Haskell-style type classes with Isabelle/Isar

Florian Haftmann

18 January 2026

Abstract

This tutorial introduces Isar type classes, which are a convenient mech-
anism for organizing specifications. Essentially, they combine an op-
erational aspect (in the manner of Haskell) with a logical aspect, both
managed uniformly.

1 INTRODUCTION 1

1 Introduction

Type classes were introduced by Wadler and Blott [8] into the Haskell lan-
guage to allow for a reasonable implementation of overloading!. As a canon-
ical example, a polymorphic equality function eq :: @« = « = bool which is
overloaded on different types for «, which is achieved by splitting introduc-
tion of the eq function from its overloaded definitions by means of class and
instance declarations: 2

class eq where
eq ;1 o = a = bool

instance nat :: eq where

eq 00 = True
eq 0 - = False
eq - 0 = Fulse

eq (Suc n) (Suc m) =eqgnm

instance (::eq, B::eq) pair :: eq where
eq (1, yl) (22, y2) = eq x1 22 A eq yl y2

class ord extends eq where
less-eq :: o = a = bool
less :: a = a = bool

Type variables are annotated with (finitely many) classes; these annotations
are assertions that a particular polymorphic type provides definitions for
overloaded functions.

Indeed, type classes not only allow for simple overloading but form a
generic calculus, an instance of order-sorted algebra [5, 6, 10].

From a software engineering point of view, type classes roughly correspond
to interfaces in object-oriented languages like Java; so, it is naturally desirable
that type classes do not only provide functions (class parameters) but also
state specifications implementations must obey. For example, the class eq
above could be given the following specification, demanding that class eq is
an equivalence relation obeying reflexivity, symmetry and transitivity:

class eq where
eq :: o = a = bool
satisfying

Ithroughout this tutorial, we are referring to classical Haskell 1.0 type classes, not
considering later additions in expressiveness
2syntax here is a kind of isabellized Haskell

2 A SIMPLE ALGEBRA EXAMPLE 2

refl: eq x x
Sym: eq Ty <— eq Ty
trans: eqx y N eqy z — eqx 2

From a theoretical point of view, type classes are lightweight modules; Haskell
type classes may be emulated by SML functors [9]. Isabelle/Isar offers a
discipline of type classes which brings all those aspects together:

1. specifying abstract parameters together with corresponding specifica-
tions,

2. instantiating those abstract parameters by a particular type
3. in connection with a “less ad-hoc” approach to overloading,

4. with a direct link to the Isabelle module system: locales [3].

[sar type classes also directly support code generation in a Haskell like fash-
ion. Internally, they are mapped to more primitive Isabelle concepts [2].

This tutorial demonstrates common elements of structured specifications
and abstract reasoning with type classes by the algebraic hierarchy of semi-
groups, monoids and groups. Our background theory is that of Isabelle/HOL
[7], for which some familiarity is assumed.

2 A simple algebra example

2.1 Class definition

Depending on an arbitrary type «, class semigroup introduces a binary op-
erator (®) that is assumed to be associative:

class semigroup =
fixes mult :: <« = o = o (infixl «®» 70)
assumes assoc: ((r R YY) R z=2Q (y @ z)

This class specification consists of two parts: the operational part names
the class parameter (fixes), the logical part specifies properties on them
(assumes). The local fixes and assumes are lifted to the theory toplevel,
yielding the global parameter mult :: a::semigroup = o = « and the global
theorem semigroup.assoc: Nz y z :: a::semigroup. (x ® y) Rz=zQ (y ®

2 A SIMPLE ALGEBRA EXAMPLE 3

2.2 Class instantiation

The concrete type int is made a semigroup instance by providing a suitable
definition for the class parameter (®) and a proof for the specification of
assoc. This is accomplished by the instantiation target:

instantiation int :: semigroup
begin

definition
mult-int-def: <i @ j = i + (jint)

instance proof
fix ijk:: int have «(i + j) + k=1 + (j + k)» by simp
then show (i ®) ® k=1 ® (j ® k)
unfolding mult-int-def .
qed

end

instantiation defines class parameters at a particular instance using com-
mon specification tools (here, definition). The concluding instance opens
a proof that the given parameters actually conform to the class specification.
Note that the first proof step is the standard method, which for such instance
proofs maps to the intro-classes method. This reduces an instance judgement
to the relevant primitive proof goals; typically it is the first method applied
in an instantiation proof.

From now on, the type-checker will consider int as a semigroup automati-
cally, i.e. any general results are immediately available on concrete instances.

Another instance of semigroup yields the natural numbers:

instantiation nat :: semigroup
begin

primrec mult-nat where
«(0::nat) ® n = n»
| <Suc m ® n = Suc (m & n)

instance proof
fix m n q :: nat
show im@n® ¢=m® (n ® q)»
by (induct m) auto

2 A SIMPLE ALGEBRA EXAMPLE 4

qed
end

Note the occurrence of the name mult-nat in the primrec declaration; by
default, the local name of a class operation f to be instantiated on type
constructor x is mangled as f-x. In case of uncertainty, these names may be
inspected using the print-context command.

2.3 Lifting and parametric types

Overloaded definitions given at a class instantiation may include recursion
over the syntactic structure of types. As a canonical example, we model
product semigroups using our simple algebra:

instantiation prod :: (semigroup, semigroup) semigroup
begin

definition
mult-prod-def: <p1 @ pa = (fst p1 @ fst p2, snd p1 @ snd p2)»

instance proof
fix p1 p2 ps3 i <aiisemigroup X B:semigroup)
show <p; ® p2 ® p3 = p1 @ (p2 ® p3)»
unfolding mult-prod-def by (simp add: assoc)
qged

end

Associativity of product semigroups is established using the definition of (®)
on products and the hypothetical associativity of the type components; these
hypotheses are legitimate due to the semigroup constraints imposed on the
type components by the instance proposition. Indeed, this pattern often
occurs with parametric types and type classes.

2.4 Subclassing

We define a subclass monoidl (a semigroup with a left-hand neutral) by
extending semigroup with one additional parameter neutral together with its
characteristic property:

2 A SIMPLE ALGEBRA EXAMPLE 5

class monoidl = semigroup +
fixes neutral :: «a» (<1»)
assumes neutl: <1 ® © =

Again, we prove some instances, by providing suitable parameter definitions
and proofs for the additional specifications. Observe that instantiations for
types with the same arity may be simultaneous:

instantiation nat and int :: monoidl
begin

definition
neutral-nat-def: <1 = (0::nat)>

definition
neutral-int-def: <1 = (0::int)»

instance proof
fix n :: nat
show (1 ® n = n»
unfolding neutral-nat-def by simp
next
fix k :: int
show (1 ® k = k>
unfolding neutral-int-def mult-int-def by simp
qed

end

instantiation prod :: (monoidl, monoidl) monoidl
begin

definition
neutral-prod-def: <1 = (1, 1)»

instance proof
fix p 1 <a::monoidl x B::monoidl
show <1 ® p = p»
unfolding neutral-prod-def mult-prod-def by (simp add: neutl)
ged

end

2 A SIMPLE ALGEBRA EXAMPLE 6

Fully-fledged monoids are modelled by another subclass, which does not add
new parameters but tightens the specification:

class monoid = monoidl +
assumes neutr: <x ® 1 = x»

instantiation nat and int :: monoid
begin

instance proof
fix n :: nat
show (n ® 1 = m»
unfolding neutral-nat-def by (induct n) simp-all
next
fix k :: int
show <k ® 1 = k>
unfolding neutral-int-def mult-int-def by simp
qed

end

instantiation prod :: (monoid, monoid) monoid
begin

instance proof
fix p 1 <a::monoid X B::monoid»
show <(p ® 1 = p»
unfolding neutral-prod-def mult-prod-def by (simp add: neutr)
qed

end

To finish our small algebra example, we add a group class with a correspond-
ing instance:

class group = monoidl +
fixes inverse :: «a = > («(-+)» [1000] 999)
assumes nvl: <z+ ® z = 1>

instantiation int :: group
begin

definition

3 TYPE CLASSES AS LOCALES 7

inverse-int-def: i+ = — (i::int)»

instance proof
fix 7 :: int
have «(—i + i = 0> by simp
then show i+~ ® i = 1»
unfolding mult-int-def neutral-int-def inverse-int-def .
qed

end

3 Type classes as locales

3.1 A look behind the scenes

The example above gives an impression how Isar type classes work in practice.
As stated in the introduction, classes also provide a link to Isar’s locale
system. Indeed, the logical core of a class is nothing other than a locale:

class idem =
fixes f : «a = @
assumes idem: <f (fz) = fo

essentially introduces the locale

locale idem =
fixes f 1 «a = w
assumes idem: <f (fz) = f

together with corresponding constant(s):

consts f :: «a = @

The connection to the type system is done by means of a primitive type class
idem, together with a corresponding interpretation:

interpretation idem-class:
idem <f :: (cidem) =

This gives you the full power of the Isabelle module system; conclusions in
locale idem are implicitly propagated to class idem.

3 TYPE CLASSES AS LOCALES 8

3.2 Abstract reasoning

[sabelle locales enable reasoning at a general level, while results are implicitly
transferred to all instances. For example, we can now establish the left-cancel
lemma for groups, which states that the function (z ®) is injective:

lemma (in group) left-cancel: <z @ y =2 ® 2z +— y =
proof
assume r @ Yy = & 2»
then have (z+ ® (z ® y) = z+ ® (z ® 2)» by simp
then have ((z+ ®) ® y = (z+ ® z) ® 2> using assoc by simp
then show (y = 2> using neutl and invl by simp
next
assume <y = 2»
then show (z ® y = ¢z ® 2> by simp
qed

Here the “in group” target specification indicates that the result is recorded
within that context for later use. This local theorem is also lifted to the
global one group.left-cancel: Ax y z :: az:group. © @ y =1 ® 2z +— y = 2
Since type int has been made an instance of group before, we may refer to
that fact aswell Az yz o int. 1 Q@ y=2® 2z +— y = 2

3.3 Derived definitions

Isabelle locales are targets which support local definitions:

primrec (in monoid) pow-nat :: <nat = «a = a» where
<pow-nat 0 z = 1»
| <pow-nat (Suc n) r =z ® pow-nat n

If the locale group is also a class, this local definition is propagated onto a
global definition of pow-nat :: nat = a::monoid = a::monoid with corre-
sponding theorems

pow-nat 0 z =1

pow-nat (Suc n) © = x @ pow-nat n x.
As you can see from this example, for local definitions you may use any spec-
ification tool which works together with locales, such as Krauss’s recursive
function package [4].

3 TYPE CLASSES AS LOCALES 9

3.4 A functor analogy

We introduced Isar classes by analogy to type classes in functional program-
ming; if we reconsider this in the context of what has been said about type
classes and locales, we can drive this analogy further by stating that type
classes essentially correspond to functors that have a canonical interpreta-
tion as type classes. There is also the possibility of other interpretations. For
example, lists also form a monoid with append and [| as operations, but it
seems inappropriate to apply to lists the same operations as for genuinely al-
gebraic types. In such a case, we can simply make a particular interpretation
of monoids for lists:

interpretation list-monoid: monoid append <[>
proof qed auto

This enables us to apply facts on monoids to lists, e.g. [| @ z = x.
When using this interpretation pattern, it may also be appropriate to map
derived definitions accordingly:

primrec replicate :: <nat = « list = « listy where
<replicate 0 - =[]
| <replicate (Suc n) xs = zs Q replicate n xs

interpretation list-monoid: monoid append <[> rewrites
<monoid.pow-nat append [| = replicate)
proof —
interpret monoid append <[]> ..
show <monoid.pow-nat append [| = replicate)
proof
fix n
show «(monoid.pow-nat append [| n = replicate n»
by (induct n) auto
ged
qged intro-locales

This pattern is also helpful to reuse abstract specifications on the same type.
For example, think of a class preorder; for type nat, there are at least two
possible instances: the natural order or the order induced by the divides
relation. But only one of these instances can be used for instantiation;
using the locale behind the class preorder, it is still possible to utilise the
same abstract specification again using interpretation.

3 TYPE CLASSES AS LOCALES 10

3.5 Additional subclass relations

Any group is also a monoid; this can be made explicit by claiming an addi-
tional subclass relation, together with a proof of the logical difference:

subclass (in group) monoid
proof
fix z
from invl have <z+ ® x = 1> by simp
with assoc [symmetric] neutl invl have <z+ ® (z ® 1) = 2+ ® > by simp
with left-cancel show <x ® 1 = x> by simp
qed

The logical proof is carried out on the locale level. Afterwards it is prop-
agated to the type system, making group an instance of monoid by adding
an additional edge to the graph of subclass relations (figure 1).

semigroup semigroup
monloidl moioidl
monozd/ monozd/
group \Emup

Figure 1: Subclass relationship of monoids and groups: before and after es-
tablishing the relationship group C monoid; transitive edges are left out.

For illustration, a derived definition in group using pow-nat

definition (in group) pow-int :: <int = o = «» where
<pow-int kx = (if k >0
then pow-nat (nat k) x
else (pow-nat (nat (— k)) z)=)

yields the global definition of pow-int :: int = a::group = «::group with the
corresponding theorem pow-int k x = (if 0 < k then pow-nat (nat k) z else
(pow-nat (nat (— k)) z)=).

4 FURTHER ISSUES 11

3.6 A note on syntax

As a convenience, class context syntax allows references to local class opera-
tions and their global counterparts uniformly; type inference resolves ambi-
guities. For example:

context semigroup

begin
term «r ® y» — example 1
term «(z::nat) ® y» — example 2
end
term «z @ y» — example 3

Here in example 1, the term refers to the local class operation mult [«],
whereas in example 2 the type constraint enforces the global class opera-
tion mult [nat]. In the global context in example 3, the reference is to the
polymorphic global class operation mult [« :: semigroup).

4 Further issues

4.1 Type classes and code generation

Turning back to the first motivation for type classes, namely overloading, it is
obvious that overloading stemming from class statements and instantiation
targets naturally maps to Haskell type classes. The code generator framework
[1] takes this into account. If the target language (e.g. SML) lacks type
classes, then they are implemented by an explicit dictionary construction.
As example, let’s go back to the power function:

definition example :: int where
<example = pow-int 10 (—2)»

This maps to Haskell as follows:

4 FURTHER ISSUES 12

{-# LANGUAGE EmptyDataDecls, RankNTypes, ScopedTypeVariables #-}
module Example(Num, Int, example) where {

import Prelude ((==), (/=), (), (=), (=), (), (B, (=),), /),
(), (>>=), (>>), (=<9, @), (1D,),),), @, G, ¢+,
(), Eq, error, id, return, not, fst, snd, map, filter, concat,
concatMap, reverse, zip, null, takeWhile, dropWhile, all, any, Integer,
negate, abs, divMod, String, Bool(True, False), Maybe(Nothing, Just));

import Data.Bits ((.&.), (.[.), (.7.));

import qualified Prelude;

import qualified Data.Bits;

data Num = One | BitO Num | Bitl Num;

data Int = Zero_int | Pos Num | Neg Num;

neutral_int :: Int;
neutral_int = Zero_int;

plus_num :: Num -> Num -> Num;

plus_num One One = BitO One;

plus_num One (BitO n) = Bitl n;

plus_num One (Bitl n) = BitO (plus_num n One);

plus_num (BitO m) One = Bitl m;

plus_num (BitO m) (BitO n) = BitO (plus_num m n);

plus_num (BitO m) (Bitl n) = Bitl (plus_num m n);

plus_num (Bitl m) One = Bit0 (plus_num m One);

plus_num (Bitl m) (BitO n) = Bitl (plus_num m n);

plus_num (Bitl m) (Bitl n) = BitO (plus_num (plus_num m n) One);

uminus_int :: Int -> Int;
uminus_int Zero_int = Zero_int;
uminus_int (Pos m) = Neg m;
uminus_int (Neg m) = Pos m;

one_int :: Int;
one_int = Pos One;

bitM :: Num -> Num;

bitM One = One;

bitM (BitO n) = Bitl (bitM n);
bitM (Bitl n) = Bitl (BitO n);

dup :: Int -> Int;

dup Zero_int = Zero_int;
dup (Pos n) = Pos (Bit0O n);
dup (Neg n) = Neg (BitO n);

4 FURTHER ISSUES 13

plus_int :: Int -> Int -> Int;

plus_int k Zero_int = k;

plus_int Zero_int 1 = 1;

plus_int (Pos m) (Pos n) = Pos (plus_num m n);
plus_int (Pos m) (Neg n)
plus_int (Neg m) (Pos n)
plus_int (Neg m) (Neg n)

sub m n;
sub n m;
Neg (plus_num m n);

sub :: Num -> Num -> Int;

sub One One = Zero_int;

sub (BitO0 m) One = Pos (bitM m);

sub (Bitl m) One = Pos (BitO m);

sub One (BitO n) Neg (bitM n);

sub One (Bitl n) = Neg (BitO n);

sub (BitO0 m) (BitO n) = dup (sub m n);

sub (Bitl m) (Bitl n) = dup (sub m n);

sub (Bitl m) (BitO n) = plus_int (dup (sub m n)) one_int;
sub (BitO0 m) (Bitl n) = minus_int (dup (sub m n)) one_int;

minus_int :: Int -> Int -> Int;

minus_int k Zero_int = k;

minus_int Zero_int 1 = uminus_int 1;

minus_int (Pos m) (Pos n) = sub m n;

minus_int (Pos m) (Neg n) Pos (plus_num m n);
minus_int (Neg m) (Pos n) = Neg (plus_num m n);
minus_int (Neg m) (Neg n) = sub n m;

mult_int :: Int -> Int -> Int;
mult_int i j = plus_int i j;

inverse_int :: Int -> Int;
inverse_int i = uminus_int 1i;

class Semigroup a where {
mult :: a -> a -> a;

};

class (Semigroup a) => Monoidl a where {
neutral :: a;

};

class (Monoidl a) => Monoid a where {

}s

class (Monoid a) => Group a where {
inverse :: a -> a;

};

instance Semigroup Int where {

4 FURTHER ISSUES

mult = mult_int;

};

instance Monoidl Int where {
neutral = neutral_int;

};

instance Monoid Int where {

};

instance Group Int where {
inverse = inverse_int;

};
data Nat = Zero_nat | Suc Nat;

plus_nat :: Nat -> Nat -> Nat;
plus_nat Zero_nat n = n;
plus_nat (Suc m) n = plus_nat m (Suc n);

one_nat :: Nat;
one_nat = Suc Zero_nat;

nat_of _num :: Num -> Nat;
nat_of _num One = one_nat;
nat_of _num (BitO n) = let {
m = nat_of_num n;
} in plus_nat m m;
nat_of num (Bitl n) = let {
m = nat_of_num n;
} in Suc (plus_nat m m);

nat :: Int -> Nat;

nat (Neg k) = Zero_nat;

nat Zero_int = Zero_nat;
nat (Pos k) = nat_of_num k;

less_eq_num :: Num -> Num -> Bool;

less_eq_num One n = True;

less_eq_num (BitO0 m) One = False;

less_eq_num (Bitl m) One = False;

less_eq_num (BitO0 m) (BitO n) = less_eq_num m n;
less_eq_num (BitO0 m) (Bitl n) = less_eq_num m n;
less_eq_num (Bitl m) (Bitl n) = less_eq_num m n;
less_eq_num (Bitl m) (BitO n) less_num m n;

less_num :: Num -> Num -> Bool;
less_num m One = False;
less_num One (BitO n) = True;

4 FURTHER ISSUES

less_num One (Bitl n) = True;

less_num (BitO m) (BitO n) = less_num m n;
less_num (BitO m) (Bitl n) less_eq_num m n;
less_num (Bitl m) (Bitl n) less_num m n;
less_num (Bitl m) (BitO n) less_num m n;

less_eq_int :: Int -> Int -> Bool;

less_eq_int Zero_int Zero_int = True;
less_eq_int Zero_int (Pos 1) = True;
less_eq_int Zero_int (Neg 1) = False;
less_eq_int (Pos k) Zero_int = False;
less_eq_int (Pos k) (Pos 1) = less_eq_num k 1;
less_eq_int (Pos k) (Neg 1) = False;
less_eq_int (Neg k) Zero_int = True;
less_eq_int (Neg k) (Pos 1) = True;
less_eq_int (Neg k) (Neg 1) = less_eq_num 1 k;

pow_nat :: forall a. (Monoid a) => Nat -> a -> a;
pow_nat Zero_nat x = neutral;
pow_nat (Suc n) x = mult x (pow_nat n x);

pow_int :: forall a. (Group a) => Int -> a -> a;
pow_int k x =
(if less_eq_int Zero_int k then pow_nat (nat k) x
else inverse (pow_nat (nat (uminus_int k)) x));

example :: Int;
example = pow_int (Pos (BitO (Bitl (BitO One)))) (Neg (BitO One));

}

The code in SML has explicit dictionary passing:

structure Example : sig
type num
type int
val example : int

end = struct

datatype num = One | BitO of num | Bitl of num;

datatype int = Zero_int | Pos of num | Neg of num;
val neutral_int : int = Zero_int;
fun plus_num One One = BitO One

| plus_num One (BitO n) = Bitl n
| plus_num One (Bitl n) = Bit0 (plus_num n One)

4 FURTHER ISSUES

| plus_num (BitO m) One = Bitl m

| plus_num (BitO m) (BitO n) = BitO (plus_num m n)

| plus_num (BitO m) (Bitl n) = Bitl (plus_num m n)

| plus_num (Bitl m) One = BitO (plus_num m One)

| plus_num (Bitl m) (BitO n) = Bitl (plus_num m n)

| plus_num (Bitl m) (Bitl n) = BitO (plus_num (plus_num m n) One);

fun uminus_int Zero_int = Zero_int
| uminus_int (Pos m) = Neg m
| uminus_int (Neg m) Pos m;

val one_int : int = Pos One;

fun bitM One = One
| bitM (BitO n) = Bitl (bitM n)
| bitM (Bitl n) = Bitl (BitO n);

fun dup Zero_int = Zero_int
| dup (Pos n) = Pos (BitO n)
| dup (Neg n) = Neg (BitO n);

fun plus_int k Zero_int = k

| plus_int Zero_int 1 =1

| plus_int (Pos m) (Pos n) = Pos (plus_num m n)
| plus_int (Pos m) (Neg n) = subm n
|
|

plus_int (Neg m) (Pos n) = sub nm
plus_int (Neg m) (Neg n) = Neg (plus_num m n)
and sub One One = Zero_int
| sub (BitO m) One = Pos (bitM m)
| sub (Bitl m) One = Pos (BitO m)
| sub One (BitO n) = Neg (bitM n)
| sub One (Bitl n) = Neg (BitO n)
| sub (BitO0 m) (BitO n) = dup (sub m n)
|
|
|

sub (Bitl m) (Bitl n) = dup (sub m n)
sub (Bitl m) (BitO n) = plus_int (dup (sub m n)) one_int
sub (BitO m) (Bitl n) = minus_int (dup (sub m n)) one_int
and minus_int k Zero_int = k
minus_int Zero_int 1 = uminus_int 1
minus_int (Pos m) (Pos n) = subm n
minus_int (Pos m) (Neg n) = Pos (plus_num m n)
minus_int (Neg m) (Pos n) = Neg (plus_num m n)

minus_int (Neg m) (Neg n) = sub n m;
fun mult_int i j = plus_int i j;
fun inverse_int i = uminus_int i;
type ’a semigroup = {mult : ’a -> ’a -> ’a};

val mult = #mult : ’a semigroup -> ’a -> ’a -> ’a;

4 FURTHER ISSUES 17

type ’a monoidl = {semigroup_monoidl : ’a semigroup, neutral : ’a};

val semigroup_monoidl = #semigroup_monoidl : ’a monoidl -> ’a semigroup;
val neutral = #neutral : ’a monoidl -> ’a;

type ’a monoid = {monoidl_monoid : ’a monoidl};

val monoidl _monoid = #monoidl _monoid : ’a monoid -> ’a monoidl;

type ’a group = {monoid_group : ’a monoid, inverse : ’a -> ’a};

val monoid_group = #monoid_group : ’a group -> ’a monoid;

val inverse = #inverse : ’a group -> ’a —> ’a;

val semigroup_int = {mult = mult_int} : int semigroup;

val monoidl_int =
{semigroup_monoidl = semigroup_int, neutral = neutral_int} :
int monoidl;

val monoid_int = {monoidl_monoid = monoidl_int} : int monoid;

val group_int = {monoid_group = monoid_int, inverse = inverse_int}
int group;

datatype nat = Zero_nat | Suc of nat;

fun plus_nat Zero_nat n =n
| plus_nat (Suc m) n = plus_nat m (Suc n);

val one_nat : nat = Suc Zero_nat;

fun nat_of_num One = one_nat

| nat_of_num (BitO n) let

val m = nat_of_num n;
in

plus_nat m m
end
let

val m = nat_of_num n;
in

Suc (plus_nat m m)
end;

| nat_of_num (Bitl n)

fun nat (Neg k) = Zero_nat
| nat Zero_int = Zero_nat
| nat (Pos k) = nat_of_num k;

fun less_eq_num One n = true
| less_eq_num (BitO m) One = false
| less_eq_num (Bitl m) One = false

4 FURTHER ISSUES 18

less_eq_num (BitO0 m) (BitO n) = less_eq num m n
less_eq_num (BitO0 m) (Bitl n) = less_eq_num m n
less_eq_num (Bitl m) (Bitl n)
less_eq_num (Bitl m) (BitO n)
and less_num m One = false
less_num One (BitO n) true
less_num One (Bitl n) = true
less_num (BitO m) (BitO n) = less_num m n
less_num (BitO m) (Bitl n) = less_eq num m n
less_num (Bitl m) (Bitl n) = less_ num m n
less_num (Bitl m) (BitO n) less_num m n;

less_eq_ num m n

less_num m n

fun less_eq_int Zero_int Zero_int = true
less_eq_int Zero_int (Pos 1) = true
less_eq_int Zero_int (Neg 1) = false
less_eq_int (Pos k) Zero_int = false
less_eq_int (Pos k) (Pos 1) = less_eq num k 1
less_eq_int (Pos k) (Neg 1) = false
less_eq_int (Neg k) Zero_int = true
less_eq_int (Neg k) (Pos 1) = true
less_eq_int (Neg k) (Neg 1) = less_eq num 1 k;

fun pow_nat A_ Zero_nat x = neutral (monoidl_monoid A_)
| pow_nat A_ (Suc n) x =
mult ((semigroup_monoidl o monoidl_monoid) A_) x (pow_nat A_ n x);

fun pow_int A_ k x =
(if less_eq_int Zero_int k then pow_nat (monoid_group A_) (nat k) x
else inverse A_ (pow_nat (monoid_group A_) (nat (uminus_int k)) x));

val example : int =
pow_int group_int (Pos (BitO (Bitl (BitO One)))) (Neg (BitO One));

end; (*struct Examplex)

In Scala, implicits are used as dictionaries:

object Example {

abstract sealed class num

final case class One() extends num

final case class BitO(a : num) extends num
final case class Biti(a : num) extends num

abstract sealed class int

final case class zero_int() extends int
final case class Pos(a : num) extends int
final case class Neg(a : num) extends int

4 FURTHER ISSUES

def neutral_int : int =

def plus_num(x0 : num,

case
case
case
case
case
case
case
case
case

}

(One(), One()) =
(One(), Bit0(m))
(One(), Bit1(n))
(BitO(m), One())
(Bit0O(m), BitO(n
(BitO(m), Biti(n
(Bit1(m), One())
(Bit1(m), BitO(n
(Bit1(m), Biti(n

def uminus_int(x0 : int
case zero_int() => zero_int()
case Pos(m) => Neg(m)
case Neg(m) => Pos(m)

}

def one_int : int = Pos

def BitM(x0 : num) : nu
case One() => One()
case BitO(n) => Bit1(BitM(n))
case Bitl(n) => Bit1(Bit0(n))

}

def dup(x0 : int) : int
case zero_int() => zero_int()
case Pos(n) => Pos(Bi
case Neg(n) => Neg(Bi

3

def minus_int(k : int,

case
case
case
case
case
case

}

def sub(x0 : num, x1

case
case
case
case

(k, zero_int())
(zero_int(), 1)
(Pos(m), Pos(n))
(Pos(m), Neg(n))
(Neg(m), Pos(n))
(Neg(m), Neg(n))

(One(), One()) =
(Bit0(m), One())
(Bit1(m), One())
(One (), Bit0(n))

zero_int ()

x1 : num) : num = (x0, x1) match {

> Bit0(One())

=> Bit1(n)

=> BitO(plus_num(n, One()))

=> Bit1(m)

)) => BitO(plus_num(m, n))

)) => Bitl(plus_num(m, n))

=> BitO(plus_num(m, One()))

)) => Bit1(plus_num(m, n))

)) => BitO(plus_num(plus_num(m, n), One()))

) : int = x0 match {

(One)

m = x0 match {

= x0 match {

t0(n))
t0(n))

1 : int) : int = (k, 1) match {
=> k
=> uminus_int (1)
=> sub(m, n)
=> Pos(plus_num(m, n))
=> Neg(plus_num(m, n))
> sub(n, m)

: num) : int = (x0, x1) match {

> zero_int ()

=> Pos(BitM(m))
=> Pos(Bit0(m))
=> Neg(BitM(n))

19

4 FURTHER ISSUES 20

case (One(), Bitl(n)) => Neg(Bit0(n))

case (BitO(m), BitO(n)) => dup(sub(m, n))

case (Bitl1(m), Bitl(n)) => dup(sub(m, n))

case (Bitl(m), BitO0(n)) => plus_int(dup(sub(m, n)), one_int)
case (BitO(m), Bitl(n)) => minus_int(dup(sub(m, n)), one_int)

}

def plus_int(k : int, 1 : int) : int = (k, 1) match {
case (k, zero_int()) => k
case (zero_int(), 1) =>1
case (Pos(m), Pos(n)) => Pos(plus_num(m, n))
case (Pos(m), Neg(n)) => sub(m, n)
case (Neg(m), Pos(n)) => sub(n, m)
case (Neg(m), Neg(n)) => Neg(plus_num(m, n))
}

def mult_int(i : int, j : int) : int = plus_int(i, j)
def inverse_int(i : int) : int = uminus_int (i)

trait semigroup[A] {
val ‘Example.mult‘ : (A, A) => A

}

def mult[Al(a : A, b : A)(implicit A: semigroup[A]) : A
A. ‘Example.mult‘(a, b)

object semigroup {

implicit def ‘Example.semigroup_int‘ : semigroupl[int] = new
semigroup[int] {
val ‘Example.mult‘ = (a : int, b : int) => mult_int(a, b)
}

}

trait monoidl[A] extends semigroupl[A] {
val ‘Example.neutral : A
}
def neutral[A] (implicit A: monoidl[A]) : A = A.‘Example.neutral®
object monoidl {

implicit def ‘Example.monoidl_int‘¢ : monoidl[int] = new monoidl[int] {
val ‘Example.neutral‘ = neutral_int
val ‘Example.mult‘ = (a : int, b : int) => mult_int(a, b)
}
}
trait monoid[A] extends monoidl[A] {
}
object monoid {
implicit def ‘Example.monoid_int‘ : monoid[int] = new monoid[int] {
val ‘Example.neutral‘ = neutral_int

val ‘Example.mult‘ = (a : int, b : int) => mult_int(a, b)

4 FURTHER ISSUES 21

}
}

trait group[A] extends monoid[A] {
val ‘Example.inverse‘ : A => A
}
def inverse[A]l(a : A)(implicit A: group[A]) : A
object group {
implicit def ‘Example.group_int‘ : grouplint] = new group[int] {

A. ‘Example.inverse‘(a)

val ‘Example.inverse‘ = (a : int) => inverse_int(a)
val ‘Example.neutral‘ = neutral_int
val ‘Example.mult‘ = (a : int, b : int) => mult_int(a, b)

¥
}

abstract sealed class nat
final case class zero_nat() extends nat
final case class Suc(a : nat) extends nat

def plus_nat(x0 : nat, n : nat) : nat = (x0, n) match {
case (zero_nat(), n) =>n
case (Suc(m), n) => plus_nat(m, Suc(n))

}
def one_nat : nat = Suc(zero_nat())

def nat_of_num(x0O : num) : nat = x0 match {
case One() => one_nat
case Bit0(n) => {
val m = nat_of_num(n) : nat;
plus_nat(m, m)

}
> {

case Bitl(n)
val m = nat_of_num(n) : nat;
Suc(plus_nat(m, m))
}
¥

def nat(x0 : int) : nat = x0 match {
case Neg(k) => zero_nat()
case zero_int() => zero_nat()
case Pos(k) => nat_of_num(k)

}

def less_num(m : num, x1 : num) : Boolean = (m, x1) match {
case (m, One()) => false
case (One(), BitO(n)) => true
case (One(), Bitl(n)) => true
case (BitO(m), BitO(n)) => less_num(m, n)

4 FURTHER ISSUES 22

case (BitO(m), Bitl(n)) => less_eq_num(m, n)
case (Biti(m), Biti(n)) => less_num(m, n)
case (Biti(m), BitO(n)) => less_num(m, n)

}

def less_eq_num(xO : num, n : num) : Boolean = (x0, n) match {
case (One(), n) => true
case (BitO(m), One()) => false
case (Biti(m), One()) => false
case (BitO(m), BitO(n)) => less_eq_num(m, n)
case (BitO(m), Bitl(n)) => less_eq_num(m, n)
case (Bitl1(m), Bitl(n)) => less_eq_num(m, n)
case (Biti(m), BitO(n)) => less_num(m, n)
}

def less_eq_int(x0 : int, x1 : int) : Boolean = (x0, x1) match {
case (zero_int(), zero_int()) => true
case (zero_int(), Pos(1l)) => true
case (zero_int(), Neg(l)) => false
case (Pos(k), zero_int()) => false
case (Pos(k), Pos(1l)) => less_eq_num(k, 1)
case (Pos(k), Neg(l)) => false
case (Neg(k), zero_int()) => true
case (Neg(k), Pos(1l)) => true
case (Neg(k), Neg(l)) => less_eq_num(l, k)
}

def pow_nat[A : monoid] (xa0 : nat, x : A) : A = (xa0, x) match {
case (zero_nat(), x) => neutral[A]
case (Suc(n), x) => mult[A] (x, pow_nat[A](n, x))

}

def pow_int[A : group]l(k : int, x : A) : A =
(less_eq_int(zero_int(), k) match { case true => pow_nat[A] (nat(k), x)
case false => inverse[A] (pow_nat[A] (nat(uminus_int(k)), x)) })

def example : int =
pow_int[int] (Pos(Bit0(Bit1(Bit0(0ne())))), Neg(Bit0(One())))

} /* object Example */

4.2 Inspecting the type class universe

To facilitate orientation in complex subclass structures, two diagnostics com-
mands are provided:

print-classes print a list of all classes together with associated operations
etc.

REFERENCES 23

class-deps visualizes the subclass relation between all classes as a Hasse

diagram. An optional first sort argument constrains the set of classes
to all subclasses of this sort, an optional second sort argument to all
superclasses of this sort.

References

1]

2]

Florian Haftmann. Code generation from Isabelle theories.
https://isabelle.in.tum.de/doc/codegen.pdf.

Florian Haftmann and Makarius Wenzel. Constructive type classes in
Isabelle. In T. Altenkirch and C. McBride, editors, Types for Proofs and
Programs, TYPES 2006, volume 4502 of LNCS. Springer, 2007.

Florian Kammdller, Markus Wenzel, and Lawrence C. Paulson. Locales: A
sectioning concept for Isabelle. In Y. Bertot, G. Dowek, A. Hirschowitz,

C. Paulin, and L. Thery, editors, Theorem Proving in Higher Order Logics:
TPHOLs 99, volume 1690 of Lecture Notes in Computer Science.
Springer-Verlag, 1999.

Alexander Krauss. Partial recursive functions in Higher-Order Logic. In
U. Furbach and N. Shankar, editors, Automated Reasoning: IJCAR 2006,
volume 4130 of Lecture Notes in Computer Science, pages 589-603.
Springer-Verlag, 2006.

T. Nipkow. Order-sorted polymorphism in Isabelle. In G. Huet and
G. Plotkin, editors, Logical Environments, pages 164—188. Cambridge
University Press, 1993.

T. Nipkow and C. Prehofer. Type checking type classes. In ACM Symp.
Principles of Programming Languages, 1993.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A
Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer-Verlag, 2002.

P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-hoc. In
ACM Symp. Principles of Programming Languages, 1989.

Stefan Wehr and Manuel M. T. Chakravarty. ML modules and Haskell type
classes: A constructive comparison.
https://www.cse.unsw.edu.au/~chak /papers/modules-classes.pdf.

https://isabelle.in.tum.de/doc/codegen.pdf
https://www.cse.unsw.edu.au/~chak/papers/modules-classes.pdf

REFERENCES

[10] Markus Wenzel. Type classes and overloading in higher-order logic. In
Elsa L. Gunter and Amy Felty, editors, Theorem Proving in Higher Order
Logics: TPHOLs ’97, volume 1275 of Lecture Notes in Computer Science.
Springer-Verlag, 1997.

24

	Introduction
	A simple algebra example
	Class definition
	Class instantiation
	Lifting and parametric types
	Subclassing

	Type classes as locales
	A look behind the scenes
	Abstract reasoning
	Derived definitions
	A functor analogy
	Additional subclass relations
	A note on syntax

	Further issues
	Type classes and code generation
	Inspecting the type class universe

