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1. Mathematical background

1. Mathematical background

Let us recall that the Fibonacci sequence starts with Fg =0, F; = 1, and obeys
the recurrence Fn = Fh_1 +Fp-p forn > 2. So Fp, =1, F3 =2, F4 = 3 and by a
simple induction Fy = k-1. Ahem, not at all! Here are the first few, starting
at Fp =1:

1,2,3,5,8,13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584 ...

The ratios of consecutive Fibonacci numbers are the convergents of the golden
ratio ¢.
1+ sqrt(5)
¢ = — ~ 1.618,033,988,749,894,848,204,586,834,37.

The Fibonacci recurrence can also be prolungated to negativen's, and it turns
out that F_p = (-1)™1F,.

Let us a give a few equations which are constantly in use. The first one im-
plies explicitly, in particular, that Z[¢] (i.e. all polynomial expression
in ¢ with integer coefficients) is Z+Z¢.

VnezZ ¢"=Fy1+Fno. (1)

Applying the ¢ <> ¢ = —<Z>'1 =1- ¢ automorphism of the ring Z[¢] and adding we
obtain the Lucas numbers:

Ln = ¢n + wn =2Fp-1+Fn =Fn-1+Fns1 - (2)
If subtracting, we obtain the Binet formula:
P" - "
S (3)
-1

0f course one should always keep in mind that -1 < %) < 0. And perhaps also
that ¢ - ¢ = /5.

Finally, there is an important formula using 2 X 2-matrices, closely re-
lated with equation (1) and the recurrence relation of the Fibonacci numbers:

n
11 _ Fn+1 Fn
mez (3 o) - (5 ). (@

Zeckendorf's Theorem (Lekkerkerker's [1] in 1952 (preprint 1951) at-
tributes the result to Zeckendorf; Zeckendorf, who was not in academia, pub-
lished [2] only later in 1972) says that any positive integer has a unique
representation as a sum of the Fibonacci numbers F,, n > 2, under the condi-
tions that no two indices differ by one, and that no index is repeated. For
example:

10 =8+2=Fg+F3
100 =89+8+3=F11+Fg+Fy
1,000 =987+ 13 =F15 +F7
10,000 = 6765 +2584+610+34+5+2=Fp9+F18+Fi5+Fg+F5+F3
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100,000 = 75025+ 17711 +6765+377+89+21+8+3+1
=F)5+Fyp+Fp9g+Fi1a+F11+Fg+Fg+Fa+F
1,000,000 = 832040 + 121393 + 46368 + 144 + 55
=F30 +Fo6 +F24 +F12 + F1o
10,000,000 = 9227465 + 514229 + 196418 + 46368 + 10946 + 4181 + 377 + 13 + 3
=F35+Fyp9g+Fy7+Fp4+Fy1 +F19+F14+F7+Fy
100,000,000 = F39 +F37 + F35 + F3p + F39 + Fpg + Fo3 + Fp1 + Fi5 +Fi3 + F11 + Fg + F4
This is called the Zeckendorf representation, and it can be given either as

above, or as the list of the indices (in decreasing or increasing order), or
as a binary word which in the examples above are

10 = 1001000k
100 = 10000101000
1,000 = 100000000100000 0k
10,000 = 10100100000100010100ck
100,000 = 100101000001001001010101 40
1,000,000 = 10001010000000000010100000000 0k
10,000,000 = 1000001010010010100001000000100100 6|
100,000,000 = 10101001010100001010000010101010000100 6k
1,000,000,000 = 1010000100100001010101000001000101000101001 0k

The least significant digit says whether the Zeckendorf representation uses
F, and so on from right to left (one may prefer to put the binary digits in the
reverse order, but doing as above is more reminiscent of binary, decimal, or
other representations using a given radix).

In a Zeckendorf binary word the sub-word 11 never occurs, and this, com-
bined wih the fact that the leading digit is 1, characterizes the Zeckendorf
words.

Donald Knuth (whose name may ring some bells to T users) has defined in
1988 a Fibonacci multiplication ([3]) of positive integers via the formula

aob= Z Fai+bj ’ (5)
1,3

where a= ) Fy, and b= Fp; are the Zeckendorf representations of the posi-
tive integers a and b. Although it is sometimes true that formula (5) remains
valid when using non-Zeckendorf expressions of a and/or b as sums of Fibonacci
numbers, this is not a general rule. The next identity by Knuth, which ap-
plies whenever three positive integers a, b, c are expressed via their Zeck-
endorf representations, is thus non-trivial:

(@ob)oc= ) Fajjicy - (6)
i,j,k
From it, the associativity of the Fibonacci multiplication follows immedi-
ately, the same as commutativity followed immediately from (5).
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Knuth's proof is combinatorial in nature. Pierre Arnoux ([4]) obtained in
1989 a non-combinatorial proof of associativity based upon the identifica-
tion of a certain subset (or subsets) of the ring Z[¢], closed under multi-
plication, and indexed by the positive integers. The circle-product on the
indices is mapped to the standard multiplication of these algebraic integers
An: AnAp = Anom. As by-product of this, he obtained the following remarkable
alternative formula for the Knuth product:

aobzab+aZFbj_1+bZFai_1. (7)
j i

Again, here we use the Zeckendorf representations of the positive integers a
and b. Clearly formula (7) is advantageous numerically compared to original
definition (5). Arnoux also re-interpreted a ' star-product'' which had been
defined by Horacio Porta and Kenneth Stolarsky ([5]).

Donald Knuth (see [6, 7.1.3]) has shown that any relative integer has a
unique representation as a sum of the " "NegaFibonacci'' numbers F_,, n > 1,
again with the condition that no index is repeated and no two indices differ
by one. In the special case of zero, the representation is an empty sum. Here

is the sequence of these " "NegaFibonacci'' numbers starting at n=-1:

1,-1,2,-3,5, -8, 13, -21, 34, -55, 89, -144, 233, -377, 610, -987 ...

In 1957, the twelve-year-old George Bergman ([7]) introduced the notion of
a " "base ¢'' number system. This uses 0 and 1 as digits but with the ambiguity
rule 011 < 100 due to gbz = ¢+ 1. He proved that any positive integer can
be represented this way finitely, i.e. is a finite sum of powers ¢k, with
decreasing relative integers as exponents (i.e. each power occurring at most
once and it is crucial that negative powers are allowed). For example:

100=¢° +¢° + > + 9" + ¢+ ¢ +¢1° = 1001001010.0001001001 .

L]

Such a finite " “phi-ary'' representation (it seems " phi-representation'' is
the more commonly used term in academia) is unique if one adds the condition
that no two exponents differ by one. This is equivalent to requiring that the
number of terms is minimal. The real numbers which can be represented by such
finite sums are exactly the positive numbers in Z[¢], i.e. all combinations
p+q¢ with p and q relative integers which turn out to be strictly positive.

100 - 300 = ¢% + ¢> +¢73 + ¢7'® = 100001000. 0010000001 .

The naive approach to obtain the finite phi-representations, and actually
prove that they do exist for all positive integers, is to show how to repeat-
edly add 1 Chence also powers of ¢). One then only needs to explain how to
subtract 1 (hence also powers of ¢) to deduce that all p+q¢ > 0 are repre-
sentable. This is actually what Bergman did. If one wants, as we do, to be
able to obtain the representations for integers having say more than a few
decimal digits, this theoretical approach is simply not feasible as is, one
needs a bit more thinking.
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A theoretical way, called the "~ “greedy'' algorithm, is based upon the fact
that for any x = p+q¢ > 0, the maximal exponent k € Z in its minimal repre-
sentation is characterized by ¢k < x< ¢k+1. So one only needs to get k and
then replace x by x - gbk. Doing this using floating point number calculations
will only be able to handle integers with few enough digits to be exactly
representable, and may lead at some point to a negative x, hence fail, due to
rounding errors. So here again one has to think a bit.

This has been done by the author, and the resulting algorithm is implemented
(expandably) here in 5—TEX.1 0f course this is only elementary mathematics
and it would be extremely surprising if the algorithm was not in the liter-
ature. Inputs of hundreds of digits are successfully handled. The same,
implemented in C or other language with a library for big integers, would of
course go way beyond and be a thousand times faster.

An " integer-only'' algorithm (i.e. an algorithm which can be made to pro-
cess only integers, but is in fact restricted to them; to compare, the ap-
proach described in the previous paragraph is in principle also implementable
using integers only, but it applies to all x =p+q¢ > 0 not only to integers)
to obtain the Bergman minimal ¢-representation of a positive integer N is ex-
plained by Donald Knuth in the solution to Problem 35 of section 1.2.8 from
[8] (there is a typographical error with a missing negative sign in an expo-
nent there, on page 495; this has been reported to the author). It starts
with the position of N with respect to Lucas numbers, the more subtle case
being when N follows an odd indexed Lucas number.

One has to think a bit how to find efficiently the largest Lucas number at
most equal to N, when N has hundreds of digits. This is about the same as
identifying the maximal k such as ¢¥ <N, as ¢¥ + (-1)¥¢™% = L is an integer.
It is also very similar to finding the Zeckendorf maximal index which essen-
tially means to locate /5N with respect to powers of ¢ (as qSk - (—1)k¢'k for
k > 1 belongs to /5N).

For x =N an integer (at least 2) it can be proven that the smallest contri-
bution gb'é to the minimal Bergman representation is with /=k if k is even and
f=k+1isk is odd. Otherwise stated ¢ is the smallest even integer at least

L As the intrepid reader will see if looking at the code, this uses a little bit floating point logarithms witn
mantissas of eight decimal digits. This is because we have arbitrary precision logarithm available
from xintexpr, with the fastest being with eight decimal digits precision, and after all we were not
preparing a reference paper for Mathematics of Computation but simply aiming at computing for
fun as efficiently as we could using tools at our disposal. This shortcut induces a theoretical upper
bound on the size of the starting x: if it is an integer it must have less than say about one million
decimal digits (see subsubsection 8.4.2 for details). As we can do computations (with TEXLive 2025
default memory settings) only up to about 13000 decimal digits (and in reasonable time up to less
than 1000 digits), this is not a problem to us. And if we were to use logarithms with about 16
decimal digits of precision, the theoretical limit would raise to say inputs of less than about 10*
decimal digits. Each of our decimal digit occupies one word of computer memory, and even if we
were using a programming language manipulating binary numbers, we would need more than 37
terabytes of computer memory to store the binary representation of (one less than) 10 to the power
104, so using double precision floats (which are close to having 16 decimal digits of precision) is
largely enough to cover real-life cases. Nevertheless, in the 0.9d code comments we briefly describe
how we could proceed all the way using only integer arithmetic with no theoretical limit on input
size. See subsubsection 8.4.2. Similar remarks apply to Zeckendorf representations.
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equal to k. (So we can always find the location of the radix separator if we
had lost it).

Christiane Frougny and Jacques Sakarovitch ([9]) showed that there exists a
(non explicited) finite two-tape automaton which converts the Zeckendorf ex-
pansion of a positive integer into the Bergman representation (where the part
with negative exponents is " "folded'' across the radix point to sit on top
(or below) the part with positive exponents). Very recently Jeffrey Shal-
lit ([10]) has revisited this topic and constructed explicitly a Frougny-
Sakarovitch automaton.
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2. Use on the command line

Open a command line window and execute:
etex zeckendorf
then follow the displayed instructions.

The (TX Live) #tex executables are not linked with the readline library,
and this makes interactive use quite painful. If you are on a decent system,
launch the interactive session rather via

rlwrap etex zeckendorf
for a smoother experience.

3. The core package features

3.1. Algebra in Q(¢), extensions to the \xinteval syntax

The \xinteval syntax is extended in the following manner:

1. Bracketed pairs [a, b] represent a+b¢, where ¢ is the golden ratio, and
one can operate on them with +, - (also as prefix unary operator), =, /,
and * (or #+*) to do additions, subtractions, multiplications, divisions
and powers with integer exponents.

So a and b can be rational numbers and are not limited to integers for

these computations.

phi stands for [0,1] and its conjugate psi = [1, -1] is defined also.

One can use on input a + b phi, which on output will be printed as [a, 2
b].

DO NOT USE \phi OR \psi... except if redefined to expand to the letters
phi and psi but this not recommended. . .!

\xinteval {phiA50, psiA50, phiA50 * psiA50}
[7778742049, 12586269025], [20365011074, -12586269025], [1, 0]

\xinteval {(1+phi) (10-7phi) (3+phi)/(2+phi) A3}
[87/25, -59/25]

\xinteval {add(phi*n, n = -4,-7,-10, 1, 3, 6, 9}

[100, 0]

\xinteval {phiA20 / phi*10}

[34, 55]

TgX-nical note: When dividing, and except if both operands are scalars, the coeffi-

cients of the result are reduced to their smallest terms; but for scalar-only division,
one needs to use the reduce() function explicitly.

The [0, 0] acts as 0 in operations, but is not automatically replaced by it, if produced
by a subtraction for example. It is not allowed as an exponent for powers.
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2. The functions phisign(), phiabs(), phinorm(), phiconj() do what one
expects.

Attention: \xinteval functions are always used with parentheses, not
with curly braces, contrarily to macros!

\xinteval {phisign(10000 - 6180 phi)}
1;
\xinteval {phisign(10000 - 6181 phi)}
_1;

\xinteval {phiabs (10000 - 6181 phi)}
[-10000, 6181]

\xinteval {phinorm(10000 - 6180 phi)}
7600

\xinteval { (10000 - 6180 phi) * phiconj(10000 - 6180 phi)}
[7600, 0]

3. The function fib() computes the Fibonacci numbers (also for negative
indices), and fibseq(a,b) will compute a consecutive stretch of them
from index a to index b (one may also have b=a, or b<a).

\xinteval{seq(fib(n), n=-5..5, 10, 20, 100)}
5, -3,2,-1,1,0,1,1, 2, 3,5, 55, 6765, 354224848179261915075

\xinteval {seq(fib(24n), n=1..7)}
1, 3, 21, 987, 2178309, 10610209857723, 251728825683549488150424261

TgX-nical note: In the next example, \xintFor expands only once, but \xinteval needs
two expansion steps so we use \expanded wrapper. We could have used \xintFor* but then
we need \xintCSVtoList wrapper. We also could have used some \romannumeral-"0 prefix
but I figured \expanded looked less scary. For details on \xintFor/\xintFor+ check
the xinttools documentation.

\xintFor #1 in {\expanded{\xinteval{=fibseq(100, 110)}}}%
\do{#1\xintifForLast{.\par}{, \newline}}

354224848179261915075,

573147844013817084101,

927372692193078999176,

1500520536206896083277,

2427893228399975082453,

3928413764606871165730,

6356306993006846248183,

10284720757613717413913,

16641027750620563662096,

26925748508234281076009,

43566776258854844738105.

In the previous example, note the syntax *fibseq(100,110). Indeed fibsp

eq(a,b) produces a nutple (see xintexpr documentation), i.e. the output
will display brackets [...] (even if a=b):


http://www.ctan.org/pkg/xint
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\xinteval{fibseq(20, 25)}
[6765, 10946, 17711, 28657, 46368, 75025]

With the * prefix the brackets are removed.

. The zeckindices() function computes the indices needed for the Zeck-
endorf representation. The input must be an integer. If negative, it
is replaced by its opposite. The zero input gives an empty output (i.e.
is printed as []).

\xinteval{zeckindices(123456789)}
[40, 36, 34, 28, 26, 24, 18, 16, 13, 7, 5, 2]

We use the = prefix to not have brackets in the output.

\xinteval{*zeckindices(123456789123456789123456789)}

126, 123, 119, 117, 109, 104, 101, 95, 93, 90, 86, 84, 81, 76, 72, 69,
63, 61, 59, 55, 52, 50, 46, 41, 39, 37, 35, 33, 31, 29, 27, 25, 23, 20,
14, 11, 9, 6, 4, 2

\xinteval {*zeckindices(1e40)}

193, 186, 176, 174, 167, 163, 161, 159, 157, 153, 150, 147, 145, 143,
141, 139, 136, 134, 130, 126, 119, 115, 113, 110, 108, 106, 103, 101,
98, 95, 93, 91, 89, 86, 83, 78, 73, 67, 65, 63, 60, 57, 55, 52, 50, 47,
45, 39, 37, 32, 28, 23, 21, 19, 16, 13, 5

It is easy with this syntax to manipulate the indices in various ways.
Let's print them from smallest to largest:

\xinteval {*reversed(zeckindices(123456789123456789123456789))}

2, 4, 6,9, 11, 14, 20, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 46, 50,
52, 55, 59, 61, 63, 69, 72, 76, 81, 84, 86, 90, 93, 95, 101, 104, 109,
117, 119, 123, 126

The power of \xinteval, always eager to prove A=A, can be demonstrated:

\xinteval{add(fib(n), n = *zeckindices(123456789))}
123456789

\xinteval{add(fib(n), n = *zeckindices(123456789123456789123456))}
123456789123456789123456

. the $ is added as infix operator on positive integers (it will error if
used with non-positive integers), to compute the Knuth Fibonacci mul-
tiplication. It does it using the Arnoux formula (7). The $$ does the
same but using the original Knuth formula (5).

For examples see subsubsection 3.4.1.

. The phiexponents() function computes the exponents in the Bergman ¢-
representation of its input. This input must be either an integer or a
bracketed pair [a,b] or equivalently a + b phi, standing for a+b¢ with
a and b relative integers. It a+b¢ <0 it is replaced by its opposite.
The output is the empty nutple [] if input is zero. Non-integer input
is truncated to integers.

The phiexponents() function produces a bracketed list.
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\xinteval {phiexponents(100)}\newline

\xinteval {phiexponents(100 - 50phi)}\newline

\xinteval {phiexponents(-100 + 50phi)}\newline

\xinteval {phiexponents(100 - 50psi)}

[9, 6, 3,1, -4, -7, -10]

[6, 0, -4, -10]

[6, 0, -4, -10]

[10, 4, 0, -6]

We can use * prefix as already indicated if we prefer not to see the
brackets:

\xinteval {*phiexponents(3141592653)}
45, 42, 31, 29, 27, 25, 21, 18,6, 1, -2, -6, -19, -23, -32, -43, -46

The added \xinteval syntax elements are also sometimes examplified alongside
their respective matching macros. Not all macros defined by the package are
documented, because documentation takes incredible amount of times and in-
duces costly maintenance. See the commented source code.

Important

The added syntax elements are only defined for \xinteval. It is possi-
ble though to access them inside of \xintfloateval using the lower-level
\xintexpr. Here is an example:

\xintfloateval {\xintexpr fib(100) / fib(99)\relax}
1.618033988749895

The variables phi and psi can not be used for operations directly inside
of \xintfloateval. And they should not be redefined as floating point
variables, as this would break their usage in \xinteval. But one can
transfer computations after having defined first an auxiliary \xintfloay
teval function:

\xintdeffloatfunc phi_to_fp(x):= x[0] + (1+sqrt(5))/2 = x[1];

Then one can use it this way:

\xintfloateval {phi_to_fp(\xintexpr (1+phi) (1+2phi) (1-3phi)\relax)}
-42.74264578624801

3.2. Fibonacci numbers

3.2.1. \ZeckTheFN

This macro computes Fibonacci numbers.
\ZeckTheFN{100}
354224848179261915075
\ZeckTheFN{100 + 15}
483162952612010163284885

As shown, the argument can be an integer expression (only in the sense of
\inteval, not in the one of \xinteval, for example you can not have powers
only additions and multiplications). Negative arguments are allowed:
\ZeckTheFN{0}, \ZeckTheFN{-1}, \ZeckTheFN{-2}, \ZeckTheFN{-3},
\ZeckTheFN{-4}

10
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0,1, -1, 2, -3

fibQO

The syntax of \xinteval is extended via addition of a fib() function,
which gives a convenient interface. See its documentation in subsec-
tion 3.1.

3.2.2. \ZeckTheFSeq

This computes not only one but a whole contiguous series of Fibonacci numbers
but its output format is a sequence of braced numbers, and tools such as those
of xinttools are needed to manipulate its output. For this reason it is not
further documented here.

fibseq(

The syntax of \xinteval is extended via addition of a fibseq() func-
tion, which gives a convenient interface:
\xinteval{fibseq(10,20)}
[55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765]
Notice the square brackets used on output. In the terminology of xin-
texpr, the function produces a nutple. Use the * prefix to remove the
brackets:
\xinteval {*fibseq(-10,-20)}
-55, 89, -144, 233, -377, 610, -987, 1597, -2584, 4181, -6765

3.3. Zeckendorf representation
3.3.1. \ZeckIndices

This computes the Zeck representation as a comma separated list of indices.
The input is only f-expanded, if you need it to be an expression you must wrap
it in \xinteval. A negative input will be replaced by its absolute value. A
vanishing input gives an empty output.

The macro is also known as \ZeckZeck.
\ZeckZeck{123456789123456789123456789}
126, 123, 119, 117, 109, 104, 101, 95, 93, 90, 86, 84, 81, 76, 72, 69, 63, 61,
59, 55, 52, 50, 46, 41, 39, 37, 35, 33, 31, 29, 27, 25, 23, 20, 14, 11, 9, 6,
4, 2

zeckindices()

The syntax of \xinteval is extended via addition of a zeckindices()
function, which gives a more convenient interface.

11
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3.3.2. \ZeckWord

This computes the Zeck representation as a binary word. The input is only
f-expanded, if you need it to be an expression you must wrap it in \xinteval.
A zero input gives an empty output and a negative input is replaced by its
absolute value.
\ZeckWord{123456789}
100010100000101010000010100100000101001
\ZeckWord{\xinteval{2440}}
1000100000001000001010000010101010101010001000101010100010
As TgX does not by default split long strings of digits at the line ends, we
gave so far only some small examples. See xint or bnumexpr documentations
for a \printnumber macro able to add linebreaks. Using such an auxiliary (a
bit refined) we can for example obtain this:
\ZeckWord{\xinteval {24100}}
1010000010010010101010100100000000100100100101010001010010000100100101)
0010000000010100001001010101000000101001000100000000010010010001001001012
00
Compare the above with the list of indices in the Zeckendorf representa-
tion: 145, 143, 137, 134, 131, 129, 127, 125, 123, 120, 111, 108, 1605, 102,
100, 98, 94, 92, 89, 84, 81, 78, 76, 73, 64, 62, 57, 54, 52, 50, 48, 41, 39,
36, 32, 22, 19, 16, 12, 9, 6, 4.

3.3.3. \ZeckNFromIndices

This computes an integer from a list of (comma separated) indices. These
indices do not have to be positive, their order is indifferent and they can
be repeated or differ by only one unit. The list is allowed to be empty.
Contiguous commas (or commas separated only by space characters) act as a
single one, a final comma is tolerated. A new f-expansion is done at each
item, they can be (f-expandable) macros.

\ZeckNFromIndices{}\newline

\ZeckNFromIndices{100, ,,, 90, 80, 70, 60, 50, 40, 30 , , ,,,}

0

357128524055170099155

\ZeckIndices{357128524055170099155}

100, 90, 80, 70, 60, 50, 40, 30

\ZeckIndices{\ZeckNFromIndices{100, 90, 80, 70, 60, 50, 40, 30}}

100, 90, 80, 70, 60, 50, 40, 30
\ZeckNFromIndices{3,-1,4,-1,5,-9,2,-6,5,-3}

46

Emulation inside \xinteval

There is no associated \xinteval function but the functionality is a
one-liner in its syntax:
\xinteval{add(fib(i), i= 100, 90, 80, 70, 60, 50, 40, 30)}
357128524055170099155
\xinteval{add(fib(i), i= 3, -1, 4, -1, 5, -9, 2, -6, 5, -3)}
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Emulation inside \xinteval (cont)

46

It is even a one-liner to define by oneself the missing function:
\xintdeffunc Nfromlist(x):= add(£fib(i), i = =*x);
\xinteval {Nfromlist([100, 90, 80, 70, 60, 50, 40, 30])I\\
\xinteval {Nfromlist(zeckindices(1e60))}
357128524055170099155
1000000000000000000000000000000000000000000000000000000000000

3.3.4. \ZeckNfromWord

This computes a positive integer from a binary word. The word can be arbi-
trary apart from not being empty.
\ZeckNfromWord{1}, \ZeckNfromWord{11}, \ZeckNfromWord{111},

\ZeckNfromWord{1111}, \ZeckNfromWord{11111}
1, 3,6, 11, 19
\ZeckNfromWord{\xintReplicate{30}{10}}
4052739537880

\ZeckWord{4052739537880}

101010101010101010101010101010101010101010101010101010101010

3.4. Knuth Fibonacci Multiplication
3.4.1. \ZeckKMul, \ZeckAMul

Both compute the Knuth multiplication of its two positive integer arguments.
The former, using formula (5), the latter using (7). The two arguments are
only f-expanded, you need to wrap each in an \xinteval if it is an expression.
\ZeckKMul{100}{200}, \ZeckAMul{100}{200}

44800, 44800

\ZeckKMul {\ZeckKMul{1003}{2003}3}{300},

\ZeckAMul {\ZeckKMul{100}{200}}{300}
30079200, 30079200
\ZeckKMul{100}{\ZeckkKMul{2003}{300}},
\ZeckAMul{100}{\ZeckKMul{200}{300}}
30079200, 30079200

$, $$

The syntax of \xinteval is extended via addition of a $§ infix operator
computing according to the Arnoux formula (7), and $$ computing according
to the Knuth formula (5).

\xinteval{(100 $ 200) $ 300, 160 $ (200 $ 300), 100 $$ 200 $$ 300}
30079200, 30079200, 30079200

Let us mention here that we could have defined a knuth() function easily
using the powerful \xinteval syntax:
\xintNewFunction{knuth}[2]

13
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{add(fib(x), x = flat(ndmap(+, =*zeckindices(#1); =zeckindices(#2);)))}
\xinteval{knuth(100,200), knuth(knuth(1600,200),300),
knuth(100,knuth(200,300))}
44800, 30079200, 30079200

TX-nical note: We could not have used \xintdeffunc here to define knuth(), so we used the
\xintNewFunction interface. The sole inconvenient is that when using knuth() it is as if we
injected by hand the replacement expression, which will have to be parsed by \xinteval.

About using ndmap() with + as first argument, it is related to xintexpr having defined a
"+ function. So we can also use * here, but not - or /.

The advantage is that we have now the means to check the validity of Knuth's
triple product formula (6):
\xintNewFunction{knuththree}[3]

{add(fib(x), x= flat(ndmap(+, *zeckindices(#1);
xzeckindices(#2);
#zeckindices(#3);)))}
\xinteval{knuththree(100, 200, 300),
100 $ 200 $ 300,
100 $$ 200 $$ 300}
\newline
\xinteval{knuththree(1000, 2000, 3000),
1000 $ 2000 $ 3000,
1000 $$ 2000 $$ 3000}
30079200, 30079200, 30079200
29998632000, 29998632000, 29998632000

3.4.2. \ZeckSetAsKnuthOp, \ZeckSetAsArnouxOp

This takes as input a character, or multiple characters, and turns them (as
a unit) into an infix operator computing the Knuth multiplication, respec-
tively according to the original Knuth definition (5) or to the Arnoux formula
(7). The pre-defined meanings of $ or $$ for this will not be canceled. One
may use \ZeckDeleteOperator{<operator)} to delete the existing meaning of an
\xinteval operator.

IMPORTANT

There is NO WARNING if you override a pre-existing operator from the
\xinteval syntax, and not all such operators are user-documented because
some exist for internal purposes only. But if done inside a group or
environment, the former meaning will be recovered on exit.

There are a few important points to be aware of:
= You can use a letter such as o as operator but it then must be used pre-
fixed by \string which is not convenient:

\ZeckSetAsArnouxOp{o}
\xinteval{100 \string o 200 \string o 300}
30079200

14
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» With a Unicode engine, they are plenty of available characters that are
already of catcode 12. For example:

\ZeckSetAsArnoux{®}
\xinteval{100 ® 200 ® 300}
30079200
You can also use letters from Greek or other scripts, but make sure they
have catcode 12.

= It is not possible to use as operator a control sequence such as \odo)
t. It has to be one or more non-letter characters. It can not be the
period (full stop) which, although not being a predefined operator is
recognized as decimal separator.

= Tn case your document is compiled with pdflatex or latex and uses Babel,
some characters may be catcode active. To make them part of a name of
an operator defined by \ZeckSetAsKnuthOp, each such catcode active
character has to be prefixed with \string in the argument of \ZeckSetAs)
KnuthOp. But \string is then unneeded inside \xinteval (since xintexpr
1.4n).

3.5. Bergman phi-representation
3.5.1. \PhiExponents

It has a unique mandatory argument which can be (or expand too) either an
integer a, or two braced integers {a}{b}.

It outputs the comma separated list of the exponents from the minimal
Bergman representation of the absolute value of a+b¢. If a+b¢p <0, this
list will be prefixed by a period. If a=b =20, the output is empty.

phiexponents()

The syntax of \xinteval is extended via addition of a phiexponents()
function, which gives a more convenient interface.

Contrarily to the macro, it loses the information about the sign of the
input and tacitly replaces it with its absolute value.

See subsection 3.1 for examples.

\[100\rightarrow \PhiExponents{100}\]
100 —+9,6,3,1, -4, -7,-10

\[100\phi\rightarrow \PhiExponents{{03}{1003}3}\]
100¢ — 10,7,4,2,-3,-6, -9

\[1000000\rightarrow \PhiExponents{10000003}\]
1000000 — 28, 26, 20, 16, 13, 8,4,0, -4, -9, -11, -14, -16, -20, -26, -28

$10A{20}\rightarrow{}$ \PhiExponents{\xinteval{10420}}.

15
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10%°® — 95, 93, 86, 84, 67, 65, 62, 60, 45, 41, 38, 31, 28, 23, 21, 16, 12, 6,
4, -4, -6, -12, -17, -19, -24, -29, -32, -39, -43, -46, -60, -63, -68, -84,
-87, -89, -91, -96.

e did not use math mode for the longer output, because TX needs extra in-
structions to wrap the line. But the separator can be customized to this aim:
\renewcommand\PhiExponentsSep

{,\allowbreak\hskipOpt plus lpt\relax}

$10A{50}\rightarrow \PhiExponents{\xinteval{10A50}}$.

10°° — 239, 234, 232, 226, 223, 219, 217, 212, 205, 202, 200, 196, 192, 189,
186, 177, 173, 169, 165, 161, 159, 152, 149, 146, 144, 138, 131, 129, 127, 123,
120, 116, 114, 109, 107, 105, 103, 100, 98, 96, 94, 88, 86, 84, 82,79, 76, 74, 72,
65, 63, 61, 57, 55, 53, 48, 41, 35, 33, 30, 28, 26, 22, 16, 14, 12,9, 6, 4, 2, -2,
-4,-7,-10, -12, -14, -16, -22, -26, -28, -31, -37, -39, -42, -49, -51, -59, -66,
-72, -74, -77, -80, -82, -84, -86, -88, -94, -96, -98, -101, -110, -114, -116,
-121, -125, -132, -138, -144, -147, -150, -153, -155, -157, -163, -167, -171,
-175, -178, -187, -190, -192, -196, -200, -203, -206, -213, -215, -221, -224,
-226, -232, -235, -237, -240.

The attentive reader will have noticed though that our math mode does not
differ much from our nice monospace text mode. Maybe look at some other KEIX
package by the author to find some clues explaining this top-quality type-
setting.

3.5.2. \PhiBasePhi

It has a unique mandatory argument which can be (or expand two) either an
integer a, or two braced integers {a}{b}.

It computes the Bergman ¢-representation of x = a+b¢ if x turns out to be
positive, outputs 0 if both a and b vanish, and outputs a minus sign followed
with the expansion of the opposite of x if x< 0.

The output for positive x is a sequence of 1's and 0's with possibly a period
as radix separator (it can be customized, see next), which either starts with
a leading 1 or with zero followed by the radix separator 0.. It always ends
witha 1. No 1 is repeated.

The arguments are x-expanded, if you need them to be expressions you must
wrap them using \xinteval.

A little stress-test:

\begin{multicols}{2}
\xintFor* #1 in {\xintSeq[-1]{203}{-21}}\do{%
$\phiAr{#1}=\PhiBasePhi{{\ZeckTheFN{#1-1}}%
{\ZeckTheFN{#1}}}_\phi$\par

}

\end{multicols}
¢*® = 100000000000000000000,, ¢'® = 10000000000000000
¢'? = 10000000000000000000, ¢'® = 1000000000000000 4
¢'8 = 1000000000000000000 ¢'* = 100000000000000,;
¢! = 100000000000000000, ¢'3 = 10000000000000,
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¢'? = 1000000000000,
¢! = 100000000000,
¢ = 10000000000,
¢° = 1000000000,

¢® = 100000000,

¢’ = 10000000,

¢® = 1000000,

10 = 0.0000000001,,
11 = 0.00000000001,

¢
¢
¢
¢
¢
¢
¢
¢
¢* = 10000, ¢™13 = 0.0000000000001
¢
¢
¢
¢
¢
¢
¢

¢> = 100000, 12 = 0.000000000001

¢ = 1000, 14 = 0.00000000000001

¢? =100, 15 = 9.000000000000001

Pl =10, 16 = 0.0000000000000001,

% =14 17 = 0.00000000000000001 4
pl=0.1, 18 = 9.000000000000000001
¢t =0.01, 19 = 0.0000000000000000001
¢3=0.001, ~20 = 0.00000000000000000001,

¢_4::0.0001¢ '21::0.000000000000000000001¢

The radix separator is customizable as \PhiBasePhiSep. It defaults to a
period .. If, for example, you use the package numprint, you could do
\makeatletter\renewommand{\PhiBasePhiSep}{\nprt@decimal}\makeatother

for the output to use the radix separator as set via \npdecimalsign command.
It is easier to simply wrap usage of \PhiBasePhi inside of \numprint (or
shortcut \np) command of that package.

TX-nical note: For fancy set-ups, for example for a radix separator using color, it is
recommended to use \RenewDocumentCommand. Indeed, it turns out that \PhiBasePhi will
trigger an expansion context, and the radix separator has to be compatible with it.

% or \protected\def if not using LaTeX
\RenewDocumentCommand\PhiBasePhiSep{}{{\mathcolor{blue}{.}}}
\begin{gather=}

\xintFor #1 in {1, 10, 100, 1000, 10000, 100000, 1000000}\do{%
#1 = \PhiBasePhi{#1}_\phi \xintifForLast{}{\\}}

\end{gather=}

1=1y
160 =10100.01014
160 = 1001001010.00010010014
1000 = 100010010001600.100010010100014
10000 = 10000010016000010000.00010000001000101601
160000 = 101010001016100000160000.16100010160000000160000001
1600000 = 10100000160016010000100010001.000106000101001010001000001601 4
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Tip

As mentioned elsewhere, TEX and BIgX will not per default split long se-
quences of zeros and ones at ends of lines. See xint or bnumexpr documen-
tations for a \printnumber macro able to add linebreaks. Using such an
auxiliary (a bit refined) we can for example obtain this:
$10A{503}-104{50}\phi = {}$\printnumber{%

\PhiBasePhi{{\xinteval{10450}}{\xinteval{-10450}3}}3${}_\phi$.
1059 - 105°¢> =-10000101000001001000101000010000001001010001000100100102
0000000100010001000100010100000010010010100000160000001010100010010002
101000010101010010101010000010101010010010101000000101010001010100002
100000010000010100101010001000001010100100101010.00101001001010101002
00010001010010000010100100000010100000001000000100000101001001010101
01000001010100100000000100010100001000100000010000010000010010010010
1010000010001000100010010000000010010100010001001001000000101000001062
0101000001601010014.
The radix separator is somewhere in the middle.

TX-nical note: Maybe this 104{50} gives opportunity to stress the following: in \xinteval,
braces {...} are removed, so for example 2/{10-1} is same as 2710-1 and not at all 2A(10-1).
It is easy to forget this when doing both TX typesetting and \xinteval calculations at the
same time. By the way, 24-50 is accepted syntax in \xinteval, parentheses as in 22(-50) are
not mandatory.

3.5.3. \PhiXfromExponents

This computes a ¢-integer from an arbitrary list of (comma separated) expo-
nents, not necessarily ordered. The output {a}{b} is not destined for direct
typesetting, one needs for this to wrap usage of the macro inside of \PhiTyp2
esetX.

The list input is allowed to be empty. A period upfront the input signals
to change the sign of the output to its opposite.
TgX-nical note: When using the interactive interface, such a leading period in the list of
exponents will be produced on output from an a+b phi if a+b¢ < 0, but when converting in the
other direction, from a list of exponents to some a+b phi, a leading period will cause the

first exponent to be replaced with zero, if it is non-negative, and will cause a crash if the
first listed exponent is negative.

Contiguous commas (or commas separated only by space characters) act as a
single one, a final comma is tolerated. A new f-expansion is done at each
item, they can be (f-expandable) macros.
$\PhiTypesetX{\PhiXfromExponents{}}$\newline

$\PhiTypesetX{\PhiXfromExponents{100, 49}}$\newline
$\PhiTypesetX{\PhiXfromExponents{15, 13, 10, 5, 3, 1, -6, -11, -16}}$\\
$\PhiTypesetX{\PhiXfromExponents{.16, 14, 11, 6, 4, 2, -5, -10, -15}}$
0

218922995839362696002 + 354224848187040657124¢

2025

-2025¢)
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For these next two examples:
$\PhiTypesetX{\PhiXfromExponents{\PhiExponents{10003}}}$\newline
$\PhiTypesetX{\PhiXfromExponents{\PhiExponents{{1000}{-1000}}}1}$
We have to be careful that we previously customized \PhiExponentsSep like
this:

\renewcommand\PhiExponentsSep

{,\allowbreak\hskipOpt plus 1lpt\relax}
But this will break \PhiXfromExponents because it really needs its argument,
after expansion, to be a genuine comma separated list (possibly with extra
spaces, they do not matter). So we now reset \PhiExponentsSep to its default,
and we can execute successfully the next instructions confirming this package
is excellent at doing nothing:
\renewcommand\PhiExponentsSep{, }%
$\PhiTypesetX{\PhiXfromExponents{\PhiExponents{1000}}}$\newline
$\PhiTypesetX{\PhiXfromExponents{\PhiExponents{{1000}{-1000}}}1}$
1000
1000 - 1000¢

Emulation inside \xinteval

There is no associated \xinteval function but the functionality is a
one-(or-two)-liner in its syntax:
\xinteval{[add(fib(i-1), i=100, 50, -40, -80),

add(£fib(i), i=100, 50, -40, -80)]1}

[218960884904872635122, 354201431463397382260]

Compare with:
$\PhiTypesetX{\PhiXfromExponents{100, 50, -40, -80}}$
218960884904872635122 + 354201431463397382260¢

It is even a one-or-two-liner to define a function all by oneself!
\xintdeffunc ABfromlist(x):=

[add(£fib(i-1),i=*x), add(fib(i),i=*x)];
\xinteval {ABfromlist (phiexponents(10430))}
[1000000000000000000000000000000, 0]

3.5.4. \PhiXfromBasePhi

This computes an element from Z[¢] from a Bergman ¢-representation. The in-
put is allowed to be empty. If it contains a radix separator, it must be a
period, and that period must be preceded by at least one @ or 1. It is allowed
for 1's to be consecutive. A leading minus sign is allowed.

The output {a}{b} is not destined for direct typesetting one needs to wrap
it inside of \PhiTypesetX.

\edef\x{\PhiXfromBasePhi{}, \PhiXfromBasePhi{0}, \PhiXfromBasePhi{-0}}
\meaning\x\newline

$\PhiTypesetX{\PhiXfromBasePhi{10.01}}$\newline
$\PhiTypesetX{\PhiXfromBasePhi{101000100010.001000100001}}$\newline
$\PhiTypesetX{\PhiXfromBasePhi{-101000100010.0010001000011}}$
macro:->{0}{0}, {03}{0}, {0}{0}

2
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288
89 - 233¢

3.6. Typesetting
3.6.1. \ZeckPrintIndexedSum

This is a typesetting utility which produces (expandably), by default, F_a 2

+F {a'} +... froma, a', ....
$\ZeckPrintIndexedSum{\ZeckIndices{10000000000000000000}}$.
Fogp +Fgg+Fg7+Fga +Fep + F57 + F5g + Fg1 + Fgg + Fy5 + F43 + Fg1 + F3g + F35 + F3p + F3p +
Fp7+Fpp +Fpp+F16+F1a+Fg+F7.

The + is injected by \ZeckPrintIndexedSumSep whose default definition is:
\def\ZeckPrintIndexedSumSep{+\allowbreak}
Each index from the input list is given as argument to \ZeckPrintOne whose
default definition requires math mode:
\def\ZeckPrintOne#1{F_{#1}}
If one wants explicit Fibonacci numbers, one can do this:
$\def\ZeckPrintOne{\ZeckTheFN}

\ZeckPrintIndexedSum{\ZeckIndices{10000000000000000000}}$.
7540113804746346429+1779979416004714189+679891637638612258+10610209857723+
4052739537881+365435296162+86267571272+20365011074+4807526976+1134903170+
433494437 + 165580141 + 39088169 + 9227465 + 2178309 + 832040 + 196418 + 17711 +
6765+ 987 + 377 + 34 + 13.

However, as one can see above and was already mentioned, TgX and BEIgX do not
know out-of-the-box to split strings of digits at line endings. Hence the
first two lines are squeezed, but still overflow, which is not pleasing.

With the help of a xinttools utility we can redefine \ZeckPrintOne to inject
breakpoints in-between consecutive digits:

\renewcommand\ZeckPrintOne[1]

{\xintListWithSep{\allowbreak}{\ZeckTheFN{#1}}}
$\ZeckPrintIndexedSum{\ZeckIndices{10000000000000000000}}$.
7540113804746346429+ 1779979416004714189 + 679891637638612258 + 10610209857
723 +4052739537881 + 365435296162 + 86267571272 + 20365011074 + 4807526976 + 1
134903170 + 433494437 + 165580141 + 39088169 + 9227465 + 2178309 + 832040 + 19641
8+17711 +6765+987 +377 + 34+ 13.

Expert BIFX users will know how to achieve a result such as this one, which

pleasantly decorate the linebreaks:
7540113804746346429 + 1779979416004714189 + 679891637638612258 + 1061020985
7723 + 4052739537881 + 365435296162 + 86267571272 + 20365011074 + 4807526976 + 2
1134903170 + 433494437 + 165580141 + 39088169 + 9227465 + 2178309 + 832040 + 1964
18+ 17711 +6765+987 +377 +34+13.

3.6.2. \PhiPrintIndexedSum

It is actually a clone of \ZeckPrintIndexedSum which only differs from it via
separate configuration macros:
\def\PhiPrintIndexedSumSep{+\allowbreak}% same as \ZeckPrintIndexedSumSep

\def\PhiPrintOne#1{\phiA{#1}}% powers of phi rather than Fibonacci
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% numbers.

As for \ZeckPrintIndexedSum the default configuration is thus math mode only.
\[2025 = \PhiPrintIndexedSum{\PhiExponents{2025}3}\]

2025 = 1B 4+ 910 1 pS 1 B3+ pl 1 p O 16

It is important in the above example that \PhiExponentsSep has its default
definition because \PhiPrintIndexedSum needs to see real commas.

TODO?

Maybe let it recognize an upfront period (as produced by \PhiExponents
if x=a+b¢p <0) in the input, and then use minus signs in the output?

3.6.3. \PhiTypesetX

This is supposed to receive as (single) argument two braced relative integers
{a}{b}.

The default output is math-mode only, as it is of the type a+b¢, with sim-
plifications for zero or negative coefficients. This is decided by the two-
arguments macro \PhiTypesetXPrint which can be redefined.

For examples, see the documentation of \PhiXfromExponents and \PhiXfromBap
sePhi.

4. Use as a IATEX package

As expected, add to the preamble:
\usepackage{zeckendorf}
There are no options.

5. Use with Plain e-TEX

You will need to input the core code using:
\input zeckendorfcore.tex

IMPORTANT

After this \input, the catcode regimen is a specific one (for example
_, :, and * all have catcode letter). So, you will probably want to emit
\ZECKrestorecatcodes immediately after this import, it will reset all
modified catcodes to their values as prior to the import.

Then you can use the exact same interface as described in the previous sec-
tion.
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6. Changes

0.9d (2025/11/16) Breaking changes:

» The radix separator used by default by \PhiBasePhi on output and
expected by \PhiXfromBasePhi on input is now a period, not a comma
(the comma was used by accident by the author due to patriotism).

» \ZeckIndices and \ZeckWord both replace a negative argument by its
absolute value, rather than returning an empty output as so far.

New feature: Macros to support Zeckendorf and Bergman representations
using hexadecimal digits. For lack of time, the PDF doc is not updated,
please use the interactive interface or check the source code for the
macro names. Thanks to Laurent Barme for the feature request.

Bug fix: After the 0.9c transition from \xintiieval to \xinteval, the $
and $$ infix operators were broken with operands such as (2+3) in place
of lone integers.

Improvements:
= The fibseq(a,b) function can now be used also with a<b and a=b.
» Under-the-hood polishing for efficiency, improved code comments
and documentation of the main algorithms.
0.9c (2025/10/17) This adds many new features and has some breaking changes
due to renamings, not listed here.
» Tt isnot \xintiieval but \xinteval's syntax which is now extended.

» Variables phi and psi are defined and one can do algebra with +, -,
*, / and A on them in Q(¢).

= The Bergman ¢-representation is added for elements of Z[¢] in par-
ticular for integers.

= The § character doing the Knuth Fibonacci multiplication on posi-
tive integers now uses the (more efficient) Arnoux formula. The $$
computes out of deference according to the original Knuth defini-
tion.

= The PDF documentation section on the mathematical background has
been extended and includes bibliographical references.

= The interactive interface integrates all novelties.
0.9b (2025/10/07)
Bug fixes:

» The instructions for interactive use mentioned 1e100 as possible
input, but the author had forgotten that this syntax is not legit-
imate in \xintiieval (for example 1+1el0 crashes immediately).
This remark is obsolete as of 0.9c because the interactive mode now
uses \xinteval, not \xintiieval.
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» The code tries at some locations to be compatible with xintexpr ver-
sions earlier than 1.4n. But these versions did not load xintbin-
hex automatically and the needed \RequirePackage or \input for
Plain TX was lacking from the zeckendorf code.

Other changes: 1In the interactive interface, the input may now start
with an \xintiieval function such as binomial whose first letter co-
incides with one of the letter commands without it being needed to for
example add some \empty control sequence first. On the other hand, it
was possible to use the full command names, now only their first letters
(lower or uppercase) are recognized as such.

0.9alpha (2025/10/06) Initial release.

7. License

Copyright (c) 2025 Jean-Francois Burnol

| This Work may be distributed and/or modified under the
| conditions of the LaTeX Project Public License 1.3c.

| This version of this license is in

> <http://www.latex-project.org/lppl/lppl-1-3c.txt>

| and version 1.3 or later is part of all distributions of
| LaTeX version 2005/12/01 or later.

This Work has the LPPL maintenance status "author-maintained".

The Author and Maintainer of this Work is Jean-Francois Burnol.

This Work consists of the main source file and its derived files
zeckendorf.dtx,

zeckendorfcore.tex, zeckendorf.tex, zeckendorf.sty,
README.md, zeckendorf-doc.tex, zeckendorf-doc.pdf
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Part II.
Commented source code

Corecode . . . . . . . . . . . . . . . . ... ... ....8,p 2
Interactivecode . . . . . . . . ... ... . ... ... ... ... ....90p.b5
BKTEXcode . . . . . . . . . . . . . .. .. ... ... ...........10,p.061

8. Core code

Loading xintexpr and setting catcodes . . . . . . . . . ... .. ... .....81p24

Fibonacci numbers . . . . . . . . . . .. . ... ... . ... ........82p2
\ZeckTheFN, \ZeckTheFSeq.

Zeckendorf representation . . . ... ... 83 p. 28
\ZeckNearIndex, \ZeckMaxK, \ZeckIndlces \ZeckBL1st \ZeckWord \ZeckHexWord \ZeckNFromIndlces
\ZeckNfromWord, \ZeckNfromHexWord.

Bergman representation . . . ... ... 84,p.33
\PhiIISign_ab, \PhiMaxE, \PhiBList, \PhlExponents \PhlBasePhl \Ph1BaseHexPh1 \PhiXfromExponents,
\PhiXfromBasePhi, \PhiXfromBaseHexPhi.

The Knuth Fibonacci multiplication . . . e . . . . . ... 85 p 41
\ZeckKMul: Knuth definition, \ZeckAMul: Arnoux formula \ZeckB B operator

Typesetting . . . . C e e e e ... ... ..... 86,p 42
\ZeckPrintIndexedSum, \PhlPrlntIndexedSum \PthypesetX

Extensions of the \xinteval syntax . . . ... ... 87,p.43
Provisory ad hoc support for adding xintexpr operators The $ and $$ as |nf|x operator for the Knuth multiplication,
Support macros for Q(¢) algebra, Overloading +, -, *, /, A, and %, Variables and functions for \xinteval.

Extracts to zeckendorfcore.tex.

A general remark is that expandable macros (usually) f-expand their arguments, and
most are f-expandable. Usually, the CamelCase macro (with neither @ nor _ in their
names) expands to either \romannumeral® or \expanded followed with a lowercase macro.
Macros destined to be used in typesetting context usually omit any such construct and
may require x-expansion. They remain fully expandable as long as some user level cus-
tomization (for example for the radix separator) has not injected things not compatible
with an \edef.

For variety we use here sometimes @ in macro names, whereas xint uses only _ (and
sometimes some other a priori non-letter characters).

8.1. Loading xintexpr and setting catcodes

1 \input xintexpr.sty

2 \input xintbinhex.sty

3 \wlog{Package: zeckendorfcore 2025/11/16 v0.9d (JFB)1}%

4 \edef\ZECKrestorecatcodes{\XINTrestorecatcodes}%

5 \def\ZECKrestorecatcodesendinput {\ZECKrestorecatcodes\endinput}%
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6 \XINTsetcatcodes%

Small helpers related to \expanded-based methods. But the package only has a few macros
and these helpers are used only once or twice, most macros using own custom terminators
adapted to their own optimizations.

7 \def\zeck_done#1\xint: {\iffalse{\fi}}¥%
8 \let\zeck_abort\zeck_done

8.2. Fibonacci numbers
8.2.1. \ZeckTheFN

The multiplicative algorithm is as in the bnumexpr manual (at 1.7b), or since about ten

years in the xint manual (at 1.40 or earlier) but termination is different and simply

leaves {F_n}{F_{n-1}} in input stream. We do not use \csname...\endcsname branching

here, for variety. Also, we replaced usage of chained expressions handled via \xintip

iexpro with direct usage of the xintcore macros, for optimized efficiency, and taking

into account that \expanded now helps doing this without intermediate step.
\Zeck@FPair and \Zeck@@FPair are not public interface. The former is allows a nega-

tive or zero argument, the latter is positive only.

9 \def\Zeck@FPair#1{\expandafter\zeck@fpair\the\numexpr #1.}%

10 \def\zeck@fpair #1{%

11 \xint_UDzerominusfork

12 #1-\zeck@fpair_n
13 0#1\zeck@fpair_n
14 0-\zeck@fpair_p
15 \krof #1%

16 }%

17 \def\zeck@fpair_p #1.{\Zeck@@FPair{#1}}%

18 \def\zeck@fpair_n #1.{%

19 \ifodd#1 \expandafter\zeck@fpair_ei\else\expandafter\zeck@fpair_eii\fi
20 \romannumeral *&&@\Zeck@@FPair{1-#1}%

21 }%

22 \def\zeck@fpair_ei{\expandafter\zeck@fpair_f£fil}%

23 \def\zeck@fpair_eii{\expandafter\zeck@fpair_£fiil}%

24 \def\zeck@fpair_fi#1#2{\expanded{{#2}{\XINT_Opp#1}}1}%

25 \def\zeck@fpair_fii#1#2{\expanded{{\XINT_Opp#2}{#1}}}%

26 \def\Zeck@@FPair#1{%

27 \expandafter\zeck@@fpair@start
28 \romannumeral@\xintdectobin{\the\numexpr#1\relax} ;%
29 }%

Inlining here at start the \zeck@@fpair@again because we don't want the \expandafter's
here, due to current \XINTfstop definition.

30 \def\zeck@@fpair@start 1#1{%
31 \xint_gob_til_sc#1\zeck@@fpair@done;%

32 \xint_UDzerofork

33 #1\zeck@@fpair@zero
34 0\zeck@@fpair@one
35 \krof

36 {1}{0}%

37 }%
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Prior to 0.9d we were using coding like this, as it has been easier to use expressions
(the xint documentation had such code for more than ten years, precisely to illustrate
chaining of expressions, and at a time when \expanded was not available, and of course
we simply took it over initially).

\romannumeral®\xintiiexpro (#1+2*#2)*#1\expandafter\relax\expandafter;%
\romannumeral®\xintiiexpro #1*#1+#2*#2\relax;%

or

\romannumeral®\xintiiexpro 2* (#1+#2)*#1+#2*#2\expandafter\relax\expandafter;%
\romannumeral®\xintiiexpro (#1+2*#2)*#1\relax;%

At 0.9d we go directly to the xintcore core macros for optimal efficiency. This re-
quired a few adjustments elsewhere and the removal from code comments of some technical
discusions about \xintthe. The also dropped semi-colons as we are already using braces.
38 \def\zeck@@fpair@zero #1#2#3{%

39 \zeck@@fpair@again#3%
40 \expanded{%

41 {\xintiiMul {#1}{\xintiiAdd{#1}{\xintDouble{#2}}}1}%
42 {\xintiiAdd{\xintiiSqr{#1}}{\xintiiSqr{#23}3}1}%

43 3%

44 }%

45 \def\zeck@@fpair@one #1#2#3{%
46 \zeck@@fpair@again#3%
47 \expanded{%

48 {\xintiiAdd{\xintDouble{\xintiiMul{\xintiiAdd{#1}{#2}3}{#1}}}%
49 {\xintiiSqr{#2}}3}%

50 A\xintiiMul {#1}{\xintiiAdd{#1}{\xintDouble{#2}}}}%

51 1%

52 }%

53 \def\zeck@@fpair@again#1{%
54 \xint_gob_til_sc#1\zeck@@fpair@done;%

55 \xint_UDzerofork

56 #1{\expandafter\zeck@@fpair@zero}%
57 0{\expandafter\zeck@@fpair@onel}¥%
58 \krof

59 }%

60 \def\zeck@@fpair@done#1\krof{}%

For individual Fibonacci numbers, we have non public \Zeck@@FN which only works on
positive input and has a braced output. We also have non-public \Zeck@FN and \Zeck@p
FNminusOne which accept negative input, and whose output is also braced. And we have
public \ZeckTheFN which accepts negative input and whose output is not braced.

The reason for strange name \ZeckTheFN is that originally \Zeck@FPair produced its
output using a special xintexpr format, which needs to be prefixed with \xintthe to get
resolved into only digits. We have now modified the structure by-pass this but the name
sticks.

61 \def\zeck@bracedfirstoftwo #1#2{{#1}1}%
62 \def\zeck@bracedsecondoftwo #1#2{{#2}1}%

63 \def\Zeck@FN{%
64 \expandafter\zeck@bracedfirstoftwo\romannumeral *&&@\Zeck@FPair
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65 }%

66 \def\Zeck@FNminusOne{%

67 \expandafter\zeck@bracedsecondoftwo\romannumeral * &&@\Zeck@FPair

68 }%

69 \def\ZeckTheFN{\expandafter\xint_firstoftwo\romannumeral " &&@\Zeck@FPair}%

70 \def\Zeck@@FN{\expandafter\zeck@bracedfirstoftwo\romannumeral *&&@\Zeck@@FPair}%

8.2.2. \ZeckTheFSeq

The computation of stretches of Fibonacci numbers is not needed for the package, but
is provided for user convenience. This is lifted from the development version of the
\xintname user manual, which refactored a bit the code which has been there for over ten
years.
The two arguments may be negative, and since 0.9d they do not have to be ordered.
71 \def\ZeckTheFSeq#1#2{%
72 \expanded\bgroup\expandafter\zeckthefseq_a
73 \the\numexpr #1l\expandafter.\the\numexpr #2.%
74 }%
75 \def\zeckthefseq_a#1l.#2.{\expandafter\zeckthefseq b\the\numexpr#2-#1.#1.}%
76 \def\zeckthefseq b #1{%

77 \xint_UDzerominusfork
78 0#1\zeckthefseq_n

79 #1-\zeckthefseq_one
80 0-\zeckthefseq p

81 \krof #1%

82 }%

83 \def\zeckthefseq_one0.#1.{{\ZeckTheFN{#1}}\iffalse{\fi}}¥%

The #1+1 is because \Zeck@FPair{N} expands to {F_{N}}{F_{N-1}}, so here we will have
F_{A+1};F_{A}; as starting point. We want up to F_B. If B=A+1 there will be nothing
more to do.

84 \def\zeckthefseq p #1.#2.{%

85 \expandafter\zeckthefseq_loop

86 \the\numexpr #1-1\expandafter.%

87 \romannumeral *&&@\expandafter\zeck@sep@with@sc
88 \romannumeral *&&@\Zeck@FPair{#2+1}\xintiiadd
89 }%

90 \def\zeck@sep@with@sc #1#2{#1;#2;}%

We will have F_{A-1};F_{A}; as starting point. We want down to F_B. If B=A-1 there
will be nothing more to do.

o1 \def\zeckthefseq_n -#1.#2.{%

92 \expandafter\zeckthefseq_loop

93 \the\numexpr #1l-1\expandafter.%

94 \romannumeral * &&@\expandafter\zeck@exch@with@sc
95 \romannumeral ~&&@\Zeck@FPair{#2}\xintiisub
96 }%

97 \def\zeck@exch@with@sc #1#2{#2;#1;}%

Now leave in stream one (braced) number, and test if we have reached B and until then
apply standard Fibonacci recursion. This is all done using a single looping macro,
only termination branches to another one.
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We add a bit sub-optimality in having one single macro handling both increasing and
decreasing indices.
08 \def\zeckthefseq_loop #1.#2;#3;#4{%
99 {#3}\ifnum #1=\z@ \expandafter\zeckthefseq_end\fi
100 \expandafter\zeckthefseq_loop\the\numexpr #1-1\expandafter.%
101 \romannumeral 0#4{#3} {#2};#2;#4%
102 }%
103 \def\zeckthefseq_end#1;#2;#3{{#2}\iffalse{\fi}}%

8.3. Zeckendorf representation
8.3.1. \ZeckNearIndex, \ZeckMaxK

If the ratio of logarithms log(1/5x)/ log ¢ was the exact mathematical value it would be
certain (via rough estimates valid at least for say x > 10, and even smaller, but anyhow
we can check manually it does work) that its integer rounding gives an integer K such
that either K or K-1 is the largest index J with F; < x. But the computation is done
with only about 8 decimal digits of precision. So this assumption fails certainly for
x having more than one hundred million decimal digits, and quite probably with an input
having ten million digits, as we do not want to exceed (;5107/\@ ~ 1.13 x 10%:089,876
But with one million decimal digits we are safe (see subsubsection 8.4.2 for related
comments) .

As anyhow xint can handle multiplications only with operands of about up to 13000 dig-
its (with TgXLive 2025 default memory settings), and computation times limit reasonable
inputs to less than 1000 digits, there is no worry for us.

xintfrac's \xintiRound{0} is guaranteed to round correctly the input it has been
given. This input is some approximation to an exact theoretical value involving ratio
of logarithms (and square root of 5). Prior to rounding the computed numerical approx-
imation, we are close to the exact theoretical value, where " “close'' means we expect to
have about 8 leading digits in common (and we have already limited our scope so that we
are talking about a value quite less than 100000 at any rate). If the computed rounding
differs from the exact rounding of the exact value it must be that argument x is about
mid-way (in log scale) between two consecutive Fibonacci numbers. The conclusion is
that the integer we obtain after rounding can not be anything else than either J or J+1.

The argument is more subtle than it looks. The conclusion is important to us as it
means we do not have to add extraneous checks involving computation of one or more ad-
ditional Fibonacci numbers.

The formula with macros was obtained via an \xintdeffloatfunc and \xintverbosetrue
after having set \xintDigits+* to 8, and then we optimized a bit manually. The advantage
here is that we don't have to set ourself \xintDigits and later restore it.

We can not use (except if only caring about interactive sessions where we control
entirely the whole environment) \XINTinFloatDiv or \XINTinFloatMul if we don't set
\xintDigits (which is user customizable) because they hardcode usage of \XINTdigits.
This is e.g. why we use \PoorManLogBaseTen_raw and not \PoorManLogBaseTen.

104 \def\ZeckNearIndex#1{\xintiRound{0}{%

105 \xintFloatDiv[8] {\PoorManLogBaseTen_raw{\xintFloatMul[8]{2236068[-6]}{#1}}}%
106 {20898764[-8]}%

107 1%
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108 }%

Now we compute the actual maximal index. This macro is now only for user interface, as
we dropped at 0.9c adding a maxk() function to the \xinteval interface.
With 0.9d replace negative input by its absolute value.

109 \def\ZeckMaxK{\expanded\zeckmaxk}%

110 \def\zeckmaxk#1{\expandafter\zeckmaxk_fork\romannumeral  &&@#1\xint:}%
111 \def\zeckmaxk_fork#1{%

112 \xint_UDzerominusfork

113 #1-{\bgroup\zeck_abort}%

114 0#1\zeckmaxk_a

115 0-{\zeckmaxk_a#1}%

116  \krof

117 }%

118 \def\zeckmaxk_a #l\xint:{%

119 \expandafter\zeckmaxk_b

120 \the\numexpr\ZeckNearIndex{#1}\xint:#1\xint:
121 }%

122 \def\zeckmaxk_b #1\xint:{%

123 \expandafter\zeckmaxk_c

124 \romannumeral*&&@\Zeck@@FPair{#1}#1\xint:

125 }%

126 \def\zeckmaxk_c #1#2#3\xint:#4\xint:{%

127 \xintiiifGt{#1}{#43}%

128 {{\expandafter}\the\numexpr#3-1\relax}%
129 {{}#3}%
130 }%

8.3.2. \ZeckIndices

This starts by computing the maximal index. It then subtracts the Fibonacci number from
the input and loops.
At 0.9d let it (rather than returning empty output) accept a negative argument
(silently replaced by its absolute value).
131 \def\ZeckIndices{\expanded\zeckindices}%
132 \let\ZeckZeck\ZeckIndices
133 \def\zeckindices#1{\bgroup\expandafter\zeckindices_fork\romannumeral " &&@#1\xint:}%
134 \def\zeckindices_fork#1{%
135 \xint_UDzerominusfork

136 #1-\zeck_abort

137 0#1\zeckindices_a

138 0-{\zeckindices_a#1}%

139 \krof

140 }%

141 \def\zeckindices_a #1\xint:{%

142 \expandafter\zeckindices_b

143 \the\numexpr\ZeckNearIndex{#1}\xint:#1\xint:
144 }%

145 \def\zeckindices_b #1\xint:{%

146 \expandafter\zeckindices_c

147 \romannumeral*&&@\Zeck@@FPair{#1}#1\xint:
148 }%
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149 \def\zeckindices_c #1#2#3\xint:#4\xint:{%

150 \xintiiifGt{#1}{#4}\zeckindices_A\zeckindices_B
151 #1;#2;#3\xint: #4\xint:

152 }%

153 \def\zeckindices_A#1;#2;#3\xint: {%

154 \the\numexpr#3-1\relax\zeckindices_loop{#2}%

155 }%

156 \def\zeckindices_B#1;#2;#3\xint: {%

157 #3\zeckindices_loop{#1}%

158 }%

159 \def\zeckindices_loop #1#2\xint:{%

160 \expandafter\zeckindices_loop_i

161 \romannumeralO\xintiisub{#2}{#1}\xint:

162 }%

163 \def\zeckindices_loop_i#1{%

164 \xint_UDzerofork#1\zeck_done 0{, \zeckindices_a#1}\krof
165 }%

8.3.3. \ZeckBList

This is the variant which produces the results as a sequence of braced indices.
Originally in xint, xinttools, the term ~"list'' is used for braced items. In the user
manual of this package I have been using " "list'' more colloquially for comma separated
values. Here I stick with xint conventions but use BList (short for " “list of Braced
items'') and not only " "List'' in the name.
At 0.9d let it (rather than returning empty output) accept a negative argument
(silently replaced by its absolute value).

166 \def\ZeckBList{\expanded\zeckblist}%

167 \def\zeckblist#1{\bgroup\expandafter\zeckblist_fork\romannumeral &&@#1\xint:}%
168 \def\zeckblist_fork#1{%

169 \xint_UDzerominusfork

170 #1-\zeck_abort

171 0#1\zeckblist_a

172 0-{\zeckblist_a#1}%

173 \krof

174 }%

175 \def\zeckblist_a #1\xint:{%

176 \expandafter\zeckblist_b

177 \the\numexpr\ZeckNearIndex{#1}\xint:#1\xint:
178 }%

179 \def\zeckblist_b #1\xint:{%

180 \expandafter\zeckblist_c

181 \romannumeral *&&@\Zeck@@FPair{#1}#1\xint:

182 }%

183 \def\zeckblist_c #1#2#3\xint:#4\xint:{%

184 \xintiiifGt{#1}{#4}\zeckblist_A\zeckblist_B
185 #1;#2;#3\xint: #4\xint:

186 }%

187 \def\zeckblist_A#1;#2;#3\xint: {%

188 {\the\numexpr#3-1\relax}\zeckblist_loop{#2}%
189 }%
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190 \def\zeckblist_B#1;#2;#3\xint: {%

191 {#3}\zeckblist_loop{#1}%

192 }%

193 \def\zeckblist_loop#1#2\xint: {%

194 \expandafter\zeckblist_loop_i

195 \romannumeral O\xintiisub{#2}{#1}\xint:

196 }%

197 \def\zeckblist_loop_i#1{\xint_UDzerofork#1\zeck_done 0{\zeckblist_a#1}\krof}%

8.3.4. \ZeckWord

This is slightly more complicated than \ZeckIndices and \ZeckBList because we have to
keep track of the previous index to know how many zeros to inject.

198 \def\ZeckWord{\expanded\zeckword}%

199 \def\zeckword#1{\bgroup\expandafter\zeckword_fork\romannumeral *&&@#1\xint:}%

200 \def\zeckword_fork#1{%

201 \xint_UDzerominusfork

202 #1-\zeck_abort

203 0#1\zeckword_a

204 0-{\zeckword_a#1}%
205 \krof

206 }%

207 \def\zeckword_a #1\xint:{%

208 \expandafter\zeckword_b\the\numexpr\ZeckNearIndex{#1}\xint:
209 #1\xint:

210 }%

211 \def\zeckword_b #1\xint:{%

212 \expandafter\zeckword_c\romannumeral  &&@\Zeck@@FPair{#1}#1\xint:
213 }%

214 \def\zeckword_c #1#2#3\xint:#4\xint:{%

215 \xintiiifGt{#1}{#4}\zeckword_A\zeckword_B

216 #1;#2;#3\xint : #4\xint:

217 }%

218 \def\zeckword_A#1;#2;#3\xint:#4\xint: {%

219 \expandafter\zeckword_d

220 \romannumeralO\xintiisub{#4}{#2}\xint:

221 \the\numexpr#3-1.%

222 }%

223 \def\zeckword_B#1;#2;#3\xint:#4\xint: {%

224 \expandafter\zeckword_d

225 \romannumeralO\xintiisub{#4}{#1}\xint:

226 #3.%

227 }%

228 \def\zeckword_d #1%

229 {\xint_UDzerofork#1\zeckword_done0{1\zeckword_e}\krof #13}%
230 \def\zeckword_done#1\xint:#2.{1\xintReplicate{#2-2}{0}\iffalse{\fi}}%
231 \def\zeckword_e #1\xint:{%

232 \expandafter\zeckword_f\the\numexpr\ZeckNearIndex{#1}\xint:
233 #1\xint:
234 }%

235 \def\zeckword_£f #1l\xint:{%
236 \expandafter\zeckword_g\romannumeral *&&@\Zeck@@FPair{#1}#1\xint:
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237 }%

238 \def\zeckword_g #l#2#3\xint:#4\xint:{%

239 \xintiiifGt{#1}{#4}\zeckword_gA\zeckword_gB
240 #1;#2;#3\xint: #4\xint:

241 }%

242 \def\zeckword_gA#1;#2;#3\xint:#4\xint: {%
243 \expandafter\zeckword_h

244 \the\numexpr#3-1\expandafter.%

245 \romannumeralO\xintiisub{#4}{#23}%

246 \xint:

247 }%

248 \def\zeckword_gB#1;#2;#3\xint:#4\xint: {%
249 \expandafter\zeckword_h

250 \the\numexpr#3\expandafter.%

251 \romannumeralO\xintiisub{#4}{#13}%
252 \xint:

253 }%

254 \def\zeckword_h #1.#2\xint:#3.{%
255 \xintReplicate{#3-#1-1}{0}%
256 \zeckword_d #2\xint:#1.%

257 }%

8.3.5. \ZeckHexWord

258 \def\ZeckHexWord{\romannumeral 0\ zeckhexword}%

259 \def\zeckhexword#1{%

260 \xintbintohex{%

261 \expanded\bgroup\expandafter\zeckword_fork\romannumeral *&&@#1\xint:
262 1%

263 }%

8.3.6. \ZeckNFromIndices

Spaces before commas are not a problem they disappear in \numexpr.

Extraneous commas are skipped, in particular a final comma is allowed.

Each item is f-expanded to check not empty, but perhaps we could skip expanding, as
they end up in \numexpr. Advantage of expansion of each item is that at any location is
that can generate multiple indices from some macro expansion inserting commas dynami-
cally.

264 \def\ZeckNFromIndices{\romannumeral0\zecknfromindices}%
265 \def\zecknfromindices{\zeck@applyandiisum\Zeck@FN}%

266 \def\zeck@applyandiisum {%

267 \expandafter\xintiisum\expanded\zeck@applytocsv

268 }%

Macro #1 is assumed to output something within braces.

269 \def\zeck@applytocsv #1#2{%

270 {{\expandafter\zeck@applytocsv_a\expandafter#1%
271 \romannumeral ~&&@#2, ; }}%

272 }%

273 \def\zeck@applytocsv_a #1#2{%

274 \if;#2\expandafter\zeck@applytocsv_done\fi
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275 \if,#2\expandafter\zeck@applytocsv_skip\fi

276 \zeck@applytocsv_b #1#2%

277 }%

278 \def\zeck@applytocsv_b #1#2,{%

279 #1{#2}%

280 \expandafter\zeck@applytocsv_a\expandafter#1l\romannumeral * &&@%
281 }%

282 \def\zeck@applytocsv_done#1\zeck@applytocsv_b#2; {}%

283 \def\zeck@applytocsv_skip #1#2,{%

284 \expandafter\zeck@applytocsv_a\expandafter#2\romannumeral *&&@%
285 }%

8.3.7. \ZeckNfromWord

The \xintreversedigits will f-expand its argument.
286 \def\ZeckNfromWord{\romannumeral0\zecknfromword}%
287 \def\zecknfromword#1{%
288 \expandafter\zecknfromword_a\romannumeral®\xintreversedigits{#1};%
289 }%
290 \def\zecknfromword_a{%
291 \expandafter\xintiisum\expanded{{\iffalse}}\fi\zecknfromword_b 2.%
292 }%
293 \def\zecknfromword_b#1.#2{%
204 \if;#2\expandafter\zecknfromword_done\fi
205 \if#21\Zeck@@FN{#1}\fi
296 \expandafter\zecknfromword_b\the\numexpr#1+1.%
297 }%
208 \def\zecknfromword_done#1. {\iffalse{{\fi}}}%

8.3.8. \ZeckNfromHexWord

Added at 0.9d.

299 \def\ZeckNfromHexWord{\romannumeral0\zecknfromhexword}%

300 \def\zecknfromhexword#1{%

301 \expandafter\zecknfromword_a\romannumeralO\xintreversedigits{\xintHexToBin{#1}};%
302 }%

8.4. Bergman representation
8.4.1. \PhiIISign_ab

\PhiIISign_ab is for use with two already expanded arguments {a}{b} and which are strict
integers.

The general macro which accepts both one (unbraced) integer or two (braced) integers
is defined later for support of the phisign() function.
303 \def\PhiIISign_ab {\romannumeralO\phiiisign_ab}%
304 \def\phiiisign_ab #1#2{%
305 \xintiiifsgn{#1}%

306 {%a<9
307 \xintiiifSgn{#2}%
308 {-1}%
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309 {-1}%

310 {% a<0,b>0, return 1 iff a*2+ab<b/2

311 \xintiiifLt{\xintiiMul {#1}{\xintiiAdd{#13}{#2}}}{\xintiiSqr{#2}3}%
312 {1}%

313 {-1}%

314 3%

315 }%

316 {\xintiiSgn{#2}1}%

317 {%a>0

318 \xintiiifSgn{#23}%

319 {% a>0,b<0, return 1 iff a*2+ab>bA2

320 \xintiiifGt{\xintiiMul{#1}{\xintiiAdd{#1}{#23}}}{\xintiiSqr{#2}3}%
321 {1}%

322 {-1}%

323 1%

324 {1}%

325 {1}%

326 }%

327 %

8.4.2. \PhiMaxE

We want the greatest k with ¢k < a+b¢, assuming that the latter is strictly positive. We
will do this using a careful computation (i.e. avoiding "~ "catastrophic cancellations''
if a and b are of opposite signs) of the base-ten logarithm of a+b¢, with about 8 decimal
digits of precision. Rounding the quotient by log;g ¢ to the nearest integer we obtain
a candidate K. We compute ¢X using Fibonacci numbers and compare (using integer-only
arithmetic). If this is larger than a + b¢ the seeked k is K-1 else it is K. For why,
see the explanations relative to the computation of the Zeckendorf representation and
the next paragraph about theoretical limitation.

The rounding to an integer of log(a + b¢)/log(¢) obtained with 8 decimal digits of
precision will not error by 2 units or more if the input was less than ¢107, so for an
x which is an integer having less than two million decimal digits, or say one million,
this is safe. And xint can only do computations with operands having less than about
13000 digits (with TgXLive 2025 default memory settings). If using another programming
context not having such limitations, and using rather double precision floats, which
gives slightly less than 16 decimal digits of floating point precision, the upper bound
would raise to about qblols, and inputs with at most 101 decimal digits are safe, i.e.
all real life inputs are safe.

Let us nevertheless explain how we could do without logarithms and without any upper
bound on size of the input. Let x = a + b¢, assumed to be positive. First, we test
if x < 1. We can do this using integers only. If true, we multiply x by ¢, ¢>2, o,
using algebra in Z[¢] = Z+Z ¢, until finding the smallest power of 2 such that ¢2nx =
x' > 1. The powers of ¢ are computed by repeated squarings (and they can be pre-stored
up to certain reasonable maximal n, but we are discussing here a "~ "no prior bound''
situation). The searched-for exponent k(x) is k(x) -2, So we are reduced to the x >1
case. Ifx< ¢, thenk(x)=0. Ifx> ¢= qbze, repeated squaring of ¢ and comparisons

n+l
with x using u+ v¢ representations will give us the smallest n > 0 with qﬁZ > x. Then
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divide x by (bzn (or rather multiply with (b'zn) , again using Z[¢] algebra, obtaining some
x with 1 < x' < ¢? and k(x) =k(x/) +2" with 0 < k(x/) <2". After finitely many steps we
will have reduced to [1, ¢) and the algorithm ends.

The macro helpers handling the computation of the ratio of logarithms should not make
assumptions about \xintDigits. Here is the original source as it was used to create the
code (not any AI would be able to do that... but xintexpr succeeds!). 1In particular
note the impressive nesting of \xintiiexpr inside \xintfloatexpr. The log output
(thanks to \xintverbosetrue) was then edited by hand to not use macros using tacitly
\XINTdigits, and to reduce to 8 digits of precision as this is enough.

\xintverbosetrue
\xintdeffloatvar Phi := (1 + sqrt(5))/2;
\xintdeffloatvar Psi := (1 - sqrt(5))/2;
\xintdeffloatvar logPhi := logl@(Phi) ;% would have been precomputed anyhow
\xintdefiifunc greedyA(a,b):= \xintfloatexpr
round(logl10(a+b*Phi) / logPhi)\relax;
\xintdefiifunc greedyB(a,b):= \xintfloatexpr
round(logl0(\xintiiexpr (a*(a+b) -sqr(b))\relax/(a+b*Psi))
/ logPhi)\relax;

328 \def\bergman_nearindex_A#1;#2;{%
320  \xintiRound {0}{%
330 \xintFloatDiv[8]{%

331 \PoorManlogBaseTen_raw

332 {\xintFloatAdd[8] {#1}%

333 {\xintFloatMul [8] {#2}{1618034[-6]}}3}%
334 1%

335 {20898764[-8]11}%

336 1%

337 }%

338 \def\bergman_nearindex_B#1;#2;{%
330  \xintiRound {0}{%
340 \xintFloatDiv[8]{%

341 \PoorManlLogBaseTen_raw

342 {\xintFloatDiv[8]%

343 {\xintiiSub

344 {\xintiiMul {#1}{\xintiiAdd{#1}{#23}3}}%
345 {\xintiiSqr {#21}}%

346 }%

347 {\xintFloatAdd[8]%

348 {#1}{\xintFloatMul [8] {#2}{-618034[-6]}1}%
349 }%

350 }%

351 }%

352 {20898764[-8]1}%

353 }%

354 }%

355 \def\PhiMaxE{\the\numexpr\phimaxe}%

356 \def\phimaxe #1{%

357 \expandafter\phimaxe_a\expanded{{#1}1}%

358 }%

359 \def\phimaxe_a #1l{\expandafter\phimaxe_b\string#1;}%
360 \catcode™ [=1 \catcode ]=2 \catcode \{=12 % }
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361 \def\phimaxe_b #1[\if#1{\expandafter\phimaxe X % }

362 \else\expandafter\phimaxe_N\fi #1]%

363 \catcode™ [=12 \catcode ]=12 \catcode \{=1 % }

364 \def\phimaxe_N #1;{\phimaxe_ab {#13}{0};}%

365 \def\phimaxe_X #1{\expandafter\phimaxe_ab\expandafter{\iffalse}\fi}%
366 \def\PhiMaxE_ab {\romannumeral@\phimaxe_ab}%

367 \def\phimaxe_ab #1#2;{%

368 \expandafter\phimaxe_i\romannumeral * &&@%

369 \1fnum\numexpr\xintiiSgn{#1}*\xintiiSgn{#2}\relax=-1
370 \expandafter\bergman_nearindex_B

371 \else \expandafter\bergman_nearindex_A

372 \fi #1;#2;;#1;#2;%

373 }%

374 \def\phimaxe_i #1;{%

375 \expandafter\phimaxe_j\romannumeral &&@\zeck@fpair #1.#1;%
376 }%

377 \def\phimaxe_j #1#2#3;#4;#5;{%

378 #3\ifnum

379 \expandafter\PhiIISign_ab

380 \expanded{{\xintiiSub{#2}{#43}} {\xintiiSub{#1}{#5}}}>\xint_c_
381 -1\fi\relax

382 }%

8.4.3. \PhiBList

Will serve (or rather a close derivative) as support for the phiexponents() function in
\xinteval, and is used both by \PhiExponents and \PhiBasePhi.

383 \def\PhiBList{\expanded\phiblist}%

384 \def\phiblist #1{%

385 \expandafter\phiblist_a\expanded{{#1}}%

386 }%

387 \def\phiblist_a #l{\expandafter\phiblist_b\string#1;1}%

388 \catcode  [=1 \catcode ]=2 \catcode \{=12 % }

389 \def\phiblist_b #1[\if#1{\expandafter\phiblist X % }

390 \else\expandafter\phiblist_N\fi #1]%

391 \catcode  [=12 \catcode ]=12 \catcode \{=1 % }

392 \def\phiblist_N #1;{\phiblist_ab {#1}{0};}%

393 \def\phiblist_X #l{\expandafter\phiblist_ab\expandafter{\iffalse}\fi}%
394 \def\PhiBlist_ab {\expanded\phiblist_abl}%

305 \def\phiblist_ab #1#2;{{%

396 \ifcase\PhiIISign_ab{#1}{#2} %

397 0\expandafter\phiblist_stop
398 \or

399 +\expandafter\phiblist_i

400 \else

401 -\expandafter\phiblist_neg
402 \fi

403 #1;#2;%

404 }3}%

405 \def\phiblist_stop#1;#2;{}%
Attention that adding minus signs here would fool \xintiiSgn which makes no normaliza-
tion and looks only at first token.
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TODO: check if it is more efficient to do \expanded{\noexpand\foo...} rather than
\expandafter\foo\expanded{...}.
406 \def\phiblist_neg#1;#2; {%
407 \expandafter\phiblist_i\expanded {\XINT_Opp#1;\XINT_Opp#2;1}%
408 }%
400 \def\phiblist_i#1;#2;{%

410 \expandafter\phiblist_j\romannumeral *&&@%

411 \ifnum\numexpr\xintiiSgn{#1}*\xintiiSgn{#2}\relax=-1
412 \expandafter\bergman_nearindex_B

413 \else \expandafter\bergman_nearindex_A

414 \fi #1;#2;;#1;#2;%

415 }%

416 \def\phiblist_j #1;{%

417 \expandafter\phiblist_k\romannumeral  &&@\zeck@fpair #1.#1;%
418 }%

419 \def\phiblist_k #1#2#3;#4;#5;{%

420 \ifl\expandafter\PhiIISign_ab

421 \expanded{{\xintiiSub{#2}{#4}}{\xintiiSub{#13}{#5}3}}%
422 \expandafter\phiblist_ci

423 \else

424 \expandafter\phiblist_cii

425 \fi

426 #1;#2;#3;#4;#5;%

427 }%

428 \def\phiblist_ci #1;#2;#3;#4;#5;{%
429 {\the\numexpr#3-1\relax}%
430 \expandafter\phiblist_again\expanded{%

431 {\xintiiSub{\xintiiAdd{#2}{#4}}{#13}}%
432 {\xintiiSub{#5}{#2}3}%

433 }%

434 }%

435 \def\phiblist_cii #1;#2;#3;#4;#5;{%

436 {#3}%

437 \expandafter\phiblist_again

438 {\xintiiSub{#4}{#2}3}%

439 {\xintiiSub{#5}{#1}3}%

440 }%

441 \def\phiblist_again #1#2{%
442 \1f0\PhiIISign_ab{#1}{#2}%

443 \expandafter\phiblist_stop
444 \else

445 \expandafter\phiblist_i

446 \fi

447 #1;#2;%

448 }%

8.4.4. \PhiExponents

As this depends upon \PhiBList it will have to unbrace at each step to check sign of the
exponent .

449 \def\PhiExponents{\expanded\phiexponents}%
450 \def\phiexponents#1{{%
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451 \expandafter\phiexponents_a

452 \expanded\expandafter\phiblist_a\expanded{{#1}1}%
453 3%

454 }}%

455 \def\phiexponents_a #1{\if-#1.\fi\phiexponents_b}%
456 \def\phiexponents_b #1{%

457 \if;#1\expandafter\phiexponents_done\fi

458 #1\phiexponents_c

459 }%

460 \def\phiexponents_c #1{%

461 \if;#1\expandafter\phiexponents_done\fi

462 \PhiExponentsSep#1\phiexponents_c

463 }%

464 \def\phiexponents_done#1\phiexponents_c{}%

465 \def\PhiExponentsSep{, }%

8.4.5. \PhiBasePhi

As this depends upon \PhiBList it will have to unbrace at each step to check sign of the
exponent.

466 \def\PhiBasePhi{\expanded\phibasephi}%

467 \def\phibasephi#1{{%

468 \expandafter\phibasephi_a

469 \expanded\expandafter\phiblist_a\expanded{{#1}1}%
470 3%

471 }3}%

472 \def\phibasephi_a #1{%

473 \if-#1-\fi

474 \if0#1\expandafter\xint_gob_til_sc\fi
475 \phibasephi_b

476 }%

477 \def\phibasephi_b #1{\phibasephi_c #1.3}%
478 \def\phibasephi_c #1#2.{%

479  \1f-#1%

480 0\PhiBasePhiSep\xintReplicate{#2-1}{0}%
481 1\expandafter\phibasephi_n

482 \else

483 1\expandafter\phibasephi_p

484 \fi

485  #1#2.%

486 }%

487 \def\phibasephi_p #1.#2{\phibasephi_pa #1.#2\xint:}%

488 \def\phibasephi_pa #1.#2{%

489 \if;#2\xintReplicate{#1}{0}\expandafter\xint_gob_til_xint:\fi
490 \phibasephi_pb #1.#2%

491 }%

492 \def\phibasephi_pb #1.#2#3\xint:{%

493  \1f-#2%

494 \xintReplicate{#1}{0}\PhiBasePhiSep\xintReplicate{#3-1}{0}%
495 1\expandafter\phibasephi_n

496 \else

497 \xintReplicate{#1-#2#3-1}{03}%
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498 1\expandafter\phibasephi_p

499 \fi
500 #2#3.%
501 }%

502 \def\phibasephi_n #1.#2{\phibasephi_na #1.#2\xint:}%
503 \def\phibasephi_na #1.#2{%

504 \if;#2\expandafter\xint_gob_til_xint:\fi

505 \phibasephi_nb #1.#2%

506 }%

507 \def\phibasephi_nb #1.#2#3\xint:{%

508 \xintReplicate{#1+#3-1}{0}%

500 1\phibasephi_n #2#3.%

510 }%

511 \def\PhiBasePhiSep{.}%

8.4.6. \PhiBaseHexPhi

Broken if \PhiBasePhiSep is not default.

Attention for fractional part that we must first extend with trailing zeros if needed
tomake it have 4N digits. (Expansion of integers will have an even number of fractional
digits, but of course this is not true of general a + b phi.

512 \def\PhiBaseHexPhi {\expanded\phibasehexphi}%

513 \def\phibasehexphi#1{\expandafter\phibasehexphi_a\expanded{%

514 \expandafter\phibasephi_a

515 \expanded\expandafter\phiblist_a\expanded{{#1}1}%

516 i I 4

517 }%

MEMO: fortunately the second \xintBinToHex will not trim leading zeros which were orig-
inally zeros after the radix separator. But we also must make sure to apply it to an
input having a multiple of four number of binary digits.

518 \def\phibasehexphi_a #1.#2.#3#4;{{%

519 \xintBinToHex{#1}%

520 \if.#3.\xintBinToHex{\expanded{#2\expandafter\phibasehexphi_aux

521 \romannumeralO\xintlength{#2}.3}}\fi
522 }}%

523 % \end{macrocode}

524 % Here |#1| is at least one.

525 % \begin{macrocode}

526 \def\phibasehexphi_aux #1.{\xintReplicate{4*((#1+1)/4) - #13}{0}}%

8.4.7. \PhiXfromExponents

If the list starts with period, it means it represents a negative number (or perhaps
zero is there is nothing else).

527 \def\PhiXfromExponents{\expanded\phixfromexponents}%

528 \def\phixfromexponents#1{%

529 \expandafter\phixfromexponents_a\romannumeral *&&@#1, ;%

530 }%

531 \def\phixfromexponents_a #1{%

532 \if.#1\expandafter\phixfromexponents_n
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533 \else\expandafter\phixfromexponents_p
534 \fi #1%
535 }%

536 \def\phixfromexponents_p #1;{{%

537 {\xintiiSum{\expanded{\zeck@applytocsv_a\Zeck@FNminusOne#1;}}1}%

538 {\xintiiSum{\expanded{\zeck@applytocsv_a\Zeck@FN#1;}}}%

539 }}%

540 \def\phixfromexponents_n .#1;{{%

541 {\xintiiOpp{\xintiiSum{\expanded{\zeck@applytocsv_a\Zeck@FNminusOne#1;}}}}%
542 {\xintiiOpp{\xintiiSum{\expanded{\zeck@applytocsv_a\Zeck@FN#1;}}}3}%

543 }}%

8.4.8. \PhiXfromBasePhi

The radix separator must be an explicit period. There must be at least one digit be-
fore the period, if the latter is there. Empty input is allowed. Input must f-expand
completely thus input such as \macroA.\macroB is not allowed.

Coded the lazy way by first converting to comma separated list of exponents. The
\phiexponentsfromrep's output has a final comma but this is ok.
544 \def\PhiXfromBasePhi{\expanded\phixfrombasephi}%
545 \def\phixfrombasephi{\expandafter\phixfromexponents\expanded\phiexponentsfromrep}%
546 \def\phiexponentsfromrep#1{%

547 {{\iffalse}\fi\expandafter\phiexponentsfromrep_a\romannumeral "&&@#1.;\xint:3}%
548 }%

549 \def\phiexponentsfromrep_a #1{%

550 \if-#1.\xint_dothis\phiexponentsfromrep_a\fi

551 \if.#1\xint_dothis\zeck_done\fi

552 \xint_orthat{\phiexponentsfromrep_b #13}%

553 }%

554 \def\phiexponentsfromrep_b #1.#2{%

555 \expandafter\phiexponentsfromrep_c\romannumeralO\xintreversedigits{#1};%
556 \if;#2\expandafter\zeck_done\else

557 \expandafter\phiexponentsfromrep_i\fi #2%

558 }%

559 \def\phiexponentsfromrep_c{\phiexponentsfromrep_d 0.}%
560 \def\phiexponentsfromrep_d#1.#2{%

561 \if;#2\expandafter\xint_gob_til_dot\fi

562 \if#21#1,\fi

563 \expandafter\phiexponentsfromrep_d\the\numexpr#1+1.%
564 }%

565 \def\phiexponentsfromrep_i{\phiexponentsfromrep_j -1.3}%
566 \def\phiexponentsfromrep_j#1.#2{%

567 \if;#2\expandafter\zeck_done\fi

568 \1f#21#1,\fi

569 \expandafter\phiexponentsfromrep_j\the\numexpr#1-1.%
570 }%

8.4.9. \PhiXfromBaseHexPhi

Added at 0.9d.
571 \def\PhiXfromBaseHexPhi {\expanded\phixfrombasehexphi}¥%
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572 \def\phixfrombasehexphi{\expandafter\phixfromexponents

573 \expanded\phiexponentsfromhexrep}%

574 \def\phiexponentsfromhexrep#1{%

575 {{\iffalse}\fi\expandafter\phiexponentsfromhexrep_a\romannumeral &&@#1.;\xint:}%
576 }%

577 \def\phiexponentsfromhexrep_a #1{%

578 \if-#1.\xint_dothis\phiexponentsfromhexrep_a\fi
579 \if.#1\xint_dothis\zeck_done\fi

580 \xint_orthat{\phiexponentsfromhexrep_b #1}%

581 }%

582 \def\phiexponentsfromhexrep_b #1.#2{%

583 \expandafter\phiexponentsfromrep_c

584 \romannumeralO\xintreversedigits{\xintHexToBin{#1}};%
585 \if;#2\expandafter\zeck_done\else

586 \expandafter\phiexponentsfromhexrep_i\fi #2%

587 }%

Attention that conversion from hexadecimal to binary must preserve leading zeros!

588 \def\phiexponentsfromhexrep_i#1; {%
589 \expanded{\noexpand\phiexponentsfromrep_j -1.\xintCHexToBin{#1}};%
590 }%

8.5. The Knuth Fibonacci multiplication
8.5.1. \ZeckKMul: Knuth definition

Here a \romannumeral® trigger is used tomatch \xintiisum. Although it induces defining
one more macro we obide by the general coding style of xint with a CamelCase then a
lowercase macro, rather than having them merged as only one.

For the \xinteval we need a variant applying \xintNum to its arguments.

591 \def\ZeckKMul {\romannumeral 0\ zeckkmul }%
592 \def\zeckkmul#1#2{\expandafter\zeckkmul _a

593 \expanded{\ZeckIndices{#1}%
594 3%

595 \ZeckIndices{#2}%
596 vy 3%

597 }%

598 \def\ZeckKMulNum#1#2{\romannumeral 0\ zeckkmul {\xintNum{#1}} {\xintNum{#2}}}%

The space token at start of #2 after first one is not a problem as it ends up in a \numexpr
anyhow.

599 \def\zeckkmul_a{\expandafter\xintiisum\expanded{{\iffalse}}\fi
600 \zeckkmul_b}%

601 \def\zeckkmul b#1;#2, {%

602 \if\relax#2\relax\expandafter\zeckkmul_done\fi
603 \zeckkmul _c{#2}#1,\zeckkmul_b#1;%

604 }%

605 \def\zeckkmul _c#1#2,{%

606 \if\relax#2\relax\expandafter\xint_gobble_iv\fi
607 \Zeck@@FN{#1+#2}\zeckkmul _c{#1}%

608 }%

609 \def\zeckkmul_done#1; {\iffalse{{\fi}}}%
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8.5.2. \ZeckAMul: Arnoux formula

Here a \romannumeral® trigger is used to match \xintiisum.

610 \def\ZeckAMul {\romannumeral®\zeckamul }%

611 \def\ZeckAMulNum#1#2 {\romannumeral0\zeckamul {\xintNum{#1}} {\xintNum{#2}}3}%
612 \def\zeckamul#1{\expandafter\zeckamul_in\romannumeral *&&@#1;}%

613 \def\zeckamul _in#1;#2{\expandafter\zeckamul_a\romannumeral *&&@#2;#1;3}%

614 \def\zeckamul_a #1;#2;{\xintiiadd

615 {\xintiiMul {#1}{#2}}

616 {\xintiiAdd{\xintiiMul {#1}{\ZeckB{#2}}}{\xintiiMul{\ZeckB{#1}}{#23}}}%
617 }%

8.5.3. \ZeckB: B operator

Here a \romannumeral0 trigger is used to match \xintiisum. It is a fact of life that \xi»
ntiiSum needs to grab something at each item before expanding it, rather than expanding
prior to grabbing. So we use an \expanded wrapper.

618 \def\ZeckB{\romannumeral0\zeckb}%

619 \def\zeckb#1{\xintiisum{\expanded{\iffalse}\fi

620 \expandafter\zeckb_a\expanded\zeckindices{#1},,}}%

#1-1 is always positive.
621 \def\zeckb_a#1, {%
622 \if\relax#1\relax\expandafter\zeckb_done\fi
623 \Zeck@@FN{#1-1}\zeckb_a
624 }%
625 \def\zeckb_done#1\zeckb_a{\iffalse{\fi}}%

8.6. Typesetting
8.6.1. \ZeckPrintIndexedSum

Expandable, but needs x-expansion. The default requires math mode, at it uses \sb.
We do not use _ here due to its current catcode. It only f-expands its argument. No
repeated or final comma is allowed.

626 \def\ZeckPrintIndexedSumSep{+\allowbreak}%

627 \def\ZeckPrintOne#1{F\sb{#1}}%

628 \def\ZeckPrintIndexedSum#1{%

629 \expandafter\zeckprintindexedsum\romannumeral " &&@#1, ;%

630 }%

631 \def\zeckprintindexedsum#1{%

632 \if,#1\expandafter\xint_gob_til_sc\fi \zeckprintindexedsum_a#1%
633 }%

634 \def\zeckprintindexedsum_a#1, {\ZeckPrintOne{#1}\zeckprintindexedsum_b}%
635 \def\zeckprintindexedsum_b #1{%

636 \if;#1\expandafter\xint_gob_til_sc\fi

637 \ZeckPrintIndexedSumSep\zeckprintindexedsum_a#1%

638 }%

8.6.2. \PhiPrintIndexedSum

A clone of \ZeckPrintIndexedSum with its own namespace.
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639 \let\PhiPrintIndexedSumSep\ZeckPrintIndexedSumSep

640 \def\PhiPrintOne#1{\phi\sp{#1}}%

641 \def\PhiPrintIndexedSum#1{%

642 \expandafter\phiprintindexedsum\romannumeral " &&@#1, ;%

643 }%

644 \def\phiprintindexedsum#1{%

645 \if,#1\expandafter\xint_gob_til_sc\fi \phiprintindexedsum_a#1%
646 }%

647 \def\phiprintindexedsum_a#1, {\PhiPrintOne{#1}\phiprintindexedsum_b}%
648 \def\phiprintindexedsum_b #1{%

649 \if;#1\expandafter\xint_gob_til_sc\fi

650 \PhiPrintIndexedSumSep\phiprintindexedsum_a#1%

651 }%

8.6.3. \PhiTypesetX

652 \def\PhiTypesetX #1{%

653 \expandafter\PhiTypesetXPrint\expanded{#1}%
654 }%

655 \def\PhiTypesetXPrint #1#2{%

656 \xintiiifSgn{#1}%

657 {#1\xintiiifSgn{#2}{#2\phi}{}{+#2\phi}}%
658 {\xintiiifSgn{#2}{#2\phi}{0}{#2\phi}}%
659 {#1\xintiiifSgn{#2}{#2\phi}{} {+#2\phi}}%
660 }%

8.7. Extensions of the \xinteval syntax

Initially functions and Knuth operator were added to \xintiieval only, but when it was
decided to overload the infix operators to handle inputs from Z[¢], it felt awkward not
to include the division so finally we support Q(¢) algebra, and for this had to switch
to \xinteval.

8.7.1. Provisory ad hoc support for adding xintexpr operators

Unfortunately, contrarily to bnumexpr, xintexpr (at 1.40) has no public interface to
define an infix operator, and the macros it defines to that end have acquired another
meaning at end of loading xintexpr.sty, so we have to copy quite a few lines of code.
This is provisory and will be removed when xintexpr.sty will have been udpated. We also
copy/adapt \bnumdefinfix.

We test for existence of \xintdefinfix so as to be able to update upstream and not
have to sync it immediately. But perhaps upstream will choose some other name than
\xintdefinfix...

661 \ifdefined\xintdefinfix

662 \def\zeckdefinfix{\xintdefinfix {expr}}%

663 \else

664 \1fdefined\xint_noxpd\else\let\xint_noxpd\unexpanded\fi % support old xint
665 \def\ZECK_defbin_c #1#2#3#4#5#6#7#8%

666 {%
667 \XINT_global\def #1##1% \XINT_#8_op_<op>
668 {%
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669 \expanded{\xint_noxpd{#2{##1}}\expandafter}%

670 \romannumeral * &&@\expandafter#3\romannumeral * &&@\XINT_expr_getnext
671 }%

672 \XINT_global\def #2##1##2##3##4% \XINT_#8_exec_<op>

673 {%

674 \expandafter##2\expandafter##3\expandafter

675 {\romannumeral * &&@\XINT:NEhook: f:one: from: two{\romannumeral * &&Q@#7##1##4}}%
676  }%

677 \XINT_global\def #3##1% \XINT_#8_check-_<op>

678 {%

679 \xint_UDsignfork

680 ##1{\expandafter#4\romannumeral * &&@#51}%

681 -{#4##131%

682 \krof

683 1%

684 \XINT_global\def #4##1##2% \XINT_#8_checkp_<op>

685 {%

686 \ifnum ##1>#6%

687 \expandafter#4%

688 \romannumeral “&&@\csname XINT_#8_op_##2\expandafter\endcsname
689 \else

690 \expandafter ##1\expandafter ##2%

691 \fi

692 }%

693 }%

ATTENTION there is lacking at end here compared to the bnumexpr version an adjustment
for updating minus operator, if some other right precedence than 12, 14, 17 is used.
Doing this would requiring copying still more, so is not done.

694 \def\ZECK_defbin_b #1#2#3#4#5%

695 {%

696 \expandafter\ZECK_defbin_c

697 \csname XINT_#1_op_#2\expandafter\endcsname

698 \csname XINT_#1_exec_#2\expandafter\endcsname

699 \csname XINT_#1_check-_#2\expandafter\endcsname

700 \csname XINT_#1_checkp_#2\expandafter\endcsname

701 \csname XINT_#1_op_-\romannumeral\ifnum#4>12 #4\elsel2\fi\expandafter\endcsname
702  \csname xint_c_\romannumeral#4\endcsname

703 #5%

704 {#1}% #8 for \ZECK_defbin_c

705 \XINT_global

706 \expandafter

707 \let\csname XINT_expr_precedence_#2\expandafter\endcsname
708 \csname xint_c_\romannumeral#3\endcsname

709 }%

These next two currently lifted from bnumexpr with some adaptations, see previous com-
ment about precedences.

We do not define the extra \chardef's as does bnumexpr to allow more user choices
of precedences, not only because nobody will ever use the feature, but also because it
needs extra configuration for minus unary operator. (as mentioned above)

710 \def\zeckdefinfix #1#2#3#4%
711 {%
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712 \edef\ZECK_tmpa{#1}%

713 \edef\ZECK_tmpa{\xint_zapspaces_o\ZECK_tmpa}%

714 \edef\ZECK_tmpL{\the\numexpr#3\relax}%

715 \edef\ZECK_tmpL

716 {\ifnum\ZECK_tmpL<4 4\else\ifnum\ZECK_tmpL<23 \ZECK_tmpL\else 22\fi\fil}¥%
717 \edef\ZECK_tmpR{\the\numexpr#4\relax}%

718 \edef\ZECK_tmpR

719 {\ifnum\ZECK_tmpR<4 4\else\ifnum\ZECK_tmpR<23 \ZECK_tmpR\else 22\fi\fil}%
720 \ZECK_defbin_b {expr}\ZECK_tmpa\ZECK_tmpL\ZECK_tmpR #2%

721 \expandafter\ZECK_dotheitselves\ZECK_tmpa\relax

722 \unless\ifcsname

723 XINT_expr_exec_-\romannumeral\ifnum\ZECK_tmpR>12 \ZECK_tmpR\else 12\fi

724 \endcsname

725 \xintMessage{zeckendorf}{Error}{Right precedence not among accepted values.}%
726 \errhelp{Accepted values include 12, 14, and 17.}%

727 \errmessage{Sorry, you can not use \ZECK_tmpR\space as right precedence.}%
728 \fi

729 \ifxintverbose

730 \xintMessage{zeckendorf}{info}{infix operator \ZECK_tmpa\space

731 \ifxintglobaldefs globally \fi

732 does

733 \xint_noxpd{#2}\MessageBreak with precedences \ZECK_tmpL, \ZECK_tmpR;}%
734 \fi

735 }%

736 \def\ZECK_dotheitselves#1#2%

737 {%

738 \if#2\relax\expandafter\xint_gobble_ii

739 \else

740 \XINT_global

741 \expandafter\edef\csname XINT_expr_itself #1#2\endcsname{#1#2}%

742 \unless\ifcsname XINT_expr_precedence_#1\endcsname

743 \XINT_global

744 \expandafter\edef\csname XINT_expr_precedence_#1\endcsname

745 {\csname XINT_expr_precedence_\ZECK_tmpa\endcsname}%
746 \XINT_global

747 \expandafter\odef\csname XINT_expr_op_#1\endcsname

748 {\csname XINT_expr_op_\ZECK_tmpa\endcsname}%

749 \fi

750 \fi

751 \ZECK_dotheitselves{#1#2}%

752 }%

(]

There is no " "undefine operator'' in bnumexpr currently. Experimental, I don't want to
spend too much time. I sense there is a potential problem with multi-character opera-
tors related to " “undoing the itselves'', because of the mechanism which allows to use
for example ;; as short-cut for ;;; if ;; was not pre-defined when ;;; got defined. To
undefine ;;, I would need to check if it really has been aliased to ;;;, and I don't do
the effort here.

753 \def\ZECK_undefbin_b #1#2%

754 {%
755 \XINT_global\expandafter\let
756 \csname XINT_#1_op_#2\endcsname\xint_undefined
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757  \XINT_global\expandafter\let

758 \csname XINT_#1_exec_#2\endcsname\xint_undefined

759 \XINT_global\expandafter\let

760 \csname XINT_#1_check-_#2\endcsname\xint_undefined
761 \XINT_global\expandafter\let

762 \csname XINT_#1_checkp_#2\endcsname\xint_undefined
763  \XINT_global\expandafter\let

764 \csname XINT_expr_precedence_#2\endcsname\xint_undefined
765 \XINT_global\expandafter\let

766 \csname XINT_expr_itself_#2\endcsname\xint_undefined
767 }%

768 \def\zeckundefinfix #1%

769 {%

770 \edef\ZECK_tmpa{#1}%

771 \edef\ZECK_tmpa{\xint_zapspaces_o\ZECK_tmpa}%

772 \ZECK_undefbin_b {expr}\ZECK_tmpa

773 %% \ifxintverbose

774 \xintMessage{zeckendorf}{Warning}{infix operator \ZECK_tmpa\space
775 has been DELETED!}%

776 %% \fi

777 3%

778 \fi

779 \def\ZeckDeleteOperator#l{\zeckundefinfix{#1}3}%

Attention, this is like \bnumdefinfix and thus does not have same order of arguments as
the \ZECK_defbin_b above.

780 \def\ZeckSetAsKnuthOp#1{\zeckdefinfix{#1}{\ZeckKMulNum} {14} {14}3}%
781 \def\ZeckSetAsArnouxOp#1{\zeckdefinfix{#1}{\ZeckAMulNum}{14}{14}}%

8.7.2. The $ and $$ as infix operator for the Knuth multiplication

782 \ZeckSetAsArnouxOp{$}% $ (<-only to tame Emacs/AUCTeX highlighting)
783 \ZeckSetAsKnuthOp{$$}% $$

8.7.3. Support macros for Q(¢) algebra

\PhiSgn

784 \def\PhiSign{\romannumeral@\phisign}%

785 \def\phisign #1{%

786 \expandafter\phisign_a\expanded{{#1}}%

787 }%

788 \def\phisign_a #1l{\expandafter\phisign_b\string#1;}%
789 \catcode™ [=1 \catcode ]=2 \catcode \{=12 % }

790 \def\phisign_b #1[\if#1{\expandafter\phisign X % }

791 \else\expandafter\phisign N\fi #1]%
792 \catcode™ [=12 \catcode ]=12 \catcode \{=1 % }

793 \def\phisign_ N #1; {\XINT_sgn #1\xint:}%

794 \def\phisign_X #1{\expandafter\phisign_ab\expandafter{\iffalse}\fi}%
795 \def\PhiSign_ab {\romannumeralO\phisign_ab}%

796 \def\phisign_ab #1#2{%

797 \xintiiifsgn{#13}%

798 {¥a<o
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799 \xintiiifSgn{#2}%

800 {-1}%

801 {-1}%

802 {% a <0, b>0, return 1 iff a*2+ab<bA2
803 \xintifLt{\xintMul {#1}{\xintAdd{#1}{#23}3}}{\xintSqr{#2}}%
804 {1}%

805 {-1}%

806 3%

807 }%

808 {\xintiiSgn{#2}1}%

809 {% a>0

810 \xintiiifSgn{#2}%

811 {% a >0, b<0, return 1 iff ar2+ab>bA2
812 \xintifGt{\xintMul {#1}{\xintAdd{#1}{#233}}{\xintSqr{#2}}%
813 {1}%

814 {-1}%

815 }%

816 {1}%

817 {1}%

818 }%

819 }%

\PhiAbs

820 \def\PhiAbs{\romannumeral0\phiabs}%

821 \def\phiabs #1{%

822 \expandafter\phiabs_a\expanded{{#1}3}%

823 }%

824 \def\phiabs_a #l{\expandafter\phiabs_b\string#1}%

825 \catcode™ [=1 \catcode ]=2 \catcode \{=12 % }

826 \def\phiabs_b #1[\if#1{\expandafter\phiabs_X % }

827 \else\expandafter\phiabs_N\fi #1]%

828 \catcode™ [=12 \catcode ]=12 \catcode \{=1 % }

829 \let\phiabs_N \XINT_abs

830 \def\phiabs_X #1{\expandafter\phiabs_x\expandafter{\iffalse}\fi}¥%
831 \def\phiabs_x #1#2{\expanded{%

832 \ifnum\PhiSign_ab {#1}{#2}<\xint_c_

833 \expandafter\xint_firstoftwo\else\expandafter\xint_secondoftwo\fi
834 {{\XINT_Opp#1}{\XINT_Opp#23}}{{#1}{#2}}%

835 3%

836 }%

\PhiNorm

837 \def\PhiNorm{\romannumeral®\phinorm}%

838 \def\phinorm #1{%

839 \expandafter\phinorm_a\expanded{{#1}1}%

840 }%

841 \def\phinorm_a #1{\expandafter\phinorm_b\detokenize{#1;}{#13}}%
842 \catcode  [=1 \catcode ]=2 \catcode \{=12 % }

843 \def\phinorm_b #1#2;[\if#1{\expandafter\phinorm X % }

844 \else\expandafter\phinorm_N\fi]%

845 \catcode™ [=12 \catcode ]=12 \catcode \{=1 % }
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846 \let\phinorm_N\xintsqr

847 \def\phinorm_X #1{\phinorm_x #1}%
848 \def\phinorm_x #1#2{\xintsub

849  {\xintMul{#1}{\xintAdd{#13}{#23}3}}%
850 {\xintSqr{#2}1}%

851 }%

\PhiConj
852 \def\PhiConj{\romannumeral®\phiconj}%
853 \def\phiconj #1{%
854 \expandafter\phiconj_a\expanded{{#1}}%
855 }%
856 \def\phiconj_a #1{\expandafter\phiconj_b\detokenize{#1;}#13}%
857 \catcode™ [=1 \catcode ]=2 \catcode \{=12 % }
858 \def\phiconj_b #1#2;[\if#1{\expandafter\phiconj_X % }
859 \else\expandafter\phiconj_N\fi]%
860 \catcode™ [=12 \catcode ]=12 \catcode \{=1 % }
861 \let\phiconj_N\space
862 \def\phiconj_X #1#2{\expanded{%
863 {\xintAdd{#1}{#23}}{\XINT_Opp #2}%
864 }3}%

\PhiOpp
865 \def\PhiOpp{\romannumeral0\phiopp}%
866 \def\phiopp #1{%
867 \expandafter\phiopp_a\expanded{{#1}3}%
868 }%
869 \def\phiopp_a #1{\expandafter\phiopp_b\string#13}%
870 \catcode™ [=1 \catcode ]=2 \catcode \{=12 % }
871 \def\phiopp_b #1[\if#1{\expandafter\phiopp_X % }
872 \else\expandafter\phiopp_N\fi #1]%
873 \catcode  [=12 \catcode ]=12 \catcode \{=1 % }
874 \let\phiopp_N \XINT_opp
875 \def\phiopp_X #1{\expandafter\phiopp_x\expandafter{\iffalse}\fi}¥%
876 \def\phiopp_x #1#2{\expanded{%
877 {\XINT_Opp #1}{\XINT Opp #2}%
878 }1%

\PhiAdd

879 \def\PhiAdd{\romannumeral0\phiadd}%

880 \def\phiadd #1#2{%

881 \expandafter\phiadd_a\expanded{{#1}{#2}}%

882 }%

883 \def\phiadd_a #1{\expandafter\phiadd_b\string#1;1}%

884 \catcode™ [=1 \catcode ]=2 \catcode \{=12 % }

885 \def\phiadd_b #1[\if#1{\expandafter\phiadd X % }

886 \else\expandafter\phiadd_N\fi #1]%

887 \def\phiadd_N #1;#2[\expandafter\phiadd_n\string#2;[#1]]%
888 \def\phiadd_n #1[\if#1{\expandafter\phiadd_nX % }

889 \else\expandafter\phiadd_nn\fi #1]%

890 \def\phiadd_nX #1[\expandafter\phiadd_nx\expandafter[\iffalse]\£fi]%
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891 \def\phiadd_X #1[\expandafter\phiadd_x\expandafter[\iffalse]\fi]¥%

#1={a}{b}.
892 \def\phiadd_x #1;#2[\expandafter\phiadd_xa\string#2;#1]1%
893 \def\phiadd_xa#1[\if#1{\expandafter\phiadd_XX % }
894 \else\expandafter\phiadd_xn\fi #1]%
895 \def\phiadd_XX #1[\expandafter\phiadd_xx\expandafter[\iffalse]\fil%
896 \catcode  [=12 \catcode ]=12 \catcode \{=1 % }
897 \def\phiadd_nn #1;{\xintadd{#1}1}%
898 \def\phiadd_nx #1#2;#3{\expandafter
899 {\romannumeral O\xintadd{#1} {#33}} {#2}%
900 }%
901 \def\phiadd_xn #1;#2{\expandafter
902 {\romannumeralO\xintadd{#1} {#2}}%
903 }%
004 \def\phiadd_xx #1#2;#3#4{\expanded{%
905 {\xintAdd{#1}{#3}}%
906 {\xintAdd{#2} {#43}3}%
907 }}%

\PhiSub

908 \def\PhiSub{\romannumeral 0\phisub}%

009 \def\phisub #1#2{%

910 \expandafter\phisub_a\expanded{{#1}{#23}3}%

011 }%

912 \def\phisub_a #1{\expandafter\phisub_b\string#1;3}%

913 \catcode™ [=1 \catcode ]=2 \catcode \{=12 % }

914 \def\phisub_b #1[\if#1{\expandafter\phisub_X % }

915 \else\expandafter\phisub_N\fi #1]%

016 \def\phisub_N #1;#2[\expandafter\phisub_n\string#2;[#1]]1%

017 \def\phisub_n #1[\if#1{\expandafter\phisub_nX % }

918 \else\expandafter\phisub_nn\fi #1]%

019 \def\phisub_nX #1[\expandafter\phisub_nx\expandafter[\iffalse]\fil%
920 \def\phisub_X #1[\expandafter\phisub_x\expandafter[\iffalse]\fi]%

#1={a}{b}.
921 \def\phisub_x #1;#2[\expandafter\phisub_xa\string#2;#1]%
922 \def\phisub_xa#1[\if#1{\expandafter\phisub_XX % }
923 \else\expandafter\phisub_xn\fi #1]%
924 \def\phisub_XX #1[\expandafter\phisub_xx\expandafter[\iffalse]\fi]%
925 \catcode™ [=12 \catcode ]=12 \catcode \{=1 % }
926 \def\phisub_nn #1;#2{\xintsub{#2}{#1}}%
927 \def\phisub_nx #1#2;#3{\expanded{%
928 {\xintSub{#3}{#13}}{\XINT_Opp#23}%
929 }}%
030 \def\phisub_xn #1;#2{\expandafter
931 {\romannumeralO\xintsub{#2} {#1}}%
932 }%
033 \def\phisub_xx #1#2;#3#4{\expanded{%
934 {\xintSub{#3}{#1}3}%
935 {\xintSub{#4}{#2}3}%
936 }}%
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\PhiMul

037 \def\PhiMul {\romannumeral ©\phimul}%

038 \def\phimul #1#2{%

939 \expandafter\phimul_a\expanded{{#1}{#2}3}%

940 }%

041 \def\phimul_a #1{\expandafter\phimul_b\string#1;1}%

942 \catcode™ [=1 \catcode ]=2 \catcode \{=12 % }

943 \def\phimul_b #1[\if#1{\expandafter\phimul X % }

944 \else\expandafter\phimul_ N\fi #1]%

945 \def\phimul_N #1;#2[\expandafter\phimul_n\string#2; [#1]]%

946 \def\phimul_n #1[\if#1{\expandafter\phimul nX % }

947 \else\expandafter\phimul_nn\fi #1]%

948 \def\phimul_nX #1[\expandafter\phimul_nx\expandafter[\iffalse]\fi]%
949 \def\phimul_X #1[\expandafter\phimul_x\expandafter[\iffalse]\fi]¥%

#1={a}{b}.
050 \def\phimul_x #1;#2[\expandafter\phimul_xa\string#2;#1]1%
051 \def\phimul_xa#1[\if#1{\expandafter\phimul XX % }
952 \else\expandafter\phimul_xn\fi #1]%
953 \def\phimul_XX #1[\expandafter\phimul_xx\expandafter[\iffalse]\fil%
954 \catcode  [=12 \catcode ]=12 \catcode \{=1 % }
055 \def\phimul_nn#1; {\xintmul {#1}}%
056 \def\phimul_nx#1#2;#3{\expanded{%
957 \xintMul {#13} {#3}} {\xintMul {#23} {#3}3}%
958 }}%
059 \def\phimul_xn#1;#2#3{\expanded{%
960 \xintMul {#1}{#2}} {\xintMul {#1} {#33}1}%
961 }}%
062 \def\phimul_xx #1#2;#3#4{%
963 \expandafter\phimul_xx_a\expanded{%

964 \xintMul {#1}{#3};% ca
965 \xintMul {#2}{#4};% db
966 \xintMul {#1}{#4};% da
067 \xintMul {#23}{#3};% cb
968 3%

969 }%

070 \def\phimul_xx_a #1;#2;#3;#4;{\expanded{%
971 {\xintAdd{#1}{#23}3}%

972 {\xintAdd{#3} {\xintAdd{#4} {#2}}3}%

973 }}%

\PhiDiv
974 \def\PhiDiv{\romannumeral0\phidiv}%
975 \def\phidiv #1#2{%
976 \expandafter\phidiv_a\expanded{{#1}{#2}}%
977 }%
078 \def\phidiv_a #1{\expandafter\phidiv_b\string#1;1}%
979 \catcode™ [=1 \catcode ]=2 \catcode \{=12 % }
080 \def\phidiv_b #1[\if#1{\expandafter\phidiv_X % }
981 \else\expandafter\phidiv_N\fi #1]%
082 \def\phidiv_N #1;#2[\expandafter\phidiv_n\string#2;[#1]]%
983 \def\phidiv_n #1[\if#1{\expandafter\phidiv_nX % }
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984 \else\expandafter\phidiv_nn\fi #1]%
985 \def\phidiv_nX #1[\expandafter\phidiv_nx\expandafter[\iffalse]\fi]%
986 \def\phidiv_X #1[\expandafter\phidiv_x\expandafter[\iffalse]\fil%

#1={a}{b}.

087 \def\phidiv_x #1;#2[\expandafter\phidiv_xa\string#2;#1]%

088 \def\phidiv_xa#1[\if#1{\expandafter\phidiv_XX % }

989 \else\expandafter\phidiv_xn\fi #1]%

990 \def\phidiv_XX #1[\expandafter\phidiv_xx\expandafter[\iffalse]\fi]%
991 \catcode™ [=12 \catcode ]=12 \catcode \{=1 % }

092 \def\phidiv_nn#1;#2{\xintdiv{#2}{#1}3}%

993 \def\phidiv_nx#1#2{%

994 \expandafter\phidiv_nx_a\expanded{%

995 {\xintSub{\xintMul {#1}{\xintAdd{#1}{#2}}}{\xintSqr{#2}}3}%
996 H#1}{#2}%
997 }%

008 \def\phidiv_nx_a#1#2#3;#4{\expanded{%
999 \xintIrr{\xintDiv{\xintMul {#4} {\xintAdd{#2} {#3}}}{#1}}[0]1}%
1000 {\xintIrr{\xintOpp{\xintDiv{\xintMul {#4} {#33}3}{#1}}}[0]3}%
1001 }3}%
1002 \def\phidiv_xn #1;#2#3{\expanded{%
1003 \xintIrr{\xintDiv{#2}{#1}}[0]13}%
1004 {\xintIrr{\xintDiv{#3}{#1}}[0]3}%
1005 }3}%
1006 \def\phidiv_xx #1#2;#3#4{%
1007 \expandafter\phidiv_xx_a\expanded{%

1008 \expandafter\phimul_xx

1009 \expanded{{\xintAdd{#1}{#23}}{\XINT_Opp #2}};{#3}{#4}%
1010 {\xintSub{\xintMul {#1}{\xintAdd{#1}{#2}}}{\xintSqr{#2}}31%
1011 }%

1012 }%

1013 \def\phidiv_xx_a #1#2#3{%

1014 \expanded{%

1015 {\xintIrr{\xintDiv{#1}{#3}}[0]13}%
1016 A\xintIrr{\xintDiv{#2}{#33}3}[0]13}%
1017 }%

1018 }%

\PhiPow

1019 \def\PhiPow{\romannumeral\phipow}%
1020 \def\phipow #1#2{%

1021 \expandafter\phipow_a\expanded
1022 {{#1}{\xintNum{#2}}}%
1023 }%

1024 \def\phipow_a #1{\expandafter\phipow_b\string#1;1}%

1025 \catcode™ [=1 \catcode ]=2 \catcode \{=12 % }

1026 \def\phipow_b #1[\if#1{\expandafter\phipow_X % }

1027 \else\expandafter\phipow_N\fi #1]%

1028 \catcode™ [=12 \catcode ]=12 \catcode ' \{=1 % }

1029 \def\phipow_N #1;{\xintpow{#1}}%

1030 \def\phipow_X #1{\expandafter\phipow_x\expandafter{\iffalse}\fi}¥%

Let's handle negative exponents too, now that we use \xinteval.
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1031 \def\phipow_x #1;#2{\phipow_fork #2;#13}%
1032 \def\phipow_fork #1{%

1033 \xint_UDzerominusfork
1034 0#1\phipow_neg

1035 #1-\phipow_zero
1036 0-\phipow_pos

1037 \krof #1%

1038 }%

1039 \def\phipow_zero 0;#1#2{{1}{0}1}%
1040 \def\phipow_neg -{%

1041 \expandafter\phiinv_ab\romannumeral®\phipow_pos

1042 }%

1043 \def\phiinv_ab #1#2{%

1044 \expandafter\phiinv_c\expanded{%

1045 {\xintSub{\xintMul {#1} {\xintAdd{#1}{#2}}}{\xintSqr{#23}3}1}%
1046 H#1 {#2}%

1047 }%

1048 \def\phiinv_c #1#2#3{\expanded{%

1049 {\xintIrr{\xintDiv{\xintAdd{#2} {#3}}{#1}}[0]}%
1050 {\xintIrr{\xintOpp{\xintDiv{#3}{#1}}}[0]}%

1051 }}%

1052 \def\phipow_pos #1;{%

1053 \expandafter\phipow_xa
1054 \expanded{10\xintDecToBin{#1}}, ;%
1055 }%

1056 \def\phipow_xa #1#2#3#4;{%

1057 \1f#3,\expandafter\phipow_done\fi

1058  \if#31\expandafter\phipow_xo

1059 \else\expandafter\phipow_xe\fi

1060 {#1}{#2}#4;%

1061 }%

1062 \def\phipow_done \if#1\fi #2#3;#4#5{{#2}{#3}}%
1063 \def\phipow_xo #1#2{%

1064 \expandafter\phipow_xo_a\expanded{%

1065 \xintSqr{#1};\xintMul {#1}{#2};\xintSqr{#2};%
1066  }%

1067 }%

1068 \def\phipow_xo_a #1;#2;#3;{%

1069 \expandafter\phipow_xo_b\expanded{%

1070  \xintAdd{#13}{#3};\xintAdd{#2}{\xintAdd{#2}{#3}};%
1071 3}%

1072 }%

1073 \def\phipow_xo_b#1;#2;#3; #4#5{%

1074 \expandafter\phipow_xa\romannumeral0%

1075 \phimul_xx {#1}{#2};{#43}{#5}#3; {#4}{#5}%

1076 }%

1077 \def\phipow_xe #1#2{%

1078  \expandafter\phipow_xe_a\expanded{%

1079  \xintSqr{#1};\xintMul {#13}{#2};\xintSqr{#2};%
1080 }%

1081 }%

1082 \def\phipow_xe_a #1;#2;#3;{%
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1083 \expandafter\phipow_xa\expanded{%

1084 {\xintAdd{#1}{#3}}{\xintAdd{#2}{\xintAdd{#2}{#33}3}}%
1085 }%

1086 }%

8.7.4. Overloading +, -, *, /, », and **

The #* is pre-aliased to * at xintexpr level via \XINT_expr_itself_ =*, so nothing to do
here once * is handled.
The unary - requires extra care.
1087 \zeckdefinfix{+}{\PhiAdd}{12}{12}%
1088 \zeckdefinfix{-}{\PhiSub}{12}{12}%
1089 \xintFor #1 in {xii,xiv,xvii}\do{%

1090 \expandafter\def\csname XINT_expr_exec_-#1\endcsname
1001 ## 1#H#2##3%

1092 {%

1093 \expandafter ##1l\expandafter ##2\expandafter

1094 {%

1095 \romannumeral * &@\XINT:NEhook: f:one: from:one

1096 {\romannumeral * &&@\PhiOpp##33}%

1097 }%

1098 }%

1099 }%

1100 \zeckdefinfix{*}{\PhiMul}{14}{14}%
1101 \zeckdefinfix{/}{\PhiDiv}{14}{14}%
1102 \zeckdefinfix{A}{\PhiPow}{183}{173}%

8.7.5. Variables and functions for \xinteval

The macros computing Fibonacci numbers, Zeckendorf indices, and Bergman exponents,
were done originally assuming to be used with arguments in strict integer format. But
when operations are executed in \xinteval the intermediate results will use the " "raw''
format described in the xintexpr manual, not the " “strict integer format''. We thus
need wrappers to apply \xintNum for normalization, even though this adds annoying over-
head. These wrappers can assume that the argument is already expanded.

For macros handling input being either one unbraced integer or a pair of braced inte-
gers this is more complicated. We separated \PhiIISign_ab from \PhiSign to this aim.
The former for optimized internal usage, only using integer algebra. The latter uses
the xintfrac macros, so there is no problem and we do not want to truncate arguments to
integers. Similarly for \PhiAbs no need to do something special.

\PhiMaxE is integer-only, but in the end I decided to not provide an \xinteval inter-
face and to remove the one for \ZeckMaxK.

For the support for phiexponents(), which is also integer only we have to use \xintNu)
m, the problem is that we can't do that prior to know if used with an integer or a nutple.
So \Phi@BList was done to handle that.

1103 \xintdefvar phi:=[0,1];%

1104 \xintdefvar psi:=[1,-1];%

1105 \def\XINT_expr_func_phinorm #1#2#3%
1106 {%
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1107 \expandafter #l\expandafter #2\expandafter{%
1108 \romannumeral * &@\XINT:NEhook: f:one: from:one
1109 {\romannumeral * &&@\PhiNorm#3}3}%

1110 }%

1111 \def\XINT_expr_func_phiconj #1#2#3%

1112 {%

1113 \expandafter #l\expandafter #2\expandafter{%
1114 \romannumeral *&@\XINT:NEhook: f:one: from:one
1115 {\romannumeral *&&@\PhiConj#3}1}%

1116 }%

1117 \def\XINT_expr_func_phisign #1#2#3%

1118 {%

1119 \expandafter #l\expandafter #2\expandafter{%
1120 \romannumeral *&@\XINT:NEhook: f:one: from:one
1121 {\romannumeral " &&@\PhiSign#3}3}%

1122 }%

1123 \def\XINT_expr_func_phiabs #1#2#3%

1124 {%

1125 \expandafter #l\expandafter #2\expandafter{%
1126 \romannumeral *&&@\XINT:NEhook: f:one: from:one
1127 {\romannumeral * &@\PhiAbs#3}1}%

1128 }%

1129 \def\ZeckTheFNNum#1{\ZeckTheFN{\xintNum{#1}}}%
1130 \def\XINT_expr_func_£fib #1#2#3%

1131 {%

1132 \expandafter #1l\expandafter #2\expandafter{%
1133 \romannumeral *&&@\XINT:NEhook: f:one: from:one
1134 {\romannumeral * &&@\ZeckTheFNNum#3}}%

1135 }%

1136 \def\ZeckTheFSeqNum#1#2{\ZeckTheFSeq{\xintNum{#1}} {\xintNum{#2}3}3}%
1137 \def\XINT_expr_func_fibseq #1#2#3%

1138 {%

1139 \expandafter #l\expandafter #2\expandafter{%
1140 \romannumeral * & &@\XINT:NEhook: f:one: from: two
1141 {\romannumeral * &&@\ZeckTheFSegNum#3}3}%

1142 }%

1143 \def\ZeckBListNum #1{%

1144 \expanded\bgroup\expandafter\zeckblist_fork\romannumeralO\xintnum{#1}\xint:
1145 }%

1146 \def\XINT_expr_func_zeckindices #1#2#3%

1147 {%

1148 \expandafter #l\expandafter #2\expandafter{%
1149 \romannumeral *&&@\XINT:NEhook: f:one: from:one
1150 {\romannumeral * &&@\ZeckBListNum#3}}%

1151 }%

TODO: I have forgotten now but I vaguely remember if compatibility with usage of the
defined function in \xintdeffunc is hoped for that it should first expand its argument
even though in our context if purely numerical this is unneeded (and f-expansion will
end up hitting a brace if the input is a nutple). Adding anyhow. I have other things in
mind currently, to examine later, already quite enough hours on this package.

1152 \def\Phi@BList#1{\expandafter\expandafter\expandafter
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1153 \phi@blist_b\expandafter\string\romannumeral *&&@#1;3}%
1154 \catcode™ [=1 \catcode ]=2 \catcode \{=12 % }
1155 \def\phi@blist_b #1[\if#1{\expandafter\phi@blist X % }

1156 \else\expandafter\phi@blist_N\fi #1]%
1157 \catcode™ [=12 \catcode ]=12 \catcode \{=1 % }

1158 \def\phi@blist_N #1;{%

1159 \expandafter\xint_gobble_i\expanded
1160 \expandafter\phiblist_ab \expanded{{\xintNum{#1}3}3}{0};%

1161 }%
1162 \def\phi@blist_X #1{%

1163 \expandafter\phi@blist_x\expandafter{\iffalse}\fi

1164 }%
1165 \def\phi@blist_x #1#2;{%

1166 \expandafter\xint_gobble_i\expanded
1167 \expandafter\phiblist_ab \expanded{{\xintNum{#1}}{\xintNum{#2}}};%

1168 }%

1169 \def\XINT_expr_func_phiexponents #1#2#3%

1170 {%

1171 \expandafter #l\expandafter #2\expandafter{%
1172 \romannumeral * &&@\XINT :NEhook: f:one: from:one

1173 {\romannumeral * &&@\Phi@BList#3}3}%

1174 }%

ATTENTION! we leave the modified catcodes in place!

its catcode other though).

0. Interactive code

Extracts to zeckendorf.tex.

1 \input zeckendorfcore.tex

2 \let\xintfirstoftwo\xint_firstoftwo

3 \let\xintsecondoftwo\xint_secondoftw

4 \let\zeckexprmapwithin\XINT: expr:mapwithin
5 \def\zeckNumbraced#1{{\xintNum{#13}}}

6 \xintexprSafeCatcodes
7

8 \let\ZeckShouldISayOrShouldIGo\iftrue
9 \def\ZeckCmdQ{\let\ZeckShouldISayOrShouldIGo\iffalse}

10 \let\ZeckCmdX\ZeckCmdQ
11 \let\ZeckCmdx\ZeckCmdQ
12 \let\ZeckCmdg\ZeckCmdQ
13

14 \newif\ifzeckphimode

15 \newif\ifzeckindices

16 \zeckindicestrue

17 \newif\ifzeckfromN

18 \zeckfromNtrue

19 \newif\1fzeckmeasuretimes

20 \newif\ifzeckevalonly
21 \newif\ifzeckhex

22

23 \def\ZeckCmdP{%
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24 \zeckphimodetrue

25 \ifzeckindices\ZeckCmdL\else\Zeck@CmdB\ fi
26 }

27 \let\ZeckCmdp\ZeckCmdP

28 \def\ZeckCmdZ{%

29 \zeckphimodefalse

30 \ifzeckindices\ZeckCmdL\else\Zeck@CmdB\ fi
31}

32 \let\ZeckCmdz\ZeckCmdZ
33
34 \def\PhiTypesetXPrint #1#2{a=#1, b=#2}

35 \def\ZeckCmdL {%

36 \zeckindicestrue

37 \ifzeckphimode

38 \def\ZeckFromN{\PhiExponents}%

39 \def\ZeckToN##1{\PhiTypesetX{\PhiXfromExponents{##13}}}%
40 \else

41 \def\ZeckFromN{\ZeckIndices}%

42 \def\ZeckToN{\ZeckNFromIndices}%

43 \fi

44 }

45 \1let\ZeckCmdl\ZeckCmdL
46

47 \def\ZeckCmdB{%

48 \zeckindicesfalse

49 \zeckhexfalse

50 \Zeck@CmdB

51 }

52 \def\Zeck@CmdB{%

53 \ifzeckphimode

54 \ifzeckhex

55 \def\ZeckFromN{\PhiBaseHexPhi}%
56 \def\ZeckToN##1{\PhiTypesetX{\PhiXfromBaseHexPhi {##1}}}%
57 \else

58 \def\ZeckFromN{\PhiBasePhi}%

59 \def\ZeckToN##1{\PhiTypesetX{\PhiXfromBasePhi {##1}}}%
60 \fi

61 \else

62 \ifzeckhex

63 \def\ZeckFromN{\ZeckHexWord}%

64 \def\ZeckToN{\ZeckNfromHexWord}%
65 \else

66 \def\ZeckFromN{\ZeckWord}%

67 \def\ZeckToN{\ZeckNfromWord}%

68 \fi

69 \fi

70 }

71 \let\ZeckCmdW\ZeckCmdB
72 \1let\ZeckCmdb\ZeckCmdB
73 \let\ZeckCmdw\ZeckCmdB
74

75 \def\ZeckCmdC{%
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76 \zeckindicesfalse
77 \zeckhextrue

78 \Zeck@CmdB

79}

80 \let\ZeckCmdc\ZeckCmdC
81

82 \def\ZeckConvert{%
83 \csname Zeck\ifzeckfromN From\else To\fi N\endcsname
84 }

85 \def\ZeckCmdT{\ifzeckfromN\zeckfromNfalse\else\zeckfromNtrue\fi}
86 \let\ZeckCmdt\ZeckCmdT

87

88 \expandafter\def\csname ZeckCmd@\endcsname{%

89 \ifdefined\xinttheseconds

90 \ifzeckmeasuretimes\zeckmeasuretimesfalse

91 \else \zeckmeasuretimestrue

92 \fi

93 \else

94 \immediate\writel28{Sorry, this requires xintexpr 1.4n or later.}%
o5 \fi

96 }

97

08 \def\ZeckCmdE{\ifzeckevalonly\zeckevalonlyfalse\else\zeckevalonlytrue\fi}
99 \let\ZeckCmde\ZeckCmdE

100

101 \def\ZeckCmdH{\immediate\writel28{\ZeckHelpPanel}}

102 \let\ZeckCmdh\ZeckCmdH

103

104 \ZeckCmdL

105

106 \def\ZeckCommands{Enter input or command

107 , z, p, 1, w, b, c, t, e, @ or h for help).}
108 \def\ZeckPrompt{%

100 \ifzeckevalonly

110 <<<Eval-only (e to quit)>>>AAJ%

111 [IN] expression =

112 \else

113 \1fzeckfromN

114 \ifzeckphimode

115 \ifzeckindices <convert to Bergman phi-exponents>AAJ%
116 \else

117 \ifzeckhex

118 <convert to Bergman hexphi-representation>AAJ%
119 \else

120 <convert to Bergman phi-representation>AAJ%
121 \fi

122 \fi

123 \ZeckCommandsAAJ

124 [IN] a + b phi =

125 \else

126 \ifzeckindices <convert to Zeckendorf indices>AAJ%

127 \else
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128 \ifzeckhex

129 <convert to Zeckendorf hex-word>AAJ%
130 \else

131 <convert to Zeckendorf word>AAJl%
132 \fi

133 \fi

134 \ZeckCommandsAAJ

135 [IN] N =

136 \fi

137 \else

138 \ifzeckphimode <convert to a + b phi>AAJ
139 \ZeckCommandsAAJ

140 [IN]

141 \ifzeckindices phi exponents =

142 \else

143 \ifzeckhex

144 hexphi-representation =
145 \else

146 phi-representation =
147 \fi

148 \fi

149 \else <convert to integer>AAJ
150 \ZeckCommandsAAJ

151 [IN]

152 \ifzeckindices indices =

153 \else

154 \ifzeckhex

155 hex word =

156 \else

157 binary word =

158 \fi

159 \fi

160 \fi

161 \fi

162 \fi

163 }

164 \newlinechar10

165 \immediate\write128{}

166 \immediate\writel28{Welcome to Zeckendorf 0.9d (2025/11/16, JFB).}
167

168 \def\ZeckHelpPanel {Commands (lowercase also):AAJ

169 Q to quit. Also X.AA)

170 H for this help.AA)

171 Z to switch to Zeckendorf-mode (starting default).AA)
172 P to switch to phi-mode.AA]

173 L for indices or exponents.AA)

174 W for binary words or reps. Also B.AA]

175 C for hexadecimal words or reps.AA]

176 T to toggle the direction of conversions.AA]

177 E to toggle to and from \string\xinteval-only mode.AA]
178 @ to toggle measurement of execution times.AA]

179 AAJ
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180 - binary words, phi-representations, are parsed only by \string\edef.AA]
181 - all other inputs are handled by \noexpand\xinteval so for example one’A]
182 \space\space

183 can use 24100 or 100! or binomial(100,50). And a list of indices?A]
184 \space\space

185 or exponents can be for example seq(3*a+l, a=0..10).4A)

186 AAJ

187 \space\space The fib() function computes Fibonacci numbers.AA]

188 \space\space The character $ serves as symbol for Knuth multiplication.AAJ%
189 **** empty input is not supported!

190 no linebreaks in input! ##%%}

191

192 \immediate\writel28{\ZeckHelpPanel}

193

194 \def\zeckpar{\par}

195 \long\def\xintbye#1\xintbye{}

196 \long\def\zeckgobbleii#1#2{}

197 \long\def\zeckfirstoftwo#1#2{#1}

198 \def\zeckonlyonehelper #1#2#3%

199 \zeckonlyonehelper{\xintbye#2\zeckgobbleii\xintbye0}

200

201 \xintFor*#1 in {0123456789}\do{%

202 \expandafter\def\csname ZeckCmd#1\endcsname{%

203 \immediate\writel28{%

204 ** Due to under-funding, a lone #1 is not accepted. Inputs must haveAAJ%
205 ** two characters at least. Think about a donation? Try 0#1.}}

206 }%

207 \xintloop

208 \message{\ZeckPrompt}

209 \read-1to\zeckbuf

210 \ifx\zeckbuf\zeckpar

211  \immediate\writel28{#*** empty input is not supported, please try again.}
212 \else

213 \edef\zeckbuf{\zeckbuf}

Space token at end of \zeckbuf is annoying. We could have used \xintLength which does
not count space tokens.

214 \1if 1\expandafter\zeckonlyonehelper\zeckbuf\xintbye\zeckonlyonehelperil%
215 \ifcsname ZeckCmd\expandafter\zeckfirstoftwo\zeckbuf\relax\endcsname

216 \csname ZeckCmd\expandafter\zeckfirstoftwo\zeckbuf\relax\endcsname
217 \else

218 \immediate\writel128{%

219 #%%% Unrecognized command letter

220 \expandafter\zeckfirstoftwo\zeckbuf\relax. Try again.AAJ}

221 \fi

222 \else

Using the conditional so that this can also be used by default with older xint.

With 0.9b the time needed for parsing the input was not counted, but this meant that
measuring in the evaluation-only mode always printed 0.0s.

0.9c has refactored here entirely.

223 \ifzeckmeasuretimes\xintresettimer\fi
224 \ifl\ifzeckevalonly0\fi\ifzeckfromNO\fi\ifzeckindices0\£fil¥%
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225 \edef\ZeckIn{{\zeckbuf}}%

226 \else

227 \expandafter\def\expandafter\ZeckIn\expandafter{%
228 \romannumeral@\xintbareeval\zeckbuf\relax}%

0.9c uses \xinteval. It adds phi-mode to the interactive interface, but as 1/phi or
anything doing an operation will inject *“raw xintfrac format'', we have to be careful
about that, because we use \PhiExponents and \PhiBasePhi which are assuming being used
with either an integer a or a pair {a}{b}. Using here some core level auxiliary from
xintexpr to avoid a dozen lines like what was done for \Phi@BList. For this to work we
need a variant of \xintNum which outputs with extra braces. This was for the author a
refreshing journey to revisit forgotten deep code written years ago for xintexpr. But
it would be more efficient to do something akin to the \Phi@BList business.

By the way we have to do this not only for phi-mode, but also for integer-mode, because
some input such as 1e40 will be internally 1[40] which \ZeckIndices does not understand
as it does not apply \xintNum. In fact any input doing an operation such as an addition
will be in *“raw xintfrac format'' internally. So we have to do a normalization also
for lists of exponents or indices.

229 \ifzeckevalonly\else

230 \expandafter\def\expandafter\ZeckIn
231 \expanded

232 \expandafter\zeckexprmapwithin

233 \expandafter\zeckNumbraced\ZeckIn

For lists of exponents and indices the predefined macros expect comma separated lists.
We can either "print" using (full) \xinteval, or use \xintListwithSep, or write a little
helper requiring only \edef expansion. We add one level of bracing removed later.

234 \ifzeckfromN\else

235 \expandafter\def\expandafter\ZeckIn\expandafter{%
236 \expandafter{\romannumeral0\xintlistwithsep,\ZeckIn}%
237 }%

238 \fi

239 \fi

240 \fi

241 \immediate\writel28{%

242 [OUT] \ifzeckevalonly

243 \expanded\expandafter\XINTexprprint\expandafter.\ZeckIn
244 \else

245 \expandafter\ZeckConvert\ZeckIn

246 \fi

247 }%

248 \ifzeckmeasuretimes

249 \edef\tmp{\xinttheseconds}%

250 \immediate\writel128{%

251 \ifzeckevalonly Evaluation \else Conversion \fi

252 took \tmp s%

253 1%

254 \fi

255  \fi

256 \fi

257 \ZeckShouldISayOrShouldIGo
258 \repeat
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10. ATEX code

259
260 \immediate\writel28{Bye. Session was saved to log file (hard-wrapped too, alas).}

261 \bye

10. IATEX code

Extracts to zeckendorf.sty.

1 \NeedsTeXFormat{LaTeX2e}
2 \ProvidesPackage{zeckendorf}
3 [2025/11/16 v0.9d Zeckendorf and base-phi representations of big integers (JFB)1%

4 \RequirePackage{xintexpr}

5 \RequirePackage{xintbinhex}% superfluous if with xint 1.4n or later
6 \input zeckendorfcore.tex

7 \ZECKrestorecatcodesendinput¥®
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