZeckCmdE{\ifzeckevalonly\zeckevalonlyfalse\else\zeckevalonlytrue\fi}
99 \let\ZeckCmde\ZeckCmdE
101 \def\ZeckCmdH{\immediate\write128{\ZeckHelpPanel}}
102 \let\ZeckCmdh\ZeckCmdH
104 \ZeckCmdL
105
106 \def\ZeckCommands{Enter input or command
                      (q, z, p, 1, w, b, c, t, e, @, or h for help).}
108 \def\ZeckPrompt{%
    \ifzeckevalonly
109
       <<<Eval-only (e to quit)>>>^^J%
110
       [IN] expression =
111
     \else
112
      \ifzeckfromN
113
114
       \ifzeckphimode
         \ifzeckindices <convert to Bergman phi-exponents>^^J%
115
         \else
116
           \ifzeckhex
117
118
                       <convert to Bergman hexphi-representation>^^J%
           \else
119
                       <convert to Bergman phi-representation>^^J%
120
           \fi
121
         \fi
122
         \ZeckCommands^^J
123
         [IN] a + b phi =
124
       \else
125
         \ifzeckindices <convert to Zeckendorf indices>^^J%
126
127
```

9. Interactive code

```
\ifzeckhex
128
                         <convert to Zeckendorf hex-word>^^J%
129
           \else
130
                         <convert to Zeckendorf word>^^J%
131
132
           \fi
         \fi
133
         \ZeckCommands^^J
134
         [IN] N =
135
136
       \fi
      \else
137
       \ifzeckphimode <convert to a + b phi>^^J
138
         \ZeckCommands^^J
139
140
         [IN]
          \ifzeckindices phi exponents =
141
          \else
142
            \ifzeckhex
143
                       hexphi-representation =
144
            \else
145
                          phi-representation =
146
            \fi
147
          \fi
148
       \else
                       <convert to integer>^^J
149
         \ZeckCommands^^J
150
151
         [IN]
          \ifzeckindices indices =
152
          \else
153
            \ifzeckhex
154
155
                          hex word =
            \else
156
                          binary word =
157
            \fi
158
159
          \fi
160
       \fi
161
      \fi
     \fi
162
163 }
164 \newlinechar10
165 \immediate\write128{}
166 \immediate\write128{Welcome to Zeckendorf 0.9d (2025/11/16, JFB).}
168 \def\ZeckHelpPanel{Commands (lowercase also):^^J
169 Q to quit. Also X.^^J
170 H for this help.^^J
171 Z to switch to Zeckendorf-mode (starting default).^^J
172 P to switch to phi-mode.^^J
173 L for indices or exponents.^^J
174 W for binary words or reps. Also B.^^J
175 C for hexadecimal words or reps.^^J
176 T to toggle the direction of conversions.^^J
177 E to toggle to and from \string\xinteval-only mode.^^J
178 @ to toggle measurement of execution times.^^J
179 ^^J
```

9 Interactive code

```
180 - binary words, phi-representations, are parsed only by \string\edef.^^J
181 - all other inputs are handled by \noexpand\xinteval so for example one^^J
182 \space\space
      can use 2^100 or 100! or binomial(100,50). And a list of indices^^J
184 \space\space
      or exponents can be for example seq(3*a+1, a=0..10).^{\Lambda}
185
186 ^^J
187 \space\space The fib() function computes Fibonacci numbers.^^J
188 \space\space The character $ serves as symbol for Knuth multiplication.^^J%
189 **** empty input is not supported!
        no linebreaks in input! ****}
190
192 \immediate\write128{\ZeckHelpPanel}
193
194 \def\zeckpar{\par}
195 \long\def\xintbye#1\xintbye{}
196 \long\def\zeckgobbleii#1#2{}
197 \long\def\zeckfirstoftwo#1#2{#1}
198 \def\zeckonlyonehelper #1#2#3%
199
       \zeckonlyonehelper{\xintbye#2\zeckgobbleii\xintbye0}
200
201 \xintFor*#1 in {0123456789}\do{%
202
      \expandafter\def\csname ZeckCmd#1\endcsname{%
         \immediate\write128{%
203
204 ** Due to under-funding, a lone #1 is not accepted. Inputs must have^^J%
205 ** two characters at least. Think about a donation? Try 0#1.}}
206 }%
207 \xintloop
208 \message{\ZeckPrompt}
209 \read-1to\zeckbuf
210 \ifx\zeckbuf\zeckpar
    \immediate\write128{**** empty input is not supported, please try again.}
212 \else
    \edef\zeckbuf{\zeckbuf}
Space token at end of \zeckbuf is annoying. We could have used \xintLength which does
not count space tokens.
     \if 1\expandafter\zeckonlyonehelper\zeckbuf\xintbye\zeckonlyonehelper1%
214
      \ifcsname ZeckCmd\expandafter\zeckfirstoftwo\zeckbuf\relax\endcsname
215
        \csname ZeckCmd\expandafter\zeckfirstoftwo\zeckbuf\relax\endcsname
216
      \else
217
        \immediate\write128{%
218
        **** Unrecognized command letter
219
             \expandafter\zeckfirstoftwo\zeckbuf\relax. Try again.^^J}
220
      \fi
221
     \else
222
Using the conditional so that this can also be used by default with older xint.
   With 0.9\mathrm{b} the time needed for parsing the input was not counted, but this meant that
measuring in the evaluation-only mode always printed 0.0s.
   0.9c has refactored here entirely.
      \ifzeckmeasuretimes\xintresettimer\fi
223
      \if1\ifzeckevalonly0\fi\ifzeckfromN0\fi\ifzeckindices0\fi1%
224
```

```
225 \edef\ZeckIn{{\zeckbuf}}%
226 \else
227 \expandafter\def\expandafter\ZeckIn\expandafter{%
228 \romannumeral0\xintbareeval\zeckbuf\relax}%
```

0.9c uses \minteval. It adds phi-mode to the interactive interface, but as 1/phi or anything doing an operation will inject ``raw mintfrac format'', we have to be careful about that, because we use \PhiExponents and \PhiBasePhi which are assuming being used with either an integer a or a pair {a}{b}. Using here some core level auxiliary from mintexpr to avoid a dozen lines like what was done for \Phi@BList. For this to work we need a variant of \mintNum which outputs with extra braces. This was for the author a refreshing journey to revisit forgotten deep code written years ago for mintexpr. But it would be more efficient to do something akin to the \Phi@BList business.

By the way we have to do this not only for phi-mode, but also for integer-mode, because some input such as 1e40 will be internally 1[40] which \ZeckIndices does not understand as it does not apply \xintNum. In fact any input doing an operation such as an addition will be in ``raw xintfrac format'' internally. So we have to do a normalization also for lists of exponents or indices.

```
229 \ifzeckevalonly\else
230 \expandafter\def\expandafter\ZeckIn
231 \expanded
232 \expandafter\zeckexprmapwithin
233 \expandafter\zeckNumbraced\ZeckIn
```

For lists of exponents and indices the predefined macros expect comma separated lists. We can either "print" using (full) \xinteval, or use \xintListwithSep, or write a little helper requiring only \edef expansion. We add one level of bracing removed later.

```
\ifzeckfromN\else
234
235
                \expandafter\def\expandafter\ZeckIn\expandafter{%
                  \expandafter{\romannumeral0\xintlistwithsep,\ZeckIn}%
236
                }%
237
             \fi
238
         \fi
239
      \fi
240
      \immediate\write128{%
241
        [OUT] \ifzeckevalonly
242
          \expanded\expandafter\XINTexprprint\expandafter.\ZeckIn
243
        \else
244
           \expandafter\ZeckConvert\ZeckIn
245
        \fi
246
      }%
247
      \ifzeckmeasuretimes
248
249
        \edef\tmp{\xinttheseconds}%
        \immediate\write128{%
250
           \ifzeckevalonly Evaluation \else Conversion \fi
251
           took \tmp s%
252
        }%
253
      \fi
254
255
     \fi
256 \fi
257 \ZeckShouldISayOrShouldIGo
258 repeat
```

10. LATEX code

```
259
260 \immediate\write128{Bye. Session was saved to log file (hard-wrapped too, alas).}
261 \bye
```

10. LATEX code

Extracts to zeckendorf.sty.

- 1 \NeedsTeXFormat{LaTeX2e}
- 2 \ProvidesPackage{zeckendorf}
- [2025/11/16 v0.9d Zeckendorf and base-phi representations of big integers (JFB)]%
- 4 \RequirePackage{xintexpr}
- 5 \RequirePackage{xintbinhex}% superfluous if with xint 1.4n or later
- 6 \input zeckendorfcore.tex
- $\begin{tabular}{ll} 7 \verb|\| ZECKrestorecatcodesendinput\% \\ \end{tabular}$