
λ
→

∀
=Is

ab
el
le

β

α

Isar

Code generation from Isabelle/HOL theories

Florian Haftmann
with contributions by Lukas Bulwahn and Tobias Nipkow

18 January 2026

Abstract

This tutorial introduces the code generator facilities of Isabelle/HOL.
They empower the user to turn HOL specifications into corresponding
executable programs in the languages SML, OCaml, Haskell and Scala.

1 INTRODUCTION 1

1 Introduction
This tutorial introduces the code generator facilities of Isabelle/HOL. It al-
lows to turn (a certain class of) HOL specifications into corresponding exe-
cutable code in the programming languages SML [9], OCaml [8], Haskell [11]
and Scala [5].

To profit from this tutorial, some familiarity and experience with Isabelle/HOL
[10] and its basic theories is assumed.

1.1 Code generation principle: shallow embedding
The key concept for understanding Isabelle’s code generation is shallow em-
bedding: logical entities like constants, types and classes are identified with
corresponding entities in the target language. In particular, the carrier of
a generated program’s semantics are equational theorems from the logic. If
we view a generated program as an implementation of a higher-order rewrite
system, then every rewrite step performed by the program can be simulated
in the logic, which guarantees partial correctness [7].

1.2 A quick start with the Isabelle/HOL toolbox
In a HOL theory, the datatype and definition/primrec/fun declarations
form the core of a functional programming language. By default equational
theorems stemming from those are used for generated code, therefore “naive”
code generation can proceed without further ado.

For example, here a simple “implementation” of amortised queues:

datatype ′a queue = AQueue ′a list ′a list

definition empty :: ′a queue where
empty = AQueue [] []

primrec enqueue :: ′a ⇒ ′a queue ⇒ ′a queue where
enqueue x (AQueue xs ys) = AQueue (x # xs) ys

fun dequeue :: ′a queue ⇒ ′a option × ′a queue where
dequeue (AQueue [] []) = (None, AQueue [] [])
| dequeue (AQueue xs (y # ys)) = (Some y, AQueue xs ys)
| dequeue (AQueue xs []) =

(case rev xs of y # ys ⇒ (Some y, AQueue [] ys))

Then we can generate code e.g. for SML as follows:

1 INTRODUCTION 2

export_code empty dequeue enqueue in SML module_name Example

resulting in the following code:

structure Example : sig
type ’a queue
val empty : ’a queue
val dequeue : ’a queue -> ’a option * ’a queue
val enqueue : ’a -> ’a queue -> ’a queue

end = struct

datatype ’a queue = AQueue of ’a list * ’a list;

fun fold f [] s = s
| fold f (x :: xs) s = fold f xs (f x s);

fun rev xs = fold (fn a => fn b => a :: b) xs [];

val empty : ’a queue = AQueue ([], []);

fun dequeue (AQueue ([], [])) = (NONE, AQueue ([], []))
| dequeue (AQueue (xs, y :: ys)) = (SOME y, AQueue (xs, ys))
| dequeue (AQueue (v :: va, [])) = let
val y :: ys = rev (v :: va);

in
(SOME y, AQueue ([], ys))

end;

fun enqueue x (AQueue (xs, ys)) = AQueue (x :: xs, ys);

end; (*struct Example*)

The export_code command takes multiple constants for which code shall
be generated; anything else needed for those is added implicitly. Then follows
a target language identifier and a freely chosen module_name.

Output is written to a logical file-system within the theory context, with
the theory name and “code” as overall prefix. There is also a formal session
export using the same name: the result may be explored in the Isabelle/jEdit
Prover IDE using the file-browser on the URL “isabelle-export:”.

The file name is determined by the target language together with an op-
tional file_prefix (the default is “export” with a consecutive number within
the current theory). For SML, OCaml and Scala, the file prefix becomes a
plain file with extension (e.g. “.ML” for SML). For Haskell the file prefix
becomes a directory that is populated with a separate file for each module
(with extension “.hs”).

Consider the following example:

1 INTRODUCTION 3

export_code empty dequeue enqueue in Haskell
module_name Example file_prefix example

This is the corresponding code:

{-# LANGUAGE EmptyDataDecls, RankNTypes, ScopedTypeVariables #-}

module Example(Queue, empty, dequeue, enqueue) where {

import Prelude ((==), (/=), (<), (<=), (>=), (>), (+), (-), (*), (/),
(**), (>>=), (>>), (=<<), (&&), (||), (^), (^^), (.), ($), ($!), (++),
(!!), Eq, error, id, return, not, fst, snd, map, filter, concat,
concatMap, reverse, zip, null, takeWhile, dropWhile, all, any, Integer,
negate, abs, divMod, String, Bool(True, False), Maybe(Nothing, Just));

import Data.Bits ((.&.), (.|.), (.^.));
import qualified Prelude;
import qualified Data.Bits;

data Queue a = AQueue [a] [a];

empty :: forall a. Queue a;
empty = AQueue [] [];

dequeue :: forall a. Queue a -> (Maybe a, Queue a);
dequeue (AQueue [] []) = (Nothing, AQueue [] []);
dequeue (AQueue xs (y : ys)) = (Just y, AQueue xs ys);
dequeue (AQueue (v : va) []) = (case reverse (v : va) of {

y : ys -> (Just y, AQueue [] ys);
});

enqueue :: forall a. a -> Queue a -> Queue a;
enqueue x (AQueue xs ys) = AQueue (x : xs) ys;

}

For more details about export_code see §9.

1.3 Type classes
Code can also be generated from type classes in a Haskell-like manner. For
illustration here an example from abstract algebra:

class semigroup =
fixes mult :: ′a ⇒ ′a ⇒ ′a (infixl ‹⊗› 70)
assumes assoc: (x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)

1 INTRODUCTION 4

class monoid = semigroup +
fixes neutral :: ′a (‹1›)
assumes neutl: 1 ⊗ x = x

and neutr : x ⊗ 1 = x

instantiation nat :: monoid
begin

primrec mult_nat where
0 ⊗ n = (0::nat)
| Suc m ⊗ n = n + m ⊗ n

definition neutral_nat where
1 = Suc 0

lemma add_mult_distrib:
fixes n m q :: nat
shows (n + m) ⊗ q = n ⊗ q + m ⊗ q
by (induct n) simp_all

instance proof
fix m n q :: nat
show m ⊗ n ⊗ q = m ⊗ (n ⊗ q)

by (induct m) (simp_all add: add_mult_distrib)
show 1 ⊗ n = n

by (simp add: neutral_nat_def)
show m ⊗ 1 = m

by (induct m) (simp_all add: neutral_nat_def)
qed

end

We define the natural operation of the natural numbers on monoids:

primrec (in monoid) pow :: nat ⇒ ′a ⇒ ′a where
pow 0 a = 1
| pow (Suc n) a = a ⊗ pow n a

This we use to define the discrete exponentiation function:

definition bexp :: nat ⇒ nat where
bexp n = pow n (Suc (Suc 0))

The corresponding code in Haskell uses that language’s native classes:

1 INTRODUCTION 5

{-# LANGUAGE EmptyDataDecls, RankNTypes, ScopedTypeVariables #-}

module Example(Nat, bexp) where {

import Prelude ((==), (/=), (<), (<=), (>=), (>), (+), (-), (*), (/),
(**), (>>=), (>>), (=<<), (&&), (||), (^), (^^), (.), ($), ($!), (++),
(!!), Eq, error, id, return, not, fst, snd, map, filter, concat,
concatMap, reverse, zip, null, takeWhile, dropWhile, all, any, Integer,
negate, abs, divMod, String, Bool(True, False), Maybe(Nothing, Just));

import Data.Bits ((.&.), (.|.), (.^.));
import qualified Prelude;
import qualified Data.Bits;

data Nat = Zero_nat | Suc Nat;

plus_nat :: Nat -> Nat -> Nat;
plus_nat Zero_nat n = n;
plus_nat (Suc m) n = plus_nat m (Suc n);

mult_nat :: Nat -> Nat -> Nat;
mult_nat Zero_nat n = Zero_nat;
mult_nat (Suc m) n = plus_nat n (mult_nat m n);

neutral_nat :: Nat;
neutral_nat = Suc Zero_nat;

class Semigroup a where {
mult :: a -> a -> a;

};

class (Semigroup a) => Monoid a where {
neutral :: a;

};

instance Semigroup Nat where {
mult = mult_nat;

};

instance Monoid Nat where {
neutral = neutral_nat;

};

pow :: forall a. (Monoid a) => Nat -> a -> a;
pow Zero_nat a = neutral;
pow (Suc n) a = mult a (pow n a);

bexp :: Nat -> Nat;
bexp n = pow n (Suc (Suc Zero_nat));

1 INTRODUCTION 6

}

This is a convenient place to show how explicit dictionary construction man-
ifests in generated code – the same example in SML:

structure Example : sig
type nat
val bexp : nat -> nat

end = struct

datatype nat = Zero_nat | Suc of nat;

fun plus_nat Zero_nat n = n
| plus_nat (Suc m) n = plus_nat m (Suc n);

fun mult_nat Zero_nat n = Zero_nat
| mult_nat (Suc m) n = plus_nat n (mult_nat m n);

val neutral_nat : nat = Suc Zero_nat;

type ’a semigroup = {mult : ’a -> ’a -> ’a};
val mult = #mult : ’a semigroup -> ’a -> ’a -> ’a;

type ’a monoid = {semigroup_monoid : ’a semigroup, neutral : ’a};
val semigroup_monoid = #semigroup_monoid : ’a monoid -> ’a semigroup;
val neutral = #neutral : ’a monoid -> ’a;

val semigroup_nat = {mult = mult_nat} : nat semigroup;

val monoid_nat = {semigroup_monoid = semigroup_nat, neutral = neutral_nat}
: nat monoid;

fun pow A_ Zero_nat a = neutral A_
| pow A_ (Suc n) a = mult (semigroup_monoid A_) a (pow A_ n a);

fun bexp n = pow monoid_nat n (Suc (Suc Zero_nat));

end; (*struct Example*)

Note the parameters with trailing underscore (A_), which are the dictionary
parameters.

1.4 How to continue from here
What you have seen so far should be already enough in a lot of cases. If you
are content with this, you can quit reading here.

2 CODE GENERATION FOUNDATIONS 7

Anyway, to understand situations where problems occur or to increase
the scope of code generation beyond default, it is necessary to gain some
understanding how the code generator actually works:

• The foundations of the code generator are described in §2.

• In particular §2.6 gives hints how to debug situations where code gen-
eration does not succeed as expected.

• The scope and quality of generated code can be increased dramatically
by applying refinement techniques, which are introduced in §3.

• How to define partial functions such that code can be generated is
explained in §4.

• Inductive predicates can be turned executable using an extension of
the code generator §5.

• If you want to utilize code generation to obtain fast evaluators e.g. for
decision procedures, have a look at §6.

• You may want to skim over the more technical sections §8 and §9.

• The target language Scala [5] comes with some specialities discussed in
§9.3.

• For exhaustive syntax diagrams etc. you should visit the Isabelle/Isar
Reference Manual [14].

Happy proving, happy hacking!

2 Code generation foundations
2.1 Code generator architecture
The code generator is actually a framework consisting of different components
which can be customised individually.

Conceptually all components operate on Isabelle’s logic framework Pure.
Practically, the object logic HOL provides the necessary facilities to make
use of the code generator, mainly since it is an extension of Isabelle/Pure.

2 CODE GENERATION FOUNDATIONS 8

specification tools user proofs

raw code equations preprocessing code equations

intermediate program serialisation

SML

OCaml

Haskell

Scala

translation

Figure 1: Code generator architecture

The constellation of the different components is visualized in the following
picture.
Central to code generation is the notion of code equations. A code equation as
a first approximation is a theorem of the form f t1 t2 . . . tn ≡ t (an equation
headed by a constant f with arguments t1 t2 . . . tn and right hand side t).

• Starting point of code generation is a collection of (raw) code equations
in a theory. It is not relevant where they stem from, but typically they
were either produced by specification tools or proved explicitly by the
user.

• These raw code equations can be subjected to theorem transforma-
tions. This preprocessor (see §2.2) can apply the full expressiveness of
ML-based theorem transformations to code generation. The result of
preprocessing is a structured collection of code equations.

• These code equations are translated to a program in an abstract inter-
mediate language. Think of it as a kind of “Mini-Haskell” with four
statements: data (for datatypes), fun (stemming from code equations),
also class and inst (for type classes).

• Finally, the abstract program is serialised into concrete source code of a
target language. This step only produces concrete syntax but does not
change the program in essence; all conceptual transformations occur in
the translation step.

From these steps, only the last two are carried out outside the logic; by
keeping this layer as thin as possible, the amount of code to trust is kept to
a minimum.

2 CODE GENERATION FOUNDATIONS 9

2.2 The pre- and postprocessor
Before selected function theorems are turned into abstract code, a chain of
definitional transformation steps is carried out: preprocessing. The prepro-
cessor consists of two components: a simpset and function transformers.

The preprocessor simpset has a disparate brother, the postprocessor simpset.
In the theory-to-code scenario depicted in the picture above, it plays no role.
But if generated code is used to evaluate expressions (cf. §6), the postpro-
cessor simpset is applied to the resulting expression before this is turned
back.

The pre- and postprocessor simpsets can apply the full generality of the
Isabelle simplifier. Due to the interpretation of theorems as code equations,
rewrites are applied to the right hand side and the arguments of the left hand
side of an equation, but never to the constant heading the left hand side.

Pre- and postprocessor can be setup to transfer between expressions suit-
able for logical reasoning and expressions suitable for execution. As example,
take list membership; logically it is expressed as x ∈ set xs. But for execution
the intermediate set is not desirable. Hence the following specification:

definition member :: ′a list ⇒ ′a ⇒ bool
where
[code_abbrev]: member xs x ←→ x ∈ set xs

The code_abbrev attribute declares its theorem a rewrite rule for the postpro-
cessor and the symmetric of its theorem as rewrite rule for the preprocessor.
Together, this has the effect that expressions x ∈ set xs are replaced by mem-
ber xs x in generated code, but are turned back into x ∈ set xs if generated
code is used for evaluation.

Rewrite rules for pre- or postprocessor may be declared independently
using code_unfold or code_post respectively.

Function transformers provide a very general interface, transforming a
list of function theorems to another list of function theorems, provided that
neither the heading constant nor its type change. The 0 / Suc pattern used
in theory Code_Abstract_Nat (see §8.3) uses this interface.
The current setup of the pre- and postprocessor may be inspected using the
print_codeproc command. code_thms (see §2.3) provides a convenient
mechanism to inspect the impact of a preprocessor setup on code equations.
Attribute code_preproc_trace allows for low-level tracing:

declare [[code_preproc_trace]]

declare [[code_preproc_trace only: distinct remdups]]

2 CODE GENERATION FOUNDATIONS 10

declare [[code_preproc_trace off]]

2.3 Understanding code equations
As told in §1.1, the notion of code equations is vital to code generation. In-
deed most problems which occur in practice can be resolved by an inspection
of the underlying code equations.

It is possible to exchange the default code equations for constants by ex-
plicitly proving alternative ones:

lemma [code]:
dequeue (AQueue xs []) =

(if xs = [] then (None, AQueue [] [])
else dequeue (AQueue [] (rev xs)))

dequeue (AQueue xs (y # ys)) =
(Some y, AQueue xs ys)

by (cases xs, simp_all) (cases rev xs, simp_all)

The annotation [code] is an attribute which states that the given theorems
should be considered as code equations for a fun statement – the correspond-
ing constant is determined syntactically. The resulting code:

dequeue :: forall a. Queue a -> (Maybe a, Queue a);

dequeue (AQueue xs []) =
(if null xs then (Nothing, AQueue [] [])

else dequeue (AQueue [] (reverse xs)));

dequeue (AQueue xs (y : ys)) = (Just y, AQueue xs ys);

You may note that the equality test xs = [] has been replaced by the predicate
List.null xs. This is due to the default setup of the preprocessor.

This possibility to select arbitrary code equations is the key technique for
program and datatype refinement (see §3).

Due to the preprocessor, there is the distinction of raw code equations
(before preprocessing) and code equations (after preprocessing).

2 CODE GENERATION FOUNDATIONS 11

The first can be listed (among other data) using the print_codesetup
command.

The code equations after preprocessing are already are blueprint of the
generated program and can be inspected using the code_thms command:
code_thms dequeue

This prints a table with the code equations for dequeue, including all code
equations those equations depend on recursively. These dependencies them-
selves can be visualized using the code_deps command.

2.4 Equality
Implementation of equality deserves some attention. Here an example func-
tion involving polymorphic equality:

primrec collect_duplicates :: ′a list ⇒ ′a list ⇒ ′a list ⇒ ′a list where
collect_duplicates xs ys [] = xs
| collect_duplicates xs ys (z#zs) = (if z ∈ set xs

then if z ∈ set ys
then collect_duplicates xs ys zs
else collect_duplicates xs (z#ys) zs

else collect_duplicates (z#xs) (z#ys) zs)

During preprocessing, the membership test is rewritten, resulting in List.member,
which itself performs an explicit equality check, as can be seen in the corre-
sponding SML code:

structure Example : sig
type ’a equal
val collect_duplicates :

’a equal -> ’a list -> ’a list -> ’a list -> ’a list
end = struct

type ’a equal = {equal : ’a -> ’a -> bool};
val equal = #equal : ’a equal -> ’a -> ’a -> bool;

fun eq A_ a b = equal A_ a b;

fun member A_ [] y = false
| member A_ (x :: xs) y = eq A_ x y orelse member A_ xs y;

fun collect_duplicates A_ xs ys [] = xs
| collect_duplicates A_ xs ys (z :: zs) =

(if member A_ xs z

2 CODE GENERATION FOUNDATIONS 12

then (if member A_ ys z then collect_duplicates A_ xs ys zs
else collect_duplicates A_ xs (z :: ys) zs)

else collect_duplicates A_ (z :: xs) (z :: ys) zs);

end; (*struct Example*)

Obviously, polymorphic equality is implemented the Haskell way using a type
class. How is this achieved? HOL introduces an explicit class equal with
a corresponding operation equal_class.equal such that equal_class.equal =
(=). The preprocessing framework does the rest by propagating the equal
constraints through all dependent code equations. For datatypes, instances
of equal are implicitly derived when possible. For other types, you may
instantiate equal manually like any other type class.

2.5 Explicit partiality
Explicit partiality is caused by missing patterns (in contrast to partiality
caused by nontermination, which is covered in Section 4). Here is an example,
again for amortised queues:

definition strict_dequeue :: ′a queue ⇒ ′a × ′a queue where
strict_dequeue q = (case dequeue q

of (Some x, q ′) ⇒ (x, q ′))

lemma strict_dequeue_AQueue [code]:
strict_dequeue (AQueue xs []) =
(case rev xs of y # ys ⇒ (y, AQueue [] ys))

strict_dequeue (AQueue xs (y # ys)) = (y, AQueue xs ys)
by (simp_all add: strict_dequeue_def) (cases xs, simp_all split: list.split)

In the corresponding code, there is no equation for the pattern AQueue [] []:

strict_dequeue :: forall a. Queue a -> (a, Queue a);

strict_dequeue (AQueue xs []) = (case reverse xs of {
y : ys -> (y, AQueue [] ys);

});

strict_dequeue (AQueue xs (y : ys)) = (y, AQueue xs ys);

2 CODE GENERATION FOUNDATIONS 13

In some cases it is desirable to state this pseudo-“partiality” more explicitly,
e.g. as follows:

axiomatization empty_queue :: ′a

definition strict_dequeue ′ :: ′a queue ⇒ ′a × ′a queue where
strict_dequeue ′ q = (case dequeue q of (Some x, q ′) ⇒ (x, q ′)
| _ ⇒ empty_queue)

lemma strict_dequeue ′_AQueue [code]:
strict_dequeue ′ (AQueue xs []) = (if xs = [] then empty_queue

else strict_dequeue ′ (AQueue [] (rev xs)))
strict_dequeue ′ (AQueue xs (y # ys)) =

(y, AQueue xs ys)
by (simp_all add: strict_dequeue ′_def split: list.splits)

Observe that on the right hand side of the definition of strict_dequeue ′, the
unspecified constant empty_queue occurs. An attempt to generate code for
strict_dequeue ′ would make the code generator complain that empty_queue
has no associated code equations. In most situations unimplemented con-
stants indeed indicated a broken program; however such constants can also
be thought of as function definitions which always fail, since there is never
a successful pattern match on the left hand side. In order to categorise a
constant into that category explicitly, use the code attribute with abort:

declare [[code abort: empty_queue]]

Then the code generator will just insert an error or exception at the appro-
priate position:

empty_queue :: forall a. a;

empty_queue = error "Foundations.empty_queue";

strict_dequeue :: forall a. Queue a -> (a, Queue a);

strict_dequeue (AQueue xs []) =
(if null xs then empty_queue

2 CODE GENERATION FOUNDATIONS 14

else strict_dequeue (AQueue [] (reverse xs)));

strict_dequeue (AQueue xs (y : ys)) = (y, AQueue xs ys);

This feature however is rarely needed in practice. Note that the HOL default
setup already includes

declare [[code abort: undefined]]

– hence undefined can always be used in such situations.

2.6 If something goes utterly wrong
Under certain circumstances, the code generator fails to produce code en-
tirely. To debug these, the following hints may prove helpful:

Check with a different target language. Sometimes the situation gets more
clear if you switch to another target language; the code generated there
might give some hints what prevents the code generator to produce code
for the desired language.

Inspect code equations. Code equations are the central carrier of code gener-
ation. Most problems occurring while generating code can be traced
to single equations which are printed as part of the error message. A
closer inspection of those may offer the key for solving issues (cf. §2.3).

Inspect preprocessor setup. The preprocessor might transform code equations
unexpectedly; to understand an inspection of its setup is necessary
(cf. §2.2).

Generate exceptions. If the code generator complains about missing code
equations, in can be helpful to implement the offending constants as
exceptions (cf. §2.5); this allows at least for a formal generation of code,
whose inspection may then give clues what is wrong.

Remove offending code equations. If code generation is prevented by just a
single equation, this can be removed (cf. §2.3) to allow formal code
generation, whose result in turn can be used to trace the problem.
The most prominent case here are mismatches in type class signatures
(“wellsortedness error”).

3 PROGRAM AND DATATYPE REFINEMENT 15

3 Program and datatype refinement
Code generation by shallow embedding (cf. §1.1) allows to choose code equa-
tions and datatype constructors freely, given that some very basic syntactic
properties are met; this flexibility opens up mechanisms for refinement which
allow to extend the scope and quality of generated code dramatically.

3.1 Program refinement
Program refinement works by choosing appropriate code equations explicitly
(cf. §2.3); as example, we use Fibonacci numbers:

fun fib :: nat ⇒ nat where
fib 0 = 0
| fib (Suc 0) = Suc 0
| fib (Suc (Suc n)) = fib n + fib (Suc n)

The runtime of the corresponding code grows exponential due to two recursive
calls:

fib :: Nat -> Nat;

fib Zero_nat = Zero_nat;

fib (Suc Zero_nat) = Suc Zero_nat;

fib (Suc (Suc n)) = plus_nat (fib n) (fib (Suc n));

A more efficient implementation would use dynamic programming, e.g. shar-
ing of common intermediate results between recursive calls. This idea is
expressed by an auxiliary operation which computes a Fibonacci number
and its successor simultaneously:

definition fib_step :: nat ⇒ nat × nat where
fib_step n = (fib (Suc n), fib n)

3 PROGRAM AND DATATYPE REFINEMENT 16

This operation can be implemented by recursion using dynamic program-
ming:

lemma [code]:
fib_step 0 = (Suc 0, 0)
fib_step (Suc n) = (let (m, q) = fib_step n in (m + q, m))
by (simp_all add: fib_step_def)

What remains is to implement fib by fib_step as follows:

lemma [code]:
fib 0 = 0
fib (Suc n) = fst (fib_step n)
by (simp_all add: fib_step_def)

The resulting code shows only linear growth of runtime:

fib_step :: Nat -> (Nat, Nat);

fib_step Zero_nat = (Suc Zero_nat, Zero_nat);

fib_step (Suc n) = (case fib_step n of {
(m, q) -> (plus_nat m q, m);

});

fib :: Nat -> Nat;

fib Zero_nat = Zero_nat;

fib (Suc n) = fst (fib_step n);

3 PROGRAM AND DATATYPE REFINEMENT 17

3.2 Datatype refinement
Selecting specific code equations and datatype constructors leads to datatype
refinement. As an example, we will develop an alternative representation of
the queue example given in §1.2. The amortised representation is convenient
for generating code but exposes its “implementation” details, which may be
cumbersome when proving theorems about it. Therefore, here is a simple,
straightforward representation of queues:

datatype ′a queue = Queue ′a list

definition empty :: ′a queue where
empty = Queue []

primrec enqueue :: ′a ⇒ ′a queue ⇒ ′a queue where
enqueue x (Queue xs) = Queue (xs @ [x])

fun dequeue :: ′a queue ⇒ ′a option × ′a queue where
dequeue (Queue []) = (None, Queue [])
| dequeue (Queue (x # xs)) = (Some x , Queue xs)

This we can use directly for proving; for executing, we provide an alternative
characterisation:

definition AQueue :: ′a list ⇒ ′a list ⇒ ′a queue where
AQueue xs ys = Queue (ys @ rev xs)

code_datatype AQueue

Here we define a “constructor” AQueue which is defined in terms of Queue
and interprets its arguments according to what the content of an amortised
queue is supposed to be.

The prerequisite for datatype constructors is only syntactical: a construc-
tor must be of type τ = . . . ⇒ κ α1 . . . αn where {α1, . . ., αn} is exactly the
set of all type variables in τ ; then κ is its corresponding datatype. The HOL
datatype package by default registers any new datatype with its construc-
tors, but this may be changed using code_datatype; the currently chosen
constructors can be inspected using the print_codesetup command.

Equipped with this, we are able to prove the following equations for our
primitive queue operations which “implement” the simple queues in an amor-
tised fashion:

3 PROGRAM AND DATATYPE REFINEMENT 18

lemma empty_AQueue [code]:
empty = AQueue [] []
by (simp add: AQueue_def empty_def)

lemma enqueue_AQueue [code]:
enqueue x (AQueue xs ys) = AQueue (x # xs) ys
by (simp add: AQueue_def)

lemma dequeue_AQueue [code]:
dequeue (AQueue xs []) =
(if xs = [] then (None, AQueue [] [])
else dequeue (AQueue [] (rev xs)))

dequeue (AQueue xs (y # ys)) = (Some y, AQueue xs ys)
by (simp_all add: AQueue_def)

It is good style, although no absolute requirement, to provide code equa-
tions for the original artefacts of the implemented type, if possible; in our
case, these are the datatype constructor Queue and the case combinator
case_queue:

lemma Queue_AQueue [code]:
Queue = AQueue []
by (simp add: AQueue_def fun_eq_iff)

lemma case_queue_AQueue [code]:
case_queue f (AQueue xs ys) = f (ys @ rev xs)
by (simp add: AQueue_def)

The resulting code looks as expected:

structure Example : sig
type ’a queue
val empty : ’a queue
val dequeue : ’a queue -> ’a option * ’a queue
val enqueue : ’a -> ’a queue -> ’a queue
val queue : ’a list -> ’a queue
val case_queue : (’a list -> ’b) -> ’a queue -> ’b

end = struct

datatype ’a queue = AQueue of ’a list * ’a list;

fun fold f [] s = s
| fold f (x :: xs) s = fold f xs (f x s);

fun rev xs = fold (fn a => fn b => a :: b) xs [];

3 PROGRAM AND DATATYPE REFINEMENT 19

fun null [] = true
| null (x :: xs) = false;

val empty : ’a queue = AQueue ([], []);

fun dequeue (AQueue (xs, [])) =
(if null xs then (NONE, AQueue ([], []))

else dequeue (AQueue ([], rev xs)))
| dequeue (AQueue (xs, y :: ys)) = (SOME y, AQueue (xs, ys));

fun enqueue x (AQueue (xs, ys)) = AQueue (x :: xs, ys);

fun queue x = AQueue ([], x);

fun case_queue f (AQueue (xs, ys)) = f (ys @ rev xs);

end; (*struct Example*)

The same techniques can also be applied to types which are not specified
as datatypes, e.g. type int is originally specified as quotient type by means of
typedef , but for code generation constants allowing construction of binary
numeral values are used as constructors for int.

This approach however fails if the representation of a type demands in-
variants; this issue is discussed in the next section.

3.3 Datatype refinement involving invariants
Datatype representation involving invariants require a dedicated setup for
the type and its primitive operations. As a running example, we implement
a type ′a dlist of lists consisting of distinct elements.

The specification of ′a dlist itself can be found in theory HOL−Library.Dlist.
The first step is to decide on which representation the abstract type (in

our example ′a dlist) should be implemented. Here we choose ′a list. Then
a conversion from the concrete type to the abstract type must be specified,
here:

Dlist

Next follows the specification of a suitable projection, i.e. a conversion from
abstract to concrete type:

list_of_dlist

3 PROGRAM AND DATATYPE REFINEMENT 20

This projection must be specified such that the following abstract datatype
certificate can be proven:

lemma [code abstype]:
Dlist (list_of_dlist dxs) = dxs
by (fact Dlist_list_of_dlist)

Note that so far the invariant on representations (distinct) has never been
mentioned explicitly: the invariant is only referred to implicitly: all values in
set {xs. list_of_dlist (Dlist xs) = xs} are invariant, and in our example this
is exactly {xs. distinct xs}.

The primitive operations on ′a dlist are specified indirectly using the pro-
jection list_of_dlist. For the empty dlist, Dlist.empty, we finally want the
code equation

Dlist.empty = Dlist []

This we have to prove indirectly as follows:

lemma [code]:
list_of_dlist Dlist.empty = []
by (fact list_of_dlist_empty)

This equation logically encodes both the desired code equation and that the
expression Dlist is applied to obeys the implicit invariant. Equations for
insertion and removal are similar:

lemma [code]:
list_of_dlist (Dlist.insert x dxs) = List.insert x (list_of_dlist dxs)
by (fact list_of_dlist_insert)

lemma [code]:
list_of_dlist (Dlist.remove x dxs) = remove1 x (list_of_dlist dxs)
by (fact list_of_dlist_remove)

Then the corresponding code is as follows:

structure Example : sig
type ’a equal
type ’a dlist
val empty : ’a dlist
val list_of_dlist : ’a dlist -> ’a list

4 PARTIAL FUNCTIONS 21

val inserta : ’a equal -> ’a -> ’a dlist -> ’a dlist
val remove : ’a equal -> ’a -> ’a dlist -> ’a dlist

end = struct

type ’a equal = {equal : ’a -> ’a -> bool};
val equal = #equal : ’a equal -> ’a -> ’a -> bool;

datatype ’a dlist = Dlist of ’a list;

fun eq A_ a b = equal A_ a b;

val empty : ’a dlist = Dlist [];

fun member A_ [] y = false
| member A_ (x :: xs) y = eq A_ x y orelse member A_ xs y;

fun insert A_ x xs = (if member A_ xs x then xs else x :: xs);

fun list_of_dlist (Dlist x) = x;

fun inserta A_ x dxs = Dlist (insert A_ x (list_of_dlist dxs));

fun remove1 A_ x [] = []
| remove1 A_ x (y :: xs) =

(if eq A_ x y then xs else y :: remove1 A_ x xs);

fun remove A_ x dxs = Dlist (remove1 A_ x (list_of_dlist dxs));

end; (*struct Example*)

To reduce manual work for datatype refinement, lift_definition is a valu-
able tool. See the corresponding section in [14].

See further [6] for the meta theory of datatype refinement involving invari-
ants.

Typical data structures implemented by representations involving invari-
ants are available in the library, theory HOL−Library.Mapping specifies key-
value-mappings (type (′a, ′b) mapping); these can be implemented by red-
black-trees (theory HOL−Library.RBT).

4 Partial Functions
We demonstrate three approaches to defining executable partial recursive
functions, i.e. functions that do not terminate for all inputs. The main points
are the definitions of the functions and the inductive proofs about them.

4 PARTIAL FUNCTIONS 22

Our concrete example represents a typical termination problem: following
a data structure that may contain cycles. We want to follow a mapping from
nat to nat to the end (until we leave its domain). The mapping is represented
by a list ns :: nat list that maps n to ns ! n. The details of the example are
in some sense irrelevant but make the exposition more realistic. However, we
hide most proofs or show only the characteristic opening.

The list representation of the mapping can be abstracted to a relation.
The order (ns ! n, n) is the order that wf expects.
definition rel :: nat list ⇒ (nat ∗ nat) set where
rel ns = set(zip ns [0..<length ns])

lemma finite_rel[simp]: finite(rel ns)

This relation should be acyclic to guarantee termination of the partial func-
tions defined below.

4.1 Tail recursion
If a function is tail-recursive, an executable definition is easy:
partial_function (tailrec) follow :: nat list ⇒ nat ⇒ nat where
follow ns n = (if n < length ns then follow ns (ns!n) else n)

Informing the code generator:
declare follow.simps[code]

Now follow is executable:
value follow [1,2,3] 0

For proofs about follow we need a wf relation on (ns, n) pairs that de-
creases with each recursive call. The first component stays the same but
must be acyclic. The second component must decrease w.r.t rel:
definition rel_follow = same_fst (acyclic o rel) rel

lemma wf_follow: wf rel_follow

This is how you start an inductive proof about follow along rel_follow:
lemma acyclic(rel ms) =⇒ follow ms m = n =⇒ length ms ≤ n
proof (induction (ms,m) arbitrary: m n rule: wf_induct_rule[OF wf_follow])

4.2 Option
If the function is not tail-recursive, not all is lost: if we rewrite it to return an
option type, it can still be defined. In this case Some x represents the result

4 PARTIAL FUNCTIONS 23

x and None represents represents nontermination. For example, counting the
length of the chain represented by ns can be defined like this:
partial_function (option) count :: nat list ⇒ nat ⇒ nat option where
count ns n
= (if n < length ns then do {k ← count ns (ns!n); Some (k+1)} else Some 0)

We use a Haskell-like do notation (import HOL−Library.Monad_Syntax) to
abbreviate the clumsy explicit
case count ns (ns ! n) of None ⇒ None | Some k ⇒ Some (k + 1).
The branch None ⇒ None represents the requirement that nontermination
of a recursive call must lead to nontermination of the function.

Now we can prove that count terminates for all acyclic maps:
lemma acyclic(rel ms) =⇒ ∃ k. count ms m = Some k
proof (induction (ms,m) arbitrary: ms m rule: wf_induct_rule[OF wf_follow])

4.3 Subtype
In this approach we define a new type that contains only elements on which
the function in question terminates. In our example that is the subtype of
all ns :: nat list such that rel ns is acyclic. Then follow can be defined as a
total function on that subtype.

The subtype is not empty:
lemma acyclic_rel_Nil: acyclic(rel [])

Definition of subtype acyc:
typedef acyc = {ns. acyclic(rel ns)}
morphisms rep_acyc abs_acyc
using acyclic_rel_Nil by auto

This defines two functions rep_acyc :: acyc ⇒ nat list and abs_acyc ::
nat list ⇒ acyc. Function abs_acyc is only defined on acyclic lists and not
executable for that reason. Type dlist in Section 2.5 is defined in the same
manner.

The following command sets up infrastructure for lifting functions on nat
list to acyc (used by lift_definition below) [14].
setup_lifting type_definition_acyc

This is how follow can be defined on acyc:
function follow2 :: acyc ⇒ nat ⇒ nat where
follow2 ac n
= (let ns = rep_acyc ac in if n < length ns then follow2 ac (ns!n) else n)

4 PARTIAL FUNCTIONS 24

by pat_completeness auto

Now we prepare for the termination proof. Relation rel_follow2 is almost
identical to rel_follow.
definition rel_follow2 = same_fst (acyclic o rel o rep_acyc) (rel o rep_acyc)

lemma wf_follow2: wf rel_follow2

Here comes the actual termination proof:
termination follow2
proof

show wf rel_follow2
next

show
∧

ac n ns. [[ns = rep_acyc ac; n < length ns]]
=⇒ ((ac, ns ! n), (ac, n)) ∈ rel_follow2

qed

Inductive proofs about follow2 can now simply use computation induction:
lemma follow2 ac m = n =⇒ length (rep_acyc ac) ≤ n
proof (induction ac m arbitrary: n rule: follow2.induct)

A complication with the subtype approach is that injection into the sub-
type (function abs_acyc in our example) is not executable. But to call fol-
low2, we need an argument of type acyc and we need to obtain it in an
executable manner. There are two approaches.

In the first approach we check wellformedness (i.e. acyclicity) explicitly.
This check needs to be executable (which acyclic and rel are). If the check
fails, [] is returned (which is acyclic).
lift_definition is_acyc :: nat list ⇒ acyc is
λns. if acyclic(rel ns) then ns else []

This works because we can easily prove that for any ns, the λ-term produces
an acyclic list. But it requires the possibly expensive check acyclic (rel ns).
definition follow_test ns n = follow2 (is_acyc ns) n

The relation is acyclic (a chain):
value follow_test [1,2,3] 1

In the second approach, wellformedness of the argument is guaranteed by
construction. In our example [1..<n+1] represents an acyclic chain i 7→ i+1

lemma acyclic_chain: acyclic (rel [1..<n+1])

lift_definition acyc_chain :: nat ⇒ acyc is λn. [1..<n+1]

5 INDUCTIVE PREDICATES 25

definition follow_chain m n = follow2 (acyc_chain m) n

value follow_chain 5 1

The subtype approach requires neither tail-recursion nor option but you
cannot easily modify arguments of the subtype except via existing functions
on the subtype. Otherwise you need to inject some value into the subtype
and that injection is not computable.

5 Inductive Predicates
The predicate compiler is an extension of the code generator which turns
inductive specifications into equational ones, from which in turn executable
code can be generated. The mechanisms of this compiler are described in
detail in [3].

Consider the simple predicate append given by these two introduction rules:

append [] ys ys
append xs ys zs =⇒ append (x # xs) ys (x # zs)

To invoke the compiler, simply use code_pred:

code_pred append .

The code_pred command takes the name of the inductive predicate and
then you put a period to discharge a trivial correctness proof. The compiler
infers possible modes for the predicate and produces the derived code equa-
tions. Modes annotate which (parts of the) arguments are to be taken as
input, and which output. Modes are similar to types, but use the notation i
for input and o for output.

For append, the compiler can infer the following modes:

• i ⇒ i ⇒ i ⇒ bool

• i ⇒ i ⇒ o ⇒ bool

• o ⇒ o ⇒ i ⇒ bool

You can compute sets of predicates using values:
values {zs. append [(1::nat),2,3] [4,5] zs}

outputs {[1, 2, 3, 4, 5]}, and

5 INDUCTIVE PREDICATES 26

values {(xs, ys). append xs ys [(2::nat),3]}

outputs {([], [2, 3]), ([2], [3]), ([2, 3], [])}.
If you are only interested in the first elements of the set comprehension (with
respect to a depth-first search on the introduction rules), you can pass an
argument to values to specify the number of elements you want:
values 1 {(xs, ys). append xs ys [(1::nat), 2, 3, 4]}
values 3 {(xs, ys). append xs ys [(1::nat), 2, 3, 4]}

The values command can only compute set comprehensions for which a
mode has been inferred.

The code equations for a predicate are made available as theorems with
the suffix equation, and can be inspected with:
thm append.equation

More advanced options are described in the following subsections.

5.1 Alternative names for functions
By default, the functions generated from a predicate are named after the
predicate with the mode mangled into the name (e.g., append_i_i_o). You
can specify your own names as follows:

code_pred (modes: i ⇒ i ⇒ o ⇒ bool as concat,
o ⇒ o ⇒ i ⇒ bool as split,
i ⇒ o ⇒ i ⇒ bool as suffix) append .

5.2 Alternative introduction rules
Sometimes the introduction rules of an predicate are not executable because
they contain non-executable constants or specific modes could not be inferred.
It is also possible that the introduction rules yield a function that loops
forever due to the execution in a depth-first search manner. Therefore, you
can declare alternative introduction rules for predicates with the attribute
code_pred_intro. For example, the transitive closure is defined by:

r a b =⇒ tranclp r a b
tranclp r a b =⇒ r b c =⇒ tranclp r a c

These rules do not suit well for executing the transitive closure with the
mode (i ⇒ o ⇒ bool) ⇒ i ⇒ o ⇒ bool, as the second rule will cause an

5 INDUCTIVE PREDICATES 27

infinite loop in the recursive call. This can be avoided using the following
alternative rules which are declared to the predicate compiler by the attribute
code_pred_intro:

lemma [code_pred_intro]:
r a b =⇒ tranclp r a b
r a b =⇒ tranclp r b c =⇒ tranclp r a c

by auto

After declaring all alternative rules for the transitive closure, you invoke
code_pred as usual. As you have declared alternative rules for the predi-
cate, you are urged to prove that these introduction rules are complete, i.e.,
that you can derive an elimination rule for the alternative rules:

code_pred tranclp
proof −

case tranclp
from this converse_tranclpE [OF tranclp.prems] show thesis by metis

qed

Alternative rules can also be used for constants that have not been defined
inductively. For example, the lexicographic order which is defined as:

lexordp r ?xs ?ys ←→
(∃ a v. ?ys = ?xs @ a # v ∨

(∃ u a b v w. r a b ∧ ?xs = u @ a # v ∧ ?ys = u @ b # w))

To make it executable, you can derive the following two rules and prove the
elimination rule:

lemma [code_pred_intro]:
append xs (a # v) ys =⇒ lexordp r xs ys

lemma [code_pred_intro]:
append u (a # v) xs =⇒ append u (b # w) ys =⇒ r a b
=⇒ lexordp r xs ys

code_pred lexordp

5.3 Options for values
In the presence of higher-order predicates, multiple modes for some predicate
could be inferred that are not disambiguated by the pattern of the set com-
prehension. To disambiguate the modes for the arguments of a predicate,
you can state the modes explicitly in the values command. Consider the
simple predicate succ:

5 INDUCTIVE PREDICATES 28

inductive succ :: nat ⇒ nat ⇒ bool where
succ 0 (Suc 0)
| succ x y =⇒ succ (Suc x) (Suc y)

code_pred succ .

For this, the predicate compiler can infer modes o ⇒ o ⇒ bool, i ⇒ o ⇒
bool, o ⇒ i ⇒ bool and i ⇒ i ⇒ bool. The invocation of values {n. tranclp
succ 10 n} loops, as multiple modes for the predicate succ are possible and
here the first mode o ⇒ o ⇒ bool is chosen. To choose another mode for the
argument, you can declare the mode for the argument between the values
and the number of elements.
values [mode: i ⇒ o ⇒ bool] 1 {n. tranclp succ 10 n}
values [mode: o ⇒ i ⇒ bool] 1 {n. tranclp succ n 10}

5.4 Embedding into functional code within Isabelle/HOL
To embed the computation of an inductive predicate into functions that are
defined in Isabelle/HOL, you have a number of options:

• You want to use the first-order predicate with the mode where all ar-
guments are input. Then you can use the predicate directly, e.g.

valid_suffix ys zs =
(if append [Suc 0, 2] ys zs then Some ys else None)

• If you know that the execution returns only one value (it is determin-
istic), then you can use the combinator Predicate.the, e.g., a functional
concatenation of lists is defined with

functional_concat xs ys = Predicate.the (append_i_i_o xs ys)

Note that if the evaluation does not return a unique value, it raises a
run-time error not_unique.

5.5 Further Examples
Further examples for compiling inductive predicates can be found in ~~/src/
HOL/Predicate_Compile_Examples/Examples.thy. There are also some
examples in the Archive of Formal Proofs, notably in the POPLmark−deBruijn
and the FeatherweightJava sessions.

6 EVALUATION 29

6 Evaluation
Recalling §1.1, code generation turns a system of equations into a program
with the same equational semantics. As a consequence, this program can be
used as a rewrite engine for terms: rewriting a term t using a program to a
term t ′ yields the theorems t ≡ t ′. This application of code generation in the
following is referred to as evaluation.

6.1 Evaluation techniques
There is a rich palette of evaluation techniques, each comprising different
aspects:

Expressiveness. Depending on the extent to which symbolic computation
is possible, the class of terms which can be evaluated can be bigger or
smaller.

Efficiency. The more machine-near the technique, the faster it is.

Trustability. Techniques which a huge (and also probably more config-
urable infrastructure) are more fragile and less trustable.

The simplifier (simp)

The simplest way for evaluation is just using the simplifier with the orig-
inal code equations of the underlying program. This gives fully symbolic
evaluation and highest trustablity, with the usual performance of the simpli-
fier. Note that for operations on abstract datatypes (cf. §3.3), the original
theorems as given by the users are used, not the modified ones.

Normalization by evaluation (nbe)

Normalization by evaluation [1] provides a comparably fast partially symbolic
evaluation which permits also normalization of functions and uninterpreted
symbols; the stack of code to be trusted is considerable.

Evaluation in ML (code)

Considerable performance can be achieved using evaluation in ML, at the
cost of being restricted to ground results and a layered stack of code to be
trusted, including a user’s specific code generator setup.

6 EVALUATION 30

Evaluation is carried out in a target language Eval which inherits from
SML but for convenience uses parts of the Isabelle runtime environment.
Hence soundness depends crucially on the correctness of the code generator
setup; this is one of the reasons why you should not use adaptation (see §8)
frivolously.

6.2 Dynamic evaluation
Dynamic evaluation takes the code generator configuration “as it is” at the
point where evaluation is issued and computes a corresponding result. Best
example is the value command for ad-hoc evaluation of terms:
value 42 / (12 :: rat)

value tries first to evaluate using ML, falling back to normalization by eval-
uation if this fails.

A particular technique may be specified in square brackets, e.g.
value [nbe] 42 / (12 :: rat)

To employ dynamic evaluation in documents, there is also a value antiquo-
tation with the same evaluation techniques as value.

Term reconstruction in ML

Results from evaluation in ML must be turned into Isabelle’s internal term
representation again. Since that setup is highly configurable, it is never
assumed to be trustable. Hence evaluation in ML provides no full term
reconstruction but distinguishes the following kinds:

Plain evaluation. A term is normalized using the vanilla term reconstruc-
tion from ML to Isabelle; this is a pragmatic approach for applications
which do not need trustability.

Property conversion. Evaluates propositions; since these are monomor-
phic, the term reconstruction is fixed once and for all and therefore
trustable – in the sense that only the regular code generator setup
has to be trusted, without relying on term reconstruction from ML to
Isabelle.

The different degree of trustability is also manifest in the types of the cor-
responding ML functions: plain evaluation operates on uncertified terms,
whereas property conversion operates on certified terms.

6 EVALUATION 31

The partiality principle

During evaluation exceptions indicating a pattern match failure or a non-
implemented function are treated specially: as sketched in §2.5, such excep-
tions can be interpreted as partiality. For plain evaluation, the result hence
is optional; property conversion falls back to reflexivity in such cases.

Schematic overview
simp nbe code

interactive evaluation value [simp] value [nbe] value [code]
plain evaluation Code_Evaluation.dynamic_value

evaluation method code_simp normalization eval
property conversion Code_Runtime.dynamic_holds_conv

conversion Code_Simp.dynamic_conv Nbe.dynamic_conv

6.3 Static evaluation
When implementing proof procedures using evaluation, in most cases the
code generator setup is appropriate “as it was” when the proof procedure
was written in ML, not an arbitrary later potentially modified setup. This
is called static evaluation.

Static evaluation using simp and nbe

For simp and nbe static evaluation can be achieved using Code_Simp.static_conv
and Nbe.static_conv. Note that Nbe.static_conv by its very nature re-
quires an invocation of the ML compiler for every call, which can produce
significant overhead.

Intimate connection between logic and system runtime

Static evaluation for eval operates differently – the required generated code
is inserted directly into an ML block using antiquotations. The idea is that
generated code performing static evaluation (called a computation) is com-
piled once and for all such that later calls do not require any invocation of
the code generator or the ML compiler at all. This topic deserves a dedicated
chapter §7.

7 COMPUTATIONS 32

7 Computations
7.1 Prelude – The code antiquotation
The code antiquotation allows to include constants from generated code di-
rectly into ML system code, as in the following toy example:

datatype form = T | F | And form form | Or form form ML ‹
fun eval_form @{code T} = true
| eval_form @{code F} = false
| eval_form (@{code And} (p, q)) =

eval_form p andalso eval_form q
| eval_form (@{code Or} (p, q)) =

eval_form p orelse eval_form q;
›

The antiquotation code takes the name of a constant as argument; the re-
quired code is generated transparently and the corresponding constant names
are inserted for the given antiquotations. This technique allows to use pat-
tern matching on constructors stemming from compiled datatypes. Note that
the code antiquotation may not refer to constants which carry adaptations;
here you have to refer to the corresponding adapted code directly.

7.2 The concept of computations
Computations embody the simple idea that for each monomorphic Isabelle/HOL
term of type τ by virtue of code generation there exists an corresponding ML
type T and a morphism Φ :: τ → T satisfying Φ (t1 · t2) = Φ t1 · Φ t2, with
· denoting term application.

For a given Isabelle/HOL type τ , parts of Φ can be implemented by a
corresponding ML function ϕτ :: term → T. How?

Let input be a constant C :: τ .
Then ϕτ C = f C with f C being the image of C under code generation.

Let input be an application (t1 · t2) :: τ .
Then ϕτ (t1 · t2) = ϕτ t1 (ϕτ t2).

Using these trivial properties, each monomorphic constant C : τn → τ yields
the following equations:

7 COMPUTATIONS 33

ϕ(τ1 → τ2 → . . . → τn → τ) C = f C

ϕ(τ2 → . . . → τn → τ) (C · t1) = f C (ϕτ1 t1)
. . .
ϕτ (C · t1 · . . . · tn) = f C (ϕτ1 t1) . . . (ϕτn tn)

Hence a computation is characterized as follows:

• Let input constants denote a set of monomorphic constants.

• Let τ denote a monomorphic type and ′ml be a schematic placeholder
for its corresponding type in ML under code generation.

• Then the corresponding computation is an ML function of type Proof.context
-> term -> ’ml partially implementing the morphism Φ :: τ → T for
all input terms consisting only of input constants and applications.

The charming idea is that all required code is automatically generated by
the code generator for givens input constants and types; that code is directly
inserted into the Isabelle/ML runtime system by means of antiquotations.

7.3 The computation antiquotation
The following example illustrates its basic usage:

ML ‹
local

fun int_of_nat @{code 0 :: nat} = 0
| int_of_nat (@{code Suc} n) = int_of_nat n + 1;

in

val comp_nat = @{computation nat terms:
plus :: nat ⇒ nat ⇒ nat times :: nat ⇒ nat ⇒ nat
sum_list :: nat list ⇒ nat prod_list :: nat list ⇒ nat
datatypes: nat nat list}
(fn post => post o HOLogic.mk_nat o int_of_nat o the);

end
›

• Antiquotations occurring in the same ML block always refer to the
same transparently generated code; particularly, they share the same
transparently generated datatype declarations.

7 COMPUTATIONS 34

• The type of a computation is specified as first argument.

• Input constants are specified the following ways:

– Each term following terms: specifies all constants it contains as
input constants.

– Each type following datatypes: specifies all constructors of the
corresponding code datatype as input constants. Note that this
does not increase expressiveness but succinctness for datatypes
with many constructors. Abstract type constructors are skipped
silently.

• The code generated by a computation antiquotation takes a functional
argument which describes how to conclude the computation. What’s
the rationale behind this?

– There is no automated way to generate a reconstruction function
from the resulting ML type to a Isabelle term – this is in the re-
sponsibility of the implementor. One possible approach for robust
term reconstruction is the code antiquotation.

– Both statically specified input constants and dynamically provided
input terms are subject to preprocessing. Likewise the result is
supposed to be subject to postprocessing; the implementor is ex-
pected to take care for this explicitly.

– Computations follow the partiality principle (cf. §6.2): failures due
to pattern matching or unspecified functions are interpreted as
partiality; therefore resulting ML values are optional.

Hence the functional argument accepts the following parameters

– A postprocessor function term -> term.
– The resulting value as optional argument.

The functional argument is supposed to compose the final result from
these in a suitable manner.

A simple application:
ML_val ‹

comp_nat context term ‹sum_list [Suc 0, Suc (Suc 0)] ∗ Suc (Suc 0)›
›

7 COMPUTATIONS 35

A single ML block may contain an arbitrary number of computation an-
tiquotations. These share the same set of possible input constants. In other
words, it does not matter in which antiquotation constants are specified; in
the following example, all constants are specified by the first antiquotation
once and for all:

ML ‹
local

fun int_of_nat @{code 0 :: nat} = 0
| int_of_nat (@{code Suc} n) = int_of_nat n + 1;

in

val comp_nat = @{computation nat terms:
plus :: nat ⇒ nat ⇒ nat times :: nat ⇒ nat ⇒ nat
sum_list :: nat list ⇒ nat prod_list :: nat list ⇒ nat
replicate :: nat ⇒ nat ⇒ nat list
datatypes: nat nat list}
(fn post => post o HOLogic.mk_nat o int_of_nat o the);

val comp_nat_list = @{computation nat list}
(fn post => post o HOLogic.mk_list typ ‹nat› o

map (HOLogic.mk_nat o int_of_nat) o the);

end
›

7.4 Pitfalls when specifying input constants
Complete type coverage. Specified input constants must be complete in the

sense that for each required type τ there is at least one corresponding
input constant which can actually construct a concrete value of type
τ , potentially requiring more types recursively; otherwise the system of
equations cannot be generated properly. Hence such incomplete input
constants sets are rejected immediately.

Unsuitful right hand sides. The generated code for a computation must com-
pile in the strict ML runtime environment. This imposes the technical
restriction that each compiled input constant f C on the right hand side
of a generated equations must compile without throwing an exception.
That rules out pathological examples like undefined :: nat as input
constants, as well as abstract constructors (cf. §3.3).

7 COMPUTATIONS 36

Preprocessing. For consistency, input constants are subject to preprocessing;
however, the overall approach requires to operate on constants C and
their respective compiled images f C .1 This is a problem whenever
preprocessing maps an input constant to a non-constant.
To circumvent these situations, the computation machinery has a ded-
icated preprocessor which is applied before the regular preprocessing,
both to input constants as well as input terms. This can be used to map
problematic constants to other ones that are not subject to regular pre-
processing. Rewrite rules are added using attribute code_computation_unfold.
There should rarely be a need to use this beyond the few default setups
in HOL, which deal with literals (see also §7.8).

7.5 Pitfalls concerning input terms
No polymorphism. Input terms must be monomorphic: compilation to ML

requires dedicated choice of monomorphic types.

No abstractions. Only constants and applications are admissible as input;
abstractions are not possible. In theory, the compilation schema could
be extended to cover abstractions also, but this would increase the
trusted code base. If abstractions are required, they can always be
eliminated by a dedicated preprocessing step, e.g. using combinatorial
logic.

Potential interfering of the preprocessor . As described in §7.4 regular pre-
processing can have a disruptive effect for input constants. The same
also applies to input terms; however the same measures to circumvent
that problem for input constants apply to input terms also.

7.6 Computations using the computation_conv antiquo-
tation

Computations are a device to implement fast proof procedures. Then results
of a computation are often assumed to be trustable and thus wrapped in
oracles (see [14]), as in the following example:2

1Technical restrictions of the implementation enforce this, although those could be
lifted in the future.

2The technical details how numerals are dealt with are given later in §7.8.

7 COMPUTATIONS 37

ML ‹
local

fun raw_dvd (b, ct) =
instantiate ‹x = ct and y = ‹if b then cterm ‹True› else cterm ‹False››

in cterm ‹x ≡ y› for x y :: bool›;

val (_, dvd_oracle) = Theory.setup_result (Thm.add_oracle (binding ‹dvd›,
raw_dvd));

in

val conv_dvd = @{computation_conv bool terms:
Rings.dvd :: int ⇒ int ⇒ bool
plus :: int ⇒ int ⇒ int
minus :: int ⇒ int ⇒ int
times :: int ⇒ int ⇒ int
0 :: int 1 :: int 2 :: int 3 :: int −1 :: int
} (K (curry dvd_oracle))

end
›

• Antiquotation computation_conv basically yields a conversion of type
Proof.context -> cterm -> thm (see further [13]).

• The antiquotation expects one functional argument to bridge the “un-
trusted gap”; this can be done e.g. using an oracle. Since that oracle
will only yield “valid” results in the context of that particular compu-
tation, the implementor must make sure that it does not leave the local
ML scope; in this example, this is achieved using an explicit local ML
block. The very presence of the oracle in the code acknowledges that
each computation requires explicit thinking before it can be considered
trustworthy!

• Postprocessing just operates as further conversion after normalization.

• Partiality makes the whole conversion fall back to reflexivity.

ML_val ‹
conv_dvd context cterm ‹7 dvd (62437867527846782 :: int)›;
conv_dvd context cterm ‹7 dvd (−62437867527846783 :: int)›;

›

7 COMPUTATIONS 38

An oracle is not the only way to construct a valid theorem. A computation
result can be used to construct an appropriate certificate:

lemma conv_div_cert:
(Code_Target_Int.positive r ∗ Code_Target_Int.positive s)

div Code_Target_Int.positive s ≡ (numeral r :: int) (is ?lhs ≡ ?rhs)
proof (rule eq_reflection)

have ?lhs = numeral r ∗ numeral s div numeral s
by simp

also have numeral r ∗ numeral s div numeral s = ?rhs
by (rule nonzero_mult_div_cancel_right) simp

finally show ?lhs = ?rhs .
qed

lemma positive_mult:
Code_Target_Int.positive r ∗ Code_Target_Int.positive s =

Code_Target_Int.positive (r ∗ s)
by simp

ML ‹
local

fun integer_of_int (@{code int_of_integer} k) = k

val cterm_of_int = Thm.cterm_of context o HOLogic.mk_numeral o
integer_of_int;

val divisor = Thm.dest_arg o Thm.dest_arg;

val evaluate_simps = map mk_eq @{thms arith_simps positive_mult};

fun evaluate ctxt =
Simplifier .rewrite_rule ctxt evaluate_simps;

fun revaluate ctxt k ct =
@{thm conv_div_cert}
|> Thm.instantiate ′ [] [SOME (cterm_of_int k), SOME (divisor ct)]
|> evaluate ctxt;

in

val conv_div = @{computation_conv int terms:
divide :: int ⇒ int ⇒ int

7 COMPUTATIONS 39

0 :: int 1 :: int 2 :: int 3 :: int
} revaluate

end
›

ML_val ‹
conv_div context

cterm ‹46782454343499999992777742432342242323423425 div (7 :: int)›
›

The example is intentionally kept simple: only positive integers are covered,
only remainder-free divisions are feasible, and the input term is expected to
have a particular shape. This exhibits the idea more clearly: the result of
the computation is used as a mere hint how to instantiate conv_div_cert,
from which the required theorem is obtained by performing multiplication
using the simplifier; hence that theorem is built of proper inferences, with no
oracles involved.

7.7 Computations using the computation_check antiquo-
tation

The computation_check antiquotation is convenient if only a positive check-
ing of propositions is desired, because then the result type is fixed (prop) and
all the technical matter concerning postprocessing and oracles is done in the
framework once and for all:

ML ‹
val check_nat = @{computation_check terms:

Trueprop less :: nat ⇒ nat ⇒ bool plus :: nat ⇒ nat ⇒ nat
times :: nat ⇒ nat ⇒ nat
0 :: nat Suc
}

›

The HOL judgement Trueprop embeds an expression of type bool into prop.
ML_val ‹

check_nat context cprop ‹less (Suc (Suc 0)) (Suc (Suc (Suc 0)))›
›

Note that such computations can only check for props to hold but not decide.

7 COMPUTATIONS 40

7.8 Some practical hints
Inspecting generated code

The antiquotations for computations attempt to produce meaningful error
messages. If these are not sufficient, it might by useful to inspect the gener-
ated code, which can be achieved using

declare [[ML_source_trace]]

Literals as input constants

Literals (characters, numerals) in computations cannot be processed naively:
the compilation pattern for computations fails whenever target-language lit-
erals are involved; since various common code generator setups (see §8.3)
implement nat and int by target-language literals, this problem manifests
whenever numeric types are involved. In practice, this is circumvented with
a dedicated preprocessor setup for literals (see also §7.4).

The following examples illustrate the pattern how to specify input con-
stants when literals are involved, without going into too much detail:

An example for nat

ML ‹
val check_nat = @{computation_check terms:

Trueprop even :: nat ⇒ bool plus :: nat ⇒ nat ⇒ nat
0 :: nat Suc 1 :: nat 2 :: nat 3 :: nat
}

›

ML_val ‹
check_nat context cprop ‹even (Suc 0 + 1 + 2 + 3 + 4 + 5)›

›

An example for int

ML ‹
val check_int = @{computation_check terms:

Trueprop even :: int ⇒ bool plus :: int ⇒ int ⇒ int
0 :: int 1 :: int 2 :: int 3 :: int −1 :: int
}

›

7 COMPUTATIONS 41

ML_val ‹
check_int context cprop ‹even ((0::int) + 1 + 2 + 3 + −1 + −2 + −3)›

›

An example for String.literal

definition is_cap_letter :: String.literal ⇒ bool
where is_cap_letter s ←→ (case String.asciis_of_literal s

of [] ⇒ False | k # _ ⇒ 65 ≤ k ∧ k ≤ 90) ML ‹
val check_literal = @{computation_check terms:

Trueprop is_cap_letter datatypes: bool String.literal
}

›

ML_val ‹
check_literal context cprop ‹is_cap_letter (STR ′′Q ′′)›

›

Preprocessing HOL terms into evaluable shape

When integrating decision procedures developed inside HOL into HOL it-
self, a common approach is to use a deep embedding where operators etc.
are represented by datatypes in Isabelle/HOL. Then it is necessary to turn
generic shallowly embedded statements into that particular deep embedding
(“reification”).

One option is to hardcode using code antiquotations (see §7.1). Another
option is to use pre-existing infrastructure in HOL: Reification.conv and
Reification.tac.

A simplistic example:

datatype form_ord = T | F | Less nat nat
| And form_ord form_ord | Or form_ord form_ord | Neg form_ord

primrec interp :: form_ord ⇒ ′a::order list ⇒ bool
where

interp T vs ←→ True
| interp F vs ←→ False
| interp (Less i j) vs ←→ vs ! i < vs ! j
| interp (And f 1 f 2) vs ←→ interp f 1 vs ∧ interp f 2 vs
| interp (Or f 1 f 2) vs ←→ interp f 1 vs ∨ interp f 2 vs

8 ADAPTATION TO TARGET LANGUAGES 42

| interp (Neg f) vs ←→ ¬ interp f vs

The datatype form_ord represents formulae whose semantics is given by
interp. Note that values are represented by variable indices (nat) whose
concrete values are given in list vs.

ML

‹val thm =
Reification.conv context @{thms interp.simps} cterm ‹x < y ∧ x < z››

By virtue of interp.simps, Reification.conv provides a conversion which,
for this concrete example, yields x < y ∧ x < z ≡ interp (And (Less (Suc
0) (Suc (Suc 0))) (Less (Suc 0) 0)) [z , x , y]. Note that the argument to
interp does not contain any free variables and can thus be evaluated using
evaluation.

A less meager example can be found in the AFP, session Regular−Sets,
theory Regexp_Method.

8 Adaptation to target languages
8.1 Adapting code generation
The aspects of code generation introduced so far have two aspects in common:

• They act uniformly, without reference to a specific target language.

• They are safe in the sense that as long as you trust the code generator
meta theory and implementation, you cannot produce programs that
yield results which are not derivable in the logic.

In this section we will introduce means to adapt the serialiser to a specific
target language, i.e. to print program fragments in a way which accommo-
dates “already existing” ingredients of a target language environment, for
three reasons:

• improving readability and aesthetics of generated code

• gaining efficiency

• interface with language parts which have no direct counterpart in HOL
(say, imperative data structures)

8 ADAPTATION TO TARGET LANGUAGES 43

Generally, you should avoid using those features yourself at any cost:

• The safe configuration methods act uniformly on every target language,
whereas for adaptation you have to treat each target language sepa-
rately.

• Application is extremely tedious since there is no abstraction which
would allow for a static check, making it easy to produce garbage.

• Subtle errors can be introduced unconsciously.

However, even if you ought refrain from setting up adaptation yourself, al-
ready HOL comes with some reasonable default adaptations (say, using target
language list syntax). There also some common adaptation cases which you
can setup by importing particular library theories. In order to understand
these, we provide some clues here; these however are not supposed to replace
a careful study of the sources.

8.2 The adaptation principle
Figure 2 illustrates what “adaptation” is conceptually supposed to be:

logic intermediate language target language

translation serialisation

adaptation

ge
ne

ra
te

d

language

library

includes

re
se

rv
ed

Figure 2: The adaptation principle

In the tame view, code generation acts as broker between logic, intermediate
language and target language by means of translation and serialisation; for
the latter, the serialiser has to observe the structure of the language itself
plus some reserved keywords which have to be avoided for generated code.

8 ADAPTATION TO TARGET LANGUAGES 44

However, if you consider adaptation mechanisms, the code generated by the
serializer is just the tip of the iceberg:

• serialisation can be parametrised such that logical entities are mapped
to target-specific ones (e.g. target-specific list syntax, see also §8.4)

• Such parametrisations can involve references to a target-specific stan-
dard library (e.g. using the Haskell Maybe type instead of the HOL
option type); if such are used, the corresponding identifiers (in our ex-
ample, Maybe, Nothing and Just) also have to be considered reserved.

• Even more, the user can enrich the library of the target-language by
providing code snippets (“includes”) which are prepended to any gen-
erated code (see §8.6); this typically also involves further reserved iden-
tifiers.

As figure 2 illustrates, all these adaptation mechanisms have to act consis-
tently; it is at the discretion of the user to take care for this.

8.3 Common adaptation applications
The Main theory of Isabelle/HOL already provides a code generator setup
which should be suitable for most applications. Common extensions and
modifications are available by certain theories in ~~/src/HOL/Library; be-
side being useful in applications, they may serve as a tutorial for customising
the code generator setup (see below §8.4).

HOL.Code_Numeral provides additional numeric types integer and natural
isomorphic to types int and nat respectively. Type integer is mapped
to target-language built-in integers; natural is implemented as abstract
type over integer. Useful for code setups which involve e.g. indexing of
target-language arrays. Part of HOL−Main.

HOL.String provides an additional datatype String.literal which is isomor-
phic to lists of 7-bit (ASCII) characters; String.literals are mapped to
target-language strings.
Literal values of type String.literal can be written as STR ′′. . . ′′ for
sequences of printable characters and STR 0x . . . for one single ASCII
code point given as hexadecimal numeral; String.literal supports con-
catenation . . . + . . . for all standard target languages.
Note that the particular notion of “string” is target-language specific
(sequence of 8-bit units, sequence of unicode code points, . . .); hence

8 ADAPTATION TO TARGET LANGUAGES 45

ASCII is the only reliable common base e.g. for printing (error) mes-
sages; more sophisticated applications like verifying parsing algorithms
require a dedicated target-language specific model.
Nevertheless String.literals can be analyzed; the core operations for this
are String.asciis_of_literal and String.literal_of_asciis which are im-
plemented in a target-language-specific way; particularly String.asciis_of_literal
checks its argument at runtime to make sure that it does not contain
non-ASCII-characters, to safeguard consistency. On top of these, more
abstract conversions like literal.explode and String.implode are imple-
mented.
Part of HOL−Main.

HOL−Library.IArray provides a type ′a iarray isomorphic to lists but im-
plemented by (effectively immutable) arrays in SML only.

Using these adaptation setups the following extensions are provided:

Code_Target_Int implements type int by integer and thus by target-language
built-in integers.

Code_Binary_Nat implements type nat using a binary rather than a linear
representation, which yields a considerable speedup for computations.
Pattern matching with 0 / Suc is eliminated by a preprocessor.

Code_Target_Nat implements type nat by integer and thus by target-language
built-in integers. Pattern matching with 0 / Suc is eliminated by a pre-
processor.

Code_Target_Numeral is a convenience theory containing Code_Target_Nat,
Code_Target_Int and Code_Target_Bit_Shifts-

Code_Bit_Shifts_for_Arithmetic uses the preprocessor to replace arithmetic
operations on numeric types by target-language built-in bit shifts when-
ever feasible.

Code_Abstract_Char implements type char by target language integers,
sacrificing pattern patching in exchange for dramatically increased per-
formance for comparisons.

8 ADAPTATION TO TARGET LANGUAGES 46

8.4 Parametrising serialisation
Consider the following function and its corresponding SML code:

primrec in_interval :: nat × nat ⇒ nat ⇒ bool where
in_interval (k, l) n ←→ k ≤ n ∧ n ≤ l

structure Example : sig
type nat
type boola
val in_interval : nat * nat -> nat -> boola

end = struct

datatype nat = Zero_nat | Suc of nat;

datatype boola = True | False;

fun conj p True = p
| conj p False = False
| conj True p = p
| conj False p = False;

fun less_eq_nat Zero_nat n = True
| less_eq_nat (Suc m) n = less_nat m n

and less_nat n Zero_nat = False
| less_nat m (Suc n) = less_eq_nat m n;

fun in_interval (k, l) n = conj (less_eq_nat k n) (less_eq_nat n l);

end; (*struct Example*)

Though this is correct code, it is a little bit unsatisfactory: boolean values
and operators are materialised as distinguished entities with have nothing to
do with the SML-built-in notion of “bool”. This results in less readable code;
additionally, eager evaluation may cause programs to loop or break which
would perfectly terminate when the existing SML bool would be used. To
map the HOL bool on SML bool, we may use custom serialisations:

code printing
type constructor bool ⇀ (SML) "bool"

| constant True ⇀ (SML) "true"
| constant False ⇀ (SML) "false"
| constant HOL.conj ⇀ (SML) "_ andalso _"

The code_printing command takes a series of symbols (contants, type
constructor, . . .) together with target-specific custom serialisations. Each

8 ADAPTATION TO TARGET LANGUAGES 47

custom serialisation starts with a target language identifier followed by an
expression, which during code serialisation is inserted whenever the type
constructor would occur. Each “_” in a serialisation expression is treated as
a placeholder for the constant’s or the type constructor’s arguments.

structure Example : sig
type nat
val in_interval : nat * nat -> nat -> bool

end = struct

datatype nat = Zero_nat | Suc of nat;

fun less_eq_nat Zero_nat n = true
| less_eq_nat (Suc m) n = less_nat m n

and less_nat n Zero_nat = false
| less_nat m (Suc n) = less_eq_nat m n;

fun in_interval (k, l) n = (less_eq_nat k n) andalso (less_eq_nat n l);

end; (*struct Example*)

This still is not perfect: the parentheses around the “andalso” expression
are superfluous. Though the serialiser by no means attempts to imitate the
rich Isabelle syntax framework, it provides some common idioms, notably
associative infixes with precedences which may be used here:

code printing
constant HOL.conj ⇀ (SML) infixl 1 "andalso"

structure Example : sig
type nat
val in_interval : nat * nat -> nat -> bool

end = struct

datatype nat = Zero_nat | Suc of nat;

fun less_eq_nat Zero_nat n = true
| less_eq_nat (Suc m) n = less_nat m n

and less_nat n Zero_nat = false
| less_nat m (Suc n) = less_eq_nat m n;

fun in_interval (k, l) n = less_eq_nat k n andalso less_eq_nat n l;

end; (*struct Example*)

8 ADAPTATION TO TARGET LANGUAGES 48

The attentive reader may ask how we assert that no generated code will ac-
cidentally overwrite. For this reason the serialiser has an internal table of
identifiers which have to be avoided to be used for new declarations. Ini-
tially, this table typically contains the keywords of the target language. It
can be extended manually, thus avoiding accidental overwrites, using the
code_reserved command:

code reserved ("SML") bool true false andalso

Next, we try to map HOL pairs to SML pairs, using the infix “*” type
constructor and parentheses:

code printing
type constructor prod ⇀ (SML) infix 2 "*"

| constant Pair ⇀ (SML) "!((_),/ (_))"

The initial bang “!” tells the serialiser never to put parentheses around the
whole expression (they are already present), while the parentheses around
argument place holders tell not to put parentheses around the arguments.
The slash “/” (followed by arbitrary white space) inserts a space which may
be used as a break if necessary during pretty printing.

These examples give a glimpse what mechanisms custom serialisations pro-
vide; however their usage requires careful thinking in order not to introduce
inconsistencies – or, in other words: custom serialisations are completely ax-
iomatic.

A further noteworthy detail is that any special character in a custom seri-
alisation may be quoted using “’”; thus, in “fn ’_ => _” the first “_” is a
proper underscore while the second “_” is a placeholder.

8.5 Haskell serialisation
For convenience, the default HOL setup for Haskell maps the equal class to
its counterpart in Haskell, giving custom serialisations for the class equal and
its operation HOL.equal.

code printing
type class equal ⇀ (Haskell) "Eq"

| constant HOL.equal ⇀ (Haskell) infixl 4 "=="

A problem now occurs whenever a type which is an instance of equal in HOL
is mapped on a Haskell-built-in type which is also an instance of Haskell Eq:

9 FURTHER ISSUES 49

typedecl bar

instantiation bar :: equal
begin

definition HOL.equal (x::bar) y ←→ x = y

instance by standard (simp add: equal_bar_def)

end

code printing
type constructor bar ⇀ (Haskell) "Integer"

The code generator would produce an additional instance, which of course is
rejected by the Haskell compiler. To suppress this additional instance:

code printing
class instance bar :: "HOL.equal" ⇀ (Haskell) -

8.6 Enhancing the target language context
In rare cases it is necessary to enrich the context of a target language; this
can also be accomplished using the code_printing command:

code printing code module "Errno" ⇀ (Haskell)
‹ module Errno(errno) where

errno i = error ("Error number: " ++ show i)›

code reserved (Haskell) Errno

Such named modules are then prepended to every generated code. Inspect
such code in order to find out how this behaves with respect to a particular
target language.

9 Further issues
9.1 Runtime environments for Haskell and OCaml
The Isabelle System Manual [12] provides some hints how runtime environ-
ments for Haskell and OCaml can be set up and maintained conveniently
using managed installations within the Isabelle environments.

9 FURTHER ISSUES 50

9.2 Incorporating generated code directly into the sys-
tem runtime – code_reflect

Static embedding of generated code into the system runtime

The code antiquotation is lightweight, but the generated code is only acces-
sible while the ML section is processed. Sometimes this is not appropriate,
especially if the generated code contains datatype declarations which are
shared with other parts of the system. In these cases, code_reflect can be
used:

code_reflect Sum_Type
datatypes sum = Inl | Inr
functions Sum_Type.sum.projl Sum_Type.sum.projr

code_reflect takes a structure name and references to datatypes and func-
tions; for these code is compiled into the named ML structure and the Eval
target is modified in a way that future code generation will reference these
precompiled versions of the given datatypes and functions. This also allows
to refer to the referenced datatypes and functions from arbitrary ML code
as well.

A typical example for code_reflect can be found in the HOL.Predicate
theory.

Separate compilation

For technical reasons it is sometimes necessary to separate generation and
compilation of code which is supposed to be used in the system runtime. For
this code_reflect with an optional file_prefix argument can be used:

code_reflect Rat
datatypes rat
functions Fract
(plus :: rat ⇒ rat ⇒ rat) (minus :: rat ⇒ rat ⇒ rat)
(times :: rat ⇒ rat ⇒ rat) (divide :: rat ⇒ rat ⇒ rat)

file_prefix rat

This generates the referenced code as logical files within the theory context,
similar to export_code.

9 FURTHER ISSUES 51

9.3 Specialities of the Scala target language
Scala deviates from languages of the ML family in a couple of aspects; those
which affect code generation mainly have to do with Scala’s type system:

• Scala prefers tupled syntax over curried syntax.

• Scala sacrifices Hindely-Milner type inference for a much more rich type
system with subtyping etc. For this reason type arguments sometimes
have to be given explicitly in square brackets (mimicking System F
syntax).

• In contrast to Haskell where most specialities of the type system are
implemented using type classes, Scala provides a sophisticated system
of implicit arguments.

Concerning currying, the Scala serializer counts arguments in code equations
to determine how many arguments shall be tupled; remaining arguments and
abstractions in terms rather than function definitions are always curried.

The second aspect affects user-defined adaptations with code_printing.
For regular terms, the Scala serializer prints all type arguments explicitly.
For user-defined term adaptations this is only possible for adaptations which
take no arguments: here the type arguments are just appended. Otherwise
they are ignored; hence user-defined adaptations for polymorphic constants
have to be designed very carefully to avoid ambiguity.

Note also that name clashes can occur when generating Scala code to case-
insensitive file systems; these can be avoid using the “(case_insensitive)”
option for export_code.

9.4 Modules namespace
When invoking the export_code command it is possible to leave out the
module_name part; then code is distributed over different modules, where
the module name space roughly is induced by the Isabelle theory name space.

Then sometimes the awkward situation occurs that dependencies between
definitions introduce cyclic dependencies between modules, which in the
Haskell world leaves you to the mercy of the Haskell implementation you
are using, while for SML/OCaml code generation is not possible.

A solution is to declare module names explicitly. Let use assume the three
cyclically dependent modules are named A, B and C. Then, by stating

9 FURTHER ISSUES 52

code_identifier
code_module A ⇀ (SML) ABC
| code_module B ⇀ (SML) ABC
| code_module C ⇀ (SML) ABC

we explicitly map all those modules on ABC, resulting in an ad-hoc merge
of this three modules at serialisation time.

9.5 Locales and interpretation
A technical issue comes to surface when generating code from specifications
stemming from locale interpretation into global theories.

Let us assume a locale specifying a power operation on arbitrary types:

locale power =
fixes power :: ′a ⇒ ′b ⇒ ′b
assumes power_commute: power x ◦ power y = power y ◦ power x

begin

Inside that locale we can lift power to exponent lists by means of a specifi-
cation relative to that locale:

primrec powers :: ′a list ⇒ ′b ⇒ ′b where
powers [] = id
| powers (x # xs) = power x ◦ powers xs

lemma powers_append:
powers (xs @ ys) = powers xs ◦ powers ys
by (induct xs) simp_all

lemma powers_power :
powers xs ◦ power x = power x ◦ powers xs
by (induct xs)
(simp_all del: o_apply id_apply add: comp_assoc,

simp del: o_apply add: o_assoc power_commute)

lemma powers_rev:
powers (rev xs) = powers xs

by (induct xs) (simp_all add: powers_append powers_power)

end

9 FURTHER ISSUES 53

After an interpretation of this locale (say, global_interpretation fun_power :
power (λn (f :: ′a ⇒ ′a). f ^^ n)), one could naively expect to have a constant
fun_power .powers :: nat list ⇒ (′a ⇒ ′a) ⇒ ′a ⇒ ′a for which code can be
generated. But this not the case: internally, the term fun_power .powers is
an abbreviation for the foundational term power .powers (λn (f :: ′a ⇒ ′a).
f ^^ n) (see [2] for the details behind).

Fortunately, a succint solution is available: a dedicated rewrite definition:

global_interpretation fun_power : power (λn (f :: ′a ⇒ ′a). f ^^ n)
defines funpows = fun_power .powers
by unfold_locales
(simp_all add: fun_eq_iff funpow_mult mult.commute)

This amends the interpretation morphisms such that occurrences of the foun-
dational term power .powers (λn (f :: ′a ⇒ ′a). f ^^ n) are folded to a newly
defined constant funpows.

After this setup procedure, code generation can continue as usual:

funpow :: forall a. Nat -> (a -> a) -> a -> a;

funpow Zero_nat f = id;

funpow (Suc n) f = f . funpow n f;

funpows :: forall a. [Nat] -> (a -> a) -> a -> a;

funpows [] = id;

funpows (x : xs) = funpow x . funpows xs;

9.6 Parallel computation
Theory Parallel in ~~/src/HOL/Library contains operations to exploit par-
allelism inside the Isabelle/ML runtime engine.

REFERENCES 54

9.7 Imperative data structures
If you consider imperative data structures as inevitable for a specific applica-
tion, you should consider Imperative Functional Programming with Isabelle/HOL
[4]; the framework described there is available in session Imperative_HOL,
together with a short primer document.

References
[1] Klaus Aehlig, Florian Haftmann, and Tobias Nipkow. A compiled

implementation of normalization by evaluation. In Otmane Aït Mohamed,
César Muñoz, and Sofiène Tahar, editors, TPHOLs ’08: Proceedings of the
21th International Conference on Theorem Proving in Higher Order Logics,
volume 5170 of Lecture Notes in Computer Science, pages 352–367.
Springer-Verlag, 2008.

[2] Clemens Ballarin. Tutorial to Locales and Locale Interpretation.
https://isabelle.in.tum.de/doc/locales.pdf.

[3] Stefan Berghofer, Lukas Bulwahn, and Florian Haftmann. Turning inductive
into equational specifications. In Theorem Proving in Higher Order Logics,
pages 131–146, 2009.

[4] Lukas Bulwahn, Alexander Krauss, Florian Haftmann, Levent Erkök, and
John Matthews. Imperative functional programming with Isabelle/HOL. In
Otmane Aït Mohamed, César A. Muñoz, and Sofiène Tahar, editors,
Theorem Proving in Higher Order Logics: TPHOLs 2008, Lecture Notes in
Computer Science. Springer-Verlag, 2008.

[5] Martin Odersky et al. An overview of the scala programming language.
Technical Report IC/2004/64, EPFL Lausanne, Switzerland, 2004.

[6] Florian Haftmann, Alexander Krauss, Ondřej Kunčar, and Tobias Nipkow.
Data refinement in Isabelle/HOL. In S. Blazy, C. Paulin-Mohring, and
D. Pichardie, editors, Interactive Theorem Proving (ITP 2013), volume 7998
of Lecture Notes in Computer Science, pages 100–115. Springer-Verlag, 2013.

[7] Florian Haftmann and Tobias Nipkow. Code generation via higher-order
rewrite systems. In Matthias Blume, Naoki Kobayashi, and Germán Vidal,
editors, Functional and Logic Programming: 10th International Symposium:
FLOPS 2010, volume 6009 of Lecture Notes in Computer Science.
Springer-Verlag, 2010.

[8] Xavier Leroy et al. The Objective Caml system – Documentation and user’s
manual. http://caml.inria.fr/pub/docs/manual-ocaml/.

https://isabelle.in.tum.de/doc/locales.pdf
http://caml.inria.fr/pub/docs/manual-ocaml/

REFERENCES 55

[9] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard
ML. MIT Press, 1990.

[10] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A
Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer-Verlag, 2002.

[11] Simon Peyton Jones et al. The Haskell 98 language and libraries: The
revised report. Journal of Functional Programming, 13(1):0–255, Jan 2003.
http://www.haskell.org/definition/.

[12] Makarius Wenzel. The Isabelle System Manual.
https://isabelle.in.tum.de/doc/system.pdf.

[13] Makarius Wenzel. The Isabelle/Isar Implementation.
https://isabelle.in.tum.de/doc/implementation.pdf.

[14] Makarius Wenzel. The Isabelle/Isar Reference Manual.
https://isabelle.in.tum.de/doc/isar-ref.pdf.

http://www.haskell.org/definition/
https://isabelle.in.tum.de/doc/system.pdf
https://isabelle.in.tum.de/doc/implementation.pdf
https://isabelle.in.tum.de/doc/isar-ref.pdf

	Introduction
	Code generation principle: shallow embedding
	A quick start with the Isabelle/HOL toolbox
	Type classes
	How to continue from here

	Code generation foundations
	Code generator architecture
	The pre- and postprocessor
	Understanding code equations
	Equality
	Explicit partiality
	If something goes utterly wrong

	Program and datatype refinement
	Program refinement
	Datatype refinement
	Datatype refinement involving invariants

	Partial Functions
	Tail recursion
	Option
	Subtype

	Inductive Predicates
	Alternative names for functions
	Alternative introduction rules
	Options for values
	Embedding into functional code within Isabelle/HOL
	Further Examples

	Evaluation
	Evaluation techniques
	Dynamic evaluation
	Static evaluation

	Computations
	Prelude – The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 code antiquotation
	The concept of computations
	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 computation antiquotation
	Pitfalls when specifying input constants
	Pitfalls concerning input terms
	Computations using the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 computation_conv antiquotation
	Computations using the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 computation_check antiquotation
	Some practical hints

	Adaptation to target languages
	Adapting code generation
	The adaptation principle
	Common adaptation applications
	Parametrising serialisation
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Haskell serialisation
	Enhancing the target language context

	Further issues
	Runtime environments for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Haskell and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 OCaml
	Incorporating generated code directly into the system runtime – 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 code_reflect
	Specialities of the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Scala target language
	Modules namespace
	Locales and interpretation
	Parallel computation
	Imperative data structures

