Defining Nonprimitively (Co)recursive

Functions in Isabelle/HOL

Jasmin Christian Blanchette, Aymeric Bouzy,
Andreas Lochbihler, Andrei Popescu, and
Dmitriy Traytel

18 January 2026

Abstract

This tutorial describes the definitional package for nonprimitively
corecursive functions in Isabelle/HOL. The following commands
are provided: corec, corecursive, friend_ of corec, and coin-
duction__upto. They supplement codatatype, primcorec, and
primcorecursive, which define codatatypes and primitively corecur-
sive functions.

Contents
1 Introduction
2 Introductory Examples

2.1 Simple Corecursion
2.2 Nested Corecursion
2.3 Mixed Recursion—Corecursion
2.4 Self-Friendship oL
2.5 Coinduction
2.6 Uniqueness Reasoning

Command Syntax

3.1 corec and corecursive
3.2 friend_of corec
3.3 coinduction_upto

1 INTRODUCTION 2

4 Generated Theorems 14
4.1 corec and corecursive 15
4.2 friend_of corec, 16
4.3 coinduction_upto00 16

5 Proof Methods 17
5.1 corec_unique 17
5.2 transfer _prover _eq 17

6 Attribute 17
6.1 friend _of corec_simps 17

7 Known Bugs and Limitations 17

1 Introduction

Isabelle’s (co)datatype package [1] offers a convenient syntax for introducing
codatatypes. For example, the type of (infinite) streams can be defined as
follows (cf. ~~/src/HOL/Library/Stream.thy):

codatatype ’a stream =
SCons (shd: 'a) (stl: “'a stream”)

The (co)datatype package also provides two commands, primcorec and
primcorecursive, for defining primitively corecursive functions.

This tutorial presents a definitional package for functions beyond prim-
itive corecursion. It describes corec and related commands: corecursive,
friend_ of corec, and coinduction__upto. It also covers the corec_unique
proof method. The package is not part of Main; it is located in ~~/src/HOL/
Library/BNF_Corec.thy.

The corec command generalizes primcorec in three main respects. First,
it allows multiple constructors around corecursive calls, where primcorec
expects exactly one. For example:

corec oneTwos :: “nat stream” where
“oneTwos = SCons 1 (SCons 2 oneTwos)”

Second, corec allows other functions than constructors to appear in the
corecursive call context (i.e., around any self-calls on the right-hand side of
the equation). The requirement on these functions is that they must be
friendly. Intuitively, a function is friendly if it needs to destruct at most one
constructor of input to produce one constructor of output. We can register
functions as friendly using the friend_ of corec command, or by passing

1 INTRODUCTION 3

the friend option to corec. The friendliness check relies on an internal syn-
tactic check in combination with a parametricity subgoal, which must be dis-
charged manually (typically using transfer prover or transfer prover eq).

Third, corec allows self-calls that are not guarded by a constructor, as
long as these calls occur in a friendly context (a context consisting exclusively
of friendly functions) and can be shown to be terminating (well founded). The
mixture of recursive and corecursive calls in a single function can be quite
useful in practice.

Internally, the package synthesizes corecursors that take into account the
possible call contexts. The corecursor is accompanined by a corresponding,
equally general coinduction principle. The corecursor and the coinduction
principle grow in expressiveness as we interact with it. In process algebra
terminology, corecursion and coinduction take place up to friendly contexts.

The package fully adheres to the LCF philosophy [5]: The characteris-
tic theorems associated with the specified corecursive functions are derived
rather than introduced axiomatically. (Exceptionally, most of the internal
proof obligations are omitted if the quick_and__dirty option is enabled.) The
package is described in a pair of scientific papers [2,3]. Some of the text and
examples below originate from there.

This tutorial is organized as follows:

« Section 2, “Introductory Examples,” describes how to specify corecur-
sive functions and to reason about them.

o Section 3, “Command Syntax,” describes the syntax of the commands
offered by the package.

e Section 4, “Generated Theorems,” lists the theorems produced by the
package’s commands.

o Section 5, “Proof Methods,” briefly describes the corec unique and
transfer__prover__eq proof methods.

o Section 6, “Attribute,” briefly describes the friend_of corec_simps at-
tribute, which can be used to strengthen the tactics underlying the
friend_ of corec and corec (friend) commands.

e Section 7, “Known Bugs and Limitations,” concludes with known open
issues.

Although it is more powerful than primcorec in many respects, corec
suffers from a number of limitations. Most notably, it does not support
mutually corecursive codatatypes, and it is less efficient than primcorec
because it needs to dynamically synthesize corecursors and corresponding
coinduction principles to accommodate the friends.

2 INTRODUCTORY EXAMPLES 4

Comments and bug reports concerning either the package or this tutorial
should be directed to the first author at jasmin.blanchette@gmail.com or
to the cl-isabelle-users mailing list.

2 Introductory Examples

The package is illustrated through concrete examples featuring different fla-
vors of corecursion. More examples can be found in the directory ~~/src/
HOL/Corec_Examples.

2.1 Simple Corecursion

The case studies by Rutten [7] and Hinze [6] on stream calculi serve as our
starting point. The following definition of pointwise sum can be performed
with either primcorec or corec:

primcorec ssum :: “(‘a :: plus) stream = 'a stream = 'a stream” where
“ssum xs ys = SCons (shd xs + shd ys) (ssum (stl xs) (stl ys))”

Pointwise sum meets the friendliness criterion. We register it as a friend
using the friend__of corec command. The command requires us to give a
specification of ssum where a constructor (SCons) occurs at the outermost
position on the right-hand side. Here, we can simply reuse the primcorec
specification above:

friend__of _corec ssum :: “('a :: plus) stream = 'a stream = 'a stream” where
“ssum xs ys = SCons (shd xs + shd ys) (ssum (stl xs) (stl ys))”
apply (rule ssum.code)
by transfer_ _prover

The command emits two subgoals. The first subgoal corresponds to the
equation we specified and is trivial to discharge. The second subgoal is a
parametricity property that captures the the requirement that the function
may destruct at most one constructor of input to produce one constructor of
output. This subgoal can usually be discharged using the transfer _prover or
transfer_prover _eq proof method (Section 5.2). The latter replaces equality
relations by their relator terms according to the relator eq theorem collection
before it invokes transfer _prover.

After registering ssum as a friend, we can use it in the corecursive call
context, either inside or outside the constructor guard:

corec fibA :: “nat stream” where
“fibA = SCons 0 (ssum (SCons 1 fibA) fibA)”

2 INTRODUCTORY EXAMPLES 5

corec fibB :: “nat stream” where
“fibB = ssum (SCons 0 (SCons 1 fibB)) (SCons 0 fibB)”

Using the friend option, we can simultaneously define a function and
register it as a friend:

corec (friend)
sprod :: “('a :: {plus,times}) stream = 'a stream = 'a stream”
where
“sprod xs ys =
SCons (shd zs * shd ys) (ssum (sprod zs (stl ys)) (sprod (stl zs) ys))”

corec (friend) sexp :: “nat stream = nat stream” where
“sexp xs = SCons (2 ~ shd xs) (sprod (stl xs) (sexp xs))”

The parametricity subgoal is given to transfer prover eq (Section 5.2).

The sprod and sexp functions provide shuffle product and exponentiation
on streams. We can use them to define the stream of factorial numbers in
two different ways:

corec factA :: “nat stream” where
“factA = (let zs = SCons 1 factA in sprod zs zs)”

corec factB :: “nat stream” where
“factB = sexp (SCons 0 factB)”

The arguments of friendly functions can be of complex types involving the
target codatatype. The following example defines the supremum of a finite
set of streams by primitive corecursion and registers it as friendly:

corec (friend) sfsup :: “nat stream fset = nat stream” where
“sfsup X = SCons (Sup (fset (fimage shd X))) (sfsup (fimage stl X))”

In general, the arguments may be any bounded natural functor (BNF) [1],
with the restriction that the target codatatype (nat stream) may occur only
in a live position of the BNF. For this reason, the following function, on
unbounded sets, cannot be registered as a friend:

primcorec ssup :: “nat stream set = nat stream” where
“ssup X = SCons (Sup (image shd X)) (ssup (image stl X))”

2.2 Nested Corecursion

The package generally supports arbitrary codatatypes with multiple con-
structors and nesting through other type constructors (BNFs). Consider the
following type of finitely branching Rose trees of potentially infinite depth:

codatatype 'a tree =

2 INTRODUCTORY EXAMPLES 6

Node (lab: 'a) (sub: “'a tree list”)
We first define the pointwise sum of two trees analogously to ssum:

corec (friend) tsum :: “('a :: plus) tree = 'a tree = 'a tree” where
“tsum t u =
Node (lab t + lab u) (map (A(¥, v). tsum t' u') (zip (sub t) (sub u)))”

Here, map is the standard map function on lists, and zip converts two par-
allel lists into a list of pairs. The tsum function is primitively corecur-
sive. Instead of corec (friend), we could also have used primcorec and
friend__of corec, as we did for ssum.

Once tsum is registered as friendly, we can use it in the corecursive call
context of another function:

corec (friend) ttimes :: “('a :: {plus,times}) tree = 'a tree = 'a tree” where
“ttimes t u = Node (lab t x lab u)
(map (A(t, o). tsum (ttimes t ') (ttimes t' u)) (zip (sub t) (sub u)))”

All the syntactic convenience provided by primcorec is also supported by
corec, corecursive, and friend_ of corec. In particular, nesting through
the function type can be expressed using A-abstractions and function appli-
cations rather than through composition ((o), the map function for =). For
example:

codatatype 'a language =
Lang (o0: bool) (9: “’a = 'a language”)

corec (friend) Plus :: “'a language = 'a language = 'a language” where
“Plus rs = Lang (o 7 V 0 5) (Aa. Plus (0 r a) (0 s a))”

corec (friend) Times :: “‘a language = 'a language = 'a language” where
“Times rs = Lang (o 7 A 0)
(Aa. if o r then Plus (Times (0 r a) s) (0 s a) else Times (0 r a) s)”

corec (friend) Star :: “'a language = 'a language” where
“Star r = Lang True (Aa. Times (0 r a) (Star r))”

corec (friend) Inter :: “‘a language = 'a language = 'a language” where
“Inter r s = Lang (0 7 A o s) (Aa. Inter (0 ra) (0 sa))”

corec (friend) PLUS :: “/a language list = 'a language” where
“PLUS zs = Lang (3 € set xs. 0 x) (Aa. PLUS (map (Ar. 9 r a) zs))”

2.3 Mixed Recursion—Corecursion

It is often convenient to let a corecursive function perform some finite com-
putation before producing a constructor. With mixed recursion—corecursion,

2 INTRODUCTORY EXAMPLES 7

a finite number of unguarded recursive calls perform this calculation before
reaching a guarded corecursive call. Intuitively, the unguarded recursive call
can be unfolded to arbitrary finite depth, ultimately yielding a purely core-
cursive definition. An example is the primes function from Di Gianantonio
and Miculan [4]:

corecursive primes :: “nat = nat = nat stream” where
“primes mn =
(if (m=0An> 1)V coprime m n then
SCons n (primes (m * n) (n + 1))
else
primes m (n + 1))”
apply (relation “measure (A(m, n).
if n =0 then 1 else if coprime m n then 0 else m — n mod m)”)
apply (auto simp: mod__Suc diff _less_mono2 intro: Suc__lessI elim!: not__coprimek)
apply (metis dvd_1_iff 1 dvd_eq mod_eq 0 mod_0 mod_Suc mod_Suc_eq
mod__mod__cancel)
done

The corecursive command is a variant of corec that allows us to specify a
termination argument for any unguarded self-call.

When called with m = 1 and n = 2, the primes function computes the
stream of prime numbers. The unguarded call in the else branch increments
n until it is coprime to the first argument m (i.e., the greatest common divisor
of m and n is 1).

For any positive integers m and n, the numbers m and m % n + 1 are
coprime, yielding an upper bound on the number of times n is increased.
Hence, the function will take the else branch at most finitely often before
taking the then branch and producing one constructor. There is a slight
complication when m = 0 A n > 1: Without the first disjunct in the if
condition, the function could stall. (This corner case was overlooked in the
original example [4].)

In the following examples, termination is discharged automatically by
corec by invoking lexicographic__order:

corec catalan :: “nat = nat stream” where
“catalan n =
(if n > 0 then ssum (catalan (n — 1)) (SCons 0 (catalan (n + 1)))
else SCons 1 (catalan 1))”

corec collatz :: “nat = nat stream” where
“collatz n = (if even n A n > 0 then collatz (n div 2)
else SCons n (collatz (3 x n + 1)))”

A more elaborate case study, revolving around the filter function on lazy

2 INTRODUCTORY EXAMPLES 8

lists, is presented in ~~/src/HOL/Corec_Examples/LFilter.thy.

2.4 Self-Friendship

The package allows us to simultaneously define a function and use it as its
own friend, as in the following definition of a “skewed product”:

corec (friend)
sskew :: “('a :: {plus,times}) stream = 'a stream = 'a stream”
where
“sskew s ys =
SCons (shd zs x shd ys) (sskew (sskew xzs (stl ys)) (sskew (stl xs) ys))”

Such definitions, with nested self-calls on the right-hand side, cannot be
separated into a corec part and a friend__of corec part.

2.5 Coinduction

Once a corecursive specification has been accepted, we normally want to
reason about it. The codatatype command generates a structural coinduction
principle that matches primitively corecursive functions. For nonprimitive
specifications, our package provides the more advanced proof principle of
coinduction up to congruence—or simply coinduction up-to.

The structural coinduction principle for ‘a stream, called stream.coinduct,
is as follows:

[R stream stream’; N\stream stream’. R stream stream’ —> shd stream =
shd stream’ N R (stl stream) (stl stream/)] = stream = stream’

Coinduction allows us to prove an equality [= r on streams by providing a
relation R that relates [and r (first premise) and that constitutes a bisimu-
lation (second premise). Streams that are related by a bisimulation cannot
be distinguished by taking observations (via the selectors shd and stl); hence
they must be equal.

The coinduction up-to principle after registering sskew as friendly is avail-
able as sskew.coinduct and as one of the components of the theorem collection
stream.coinduct__upto:

[R stream stream’; \stream stream’. R stream stream’ = shd stream =
shd stream’ N\ stream.v5.congelp R (stl stream) (stl stream’)] = stream
= stream’

This rule is almost identical to structural coinduction, except that the core-
cursive application of R is generalized to stream.v5.congclp R.

2 INTRODUCTORY EXAMPLES 9

The stream.vb.congclp predicate is equipped with the following introduc-
tion rules:

sskew.cong_base:
P x y = stream.v5.congclp P x y

sskew.cong _refi:
r = y = stream.v5.congclp R z y

sskew.cong__sym:
stream.vd.congclp R x y = stream.vb.congclp R y x

sskew.cong_trans:
[stream.v5.congclp R z y; stream.v5.congelp R y z] = stream.v5.congclp
Rzxz

sskew.cong SCons:
[z1 = y1; stream.v5.congclp R 22 y2] = stream.v5.congclp R (SCons
zl 22) (SCons yl y2)

sskew.cong__ssum:
[stream.v5.congclp R z1 y1; stream.v5.congelp R 22 y2] = stream.v5.congclp
R (ssum z1 22) (ssum yl y2)

sskew.cong__sprod:
[stream.v5.congclp R z1 y1; stream.v5.congelp R 22 y2] = stream.v5.congclp
R (sprod z1 z2) (sprod yl y2)

sskew.cong _sskew:
[stream.v5.congclp R z1 y1; stream.v5.congelp R 22 y2] = stream.v5.congclp
R (sskew z1 22) (sskew y1 y2)

The introduction rules are also available as sskew.cong intros.

Notice that there is no introduction rule corresponding to sexp, because
sexp has a more restrictive result type than sskew (nat stream vs. ‘a stream.

The version numbers, here v5, distinguish the different congruence clo-
sures generated for a given codatatype as more friends are registered. As
much as possible, it is recommended to avoid referring to them in proof
documents.

Since the package maintains a set of incomparable corecursors, there is
also a set of associated coinduction principles and a set of sets of introduc-
tion rules. A technically subtle point is to make Isabelle choose the right
rules in most situations. For this purpose, the package maintains the col-
lection stream.coinduct _upto of coinduction principles ordered by increasing
generality, which works well with Isabelle’s philosophy of applying the first
rule that matches. For example, after registering ssum as a friend, proving

2 INTRODUCTORY EXAMPLES 10

the equality | = r on nat stream might require coinduction principle for nat
stream, which is up to ssum.

The collection stream.coinduct__upto is guaranteed to be complete and up
to date with respect to the type instances of definitions considered so far,
but occasionally it may be necessary to take the union of two incompara-
ble coinduction principles. This can be done using the coinduction__upto
command. Consider the following definitions:

codatatype (‘a, 'b) tllist =

TNil (terminal: 'b)
| TCons (thd: 'a) (ttl: “('a, 'b) tllist”)

corec (friend) square__elems :: “(nat, 'b) tllist = (nat, 'd) tllist” where
“square__elems xs =
(case xs of
TNil z = TNil z
| TCons y ys = TCons (y ~ 2) (square__elems ys))”

corec (friend) square_terminal :: “(‘a, int) tilist = ('a, int) tllist” where
“square__terminal xs =
(case zs of
TNil z = TNil (z ~ 2)
| TCons y ys = TCons y (square_terminal ys))”

At this point, tllist.coinduct upto contains three variants of the coinduc-
tion principles:

o (‘a, int) tllist up to TNil, TCons, and square_terminal;
o (nat,'d) tllist up to TNil, TCons, and square__elems;
e (‘a,’d) tllist up to TNil and TCons.

The following variant is missing:
e (nat, int) tllist up to TNil, TCons, square__elems, and square__terminal.

To generate it without having to define a new function with corec, we can
use the following command:

coinduction__upto nat_int_tllist: “(nat, int) tllist”

This produces the theorems

nat_int_tllist.coinduct__upto
nat_int_tllist.cong_intros

(as well as the individually named introduction rules) and extends the dy-
namic collections tllist.coinduct upto and tllist.cong intros.

2 INTRODUCTORY EXAMPLES 11

2.6 Uniqueness Reasoning

It is sometimes possible to achieve better automation by using a more special-
ized proof method than coinduction. Uniqueness principles maintain a good
balance between expressiveness and automation. They exploit the property
that a corecursive definition is the unique solution to a fixpoint equation.

The corec, corecursive, and friend_ of corec commands generate a
property f.unique about the function of interest f that can be used to prove
that any function that satisfies f’s corecursive specification must be equal
to f. For example:

[= (Azs ys. SCons (shd xs + shd ys) (f (stl xs) (stl ys))) = f = ssum

The uniqueness principles are not restricted to functions defined using
corec or corecursive or registered with friend__of corec. Suppose ¢ z is
an arbitrary term depending on z. The corec _unique proof method, provided
by our tool, transforms subgoals of the form

Ve.fr=Hzf = fe=1tx

into
Ve.tzx=Huzt

The higher-order functional H must be such that fx = H = f would be a valid
corec specification, but without nested self-calls or unguarded (recursive)
calls. Thus, corec_unique proves uniqueness of ¢ with respect to the given
corecursive equation regardless of how ¢ was defined. For example:

lemma
fixes f :: “nat stream = nat stream = nat stream”
assumes “Vzs ys. fxs ys =
SCons (shd ys % shd xs) (ssum (f zs (stl ys)) (f (stl zs) ys))”
shows “f = sprod”
using assms
proof corec__unique
show “sprod = (Axs ys :: nat stream.
SCons (shd ys x shd xs) (ssum (sprod xs (stl ys)) (sprod (stl xs) ys)))”
apply (rule ext)+
apply (subst sprod.code)
by simp
qed

The proof method relies on some theorems generated by the package.
If no function over a given codatatype has been defined using corec or

3 COMMAND SYNTAX 12

corecursive or registered as friendly using friend__of corec, the theo-
rems will not be available yet. In such cases, the theorems can be explicitly
generated using the command

coinduction__upto stream: “’a stream”

3 Command Syntax

3.1 corec and corecursive

corec : local theory — local theory
corecursive : local theory — proof (prove)

corecursive

target

¢ e
1 J fiz |(where)

cr-options

cr-options

@ plugins
=

()
N

The corec and corecursive commands introduce a corecursive function over
a codatatype.

The syntactic entity target can be used to specify a local context, fix
denotes name with an optional type signature, and prop denotes a HOL
proposition [8].

The optional target is optionally followed by a combination of the follow-
ing options:

3 COMMAND SYNTAX 13

» The plugins option indicates which plugins should be enabled (only) or
disabled (del). By default, all plugins are enabled.

o The friend option indicates that the defined function should be regis-
tered as a friend. This gives rise to additional proof obligations.

o The transfer option indicates that an unconditional transfer rule should
be generated and proved by transfer _prover. The [transfer rule] at-
tribute is set on the generated theorem.

The corec command is an abbreviation for corecursive with appropriate
applications of transfer prover _eq (Section 5.2) and lexicographic__order to
discharge any emerging proof obligations.

3.2 friend of corec

friend_of corec : local theory — proof (prove)

- >
—@rlend_of_corecj l

target

(e
L J fir (where)

foc-options

foc-options

@ plugins

N

The friend__of _corec command registers a corecursive function as friendly.
The syntactic entity target can be used to specify a local context, fix
denotes name with an optional type signature, and prop denotes a HOL
proposition [8].
The optional target is optionally followed by a combination of the follow-
ing options:

4 GENERATED THEOREMS 14

» The plugins option indicates which plugins should be enabled (only) or
disabled (del). By default, all plugins are enabled.

o The transfer option indicates that an unconditional transfer rule should
be generated and proved by transfer prover. The [transfer rule] at-
tribute is set on the generated theorem.

3.3 coinduction__upto

coinduction__upto : local theory — local_theory

—Ccoinduction_upt@ l J name {} type ——

target

The coinduction__upto generates a coinduction up-to rule for a given in-
stance of a (possibly polymorphic) codatatype and notes the result with the
specified prefix.

The syntactic entity name denotes an identifier and type denotes a type [8].

4 Generated Theorems

The full list of named theorems generated by the package can be obtained
by issuing the command print__theorems immediately after the datatype
definition. This list excludes low-level theorems that reveal internal construc-
tions. To make these accessible, add the line

declare [[bnf_internals]]

In addition to the theorem listed below for each command provided by
the package, all commands update the dynamic theorem collections

t.coinduct__upto

t.cong__intros

for the corresponding codatatype t so that they always contain the most
powerful coinduction up-to principles derived so far.

4 GENERATED THEOREMS 15

4.1 corec and corecursive

For a function f over codatatype ¢, the corec and corecursive commands
generate the following properties (listed for sexp, cf. Section 2.1):

f.code [code]:
sexp xs = SCons sprod (stl xzs) (sexp xs))
The [code] attribute is set by the code plugin [1].

25hd s (

f.coinduct [consumes 1, case_names t, case__conclusion Dy ... D,]:
[[R nat_stream nat_ stream’, /\natfstream nat_stream’. R nat_ stream
nat__stream’ = shd nat__stream = shd nat__stream’ N\ stream.v3.congclp
R (stl nat__stream) (stl nat__stream’)] = nat__stream = nat__stream’

f.cong__intros:
P x y = stream.v3.congclp P x y
r = y = stream.v3.congclp R z y
stream.v3.congclp R x y = stream.v3.congclp R y x

[stream.v3.congclp R z y; stream.v3.congelp R y z] = stream.v3.congclp
Rxz

[z1 = y1; stream.v3.congclp R 22 y2] = stream.v3.congclp R (SCons
zl 22) (SCons yl y2)

[stream.v3.congclp R z1 y1; stream.v3.congelp R 22 y2] = stream.v3.congclp
R (ssum z1 22) (ssum yl y2)

[stream.v3.congelp R x1 yl; stream.v3.congelp R 12 y2] = stream.v3.congclp

R (sprod z1 z2) (sprod yl y2)

stream.v3.congclp R © y = stream.v3.congclp R (sexp x) (sexp y)
f.-unique:

f = (\as. SCons 25" % (sprod (stl xs) (f xs))) = f = sexp

This property is not generated for mixed recursive—corecursive defi-
nitions.

f.inner__induct:
This property is only generated for mixed recursive—corecursive def-
initions. For primes (Section 2.3, it reads as follows:

(Amn. (Nzy. [(z,y) = (m,n); = (z=0A1<yV coprime z y)]
— P (z,y+ 1)) = P (m,n)) = P a0

The individual rules making up f.cong intros are available as

f.cong base

f.cong _refi

4 GENERATED THEOREMS 16

f.cong__sym
f.cong__trans

f.cong Cq, ..., f.cong C,

where C4, ..., C, are t’s constructors
f.cong fi, ..., f.cong_f.,,
where fq, ..., f.,, are the available friends for ¢

4.2 friend of corec

The friend__of corec command generates the same theorems as corec and
corecursive, except that it adds an optional friend. component to the names
to prevent potential clashes (e.g., f.friend.code).

4.3 coinduction_ upto

The coinduction__upto command generates the following properties (listed
for nat_int_tllist):

t.coinduct__upto [consumes 1, case_names t,
case__conclusion Dy ... D,]l:
[R nat_int_tllist nat_int_tllist’;, \nat_int_tllist nat_int_tllist". R
nat_int_tllist nat_int tllist = is TNil nat_int tllist = is TNil
nat_int_tllist' A (is_TNil nat_int_tllist — is_TNil nat_int_tllist’
— terminal nat_int_tllist = terminal nat_int_tllist) N (= is_ TNil
nat_int tllist — — is TNil nat _int tllist — thd nat int tllist
= thd nat_int_tllist' A tllist.v3.congclp R (ttl nat_int_tllist) (it
nat_int_tllist))] = nat_int_tllist = nat_int_tllist’
t.cong__intros:
P xy = tllist.v3.congclp P x y
r =y = tllist.v3.congclp R x y
tllist.v3.congclp R vy = tllist.v3.congclp R y x

[tllist.v3.congclp R x y; tllist.v3.congelp R y z] = tllist.v3.congclp
Rzxz

r =y = tllist.v3.congclp R (TNil z) (TNil y)

[z1 = y1; tllist.v3.congclp R 22 y2] = tllist.v3.congclp R (TCons
zl x2) (TCons yl y2)

tllist.v3.congclp R x y = tllist.v3.congclp R (square__elems x) (square__elems
y)

5 PROOF METHODS 17

tllist.v3.congelp R x y = tllist.v3.congclp R (square_terminal x)
(square__terminal y)

The individual rules making up t.cong intros are available separately as
t.cong_base, t.cong_refl, etc. (Section 4.1).

5 Proof Methods

5.1 corec__unique

The corec_unique proof method can be used to prove the uniqueness of a
corecursive specification. See Section 2.6 for details.

5.2 transfer__prover__eq

The transfer _prover _eq proof method replaces the equality relation (=)
with compound relator expressions according to relator eq before calling
transfer _prover on the current subgoal. It tends to work better than plain
transfer _prover on the parametricity proof obligations of corecursive and
friend_ of corec, because they often contain equality relations on complex
types, which transfer _prover cannot reason about.

6 Attribute

6.1 friend__of corec__simps

The friend__of corec__simps attribute declares naturality theorems to be used
by friend__of corec and corec (friend) in deriving the user specification
from reduction to primitive corecursion. Internally, these commands derive
naturality theorems from the parametricity proof obligations dischared by
the user or the transfer prover eq method, but this derivation fails if in the
arguments of a higher-order constant a type variable occurs on both sides of
the function type constructor. The required naturality theorem can then be
declared with friend of corec simps. See ~~/src/HOL/Corec_Examples/
Tests/Iterate_GPV.thy for an example.

7 Known Bugs and Limitations

This section lists the known bugs and limitations of the corecursion package
at the time of this writing.

REFERENCES 18

1. Mutually corecursive codatatypes are not supported.

2. The signature of friend functions may not depend on type variables

beyond those that appear in the codatatype.

3. The internal tactics may fail on legal inputs. In some cases, this limi-

tation can be circumvented using the friend_of corec_simps attribute
(Section 6.1).

4. The transfer option is not implemented yet.

5. The constructor and destructor views offered by primcorec are not

supported by corec and corecursive.

6. There is no mechanism for registering custom plugins.
7. The package does not interact well with locales.

8. The undocumented corecUU _transfer theorem is not as polymorphic as

it could be.

9. All type wvariables occurring in the arguments of a friendly function

must occur as direct arguments of the type constructor of the resulting
type.

References

1]

J. Biendarra, J. C. Blanchette, M. Desharnais, L.. Panny, A. Popescu, and
D. Traytel. Defining (Co)datatypes and Primitively (Co)recursive Func-
tions in Isabelle/HOL. https://isabelle.in.tum.de/doc/datatypes.
pdf.

J. C. Blanchette, A. Bouzy, A. Lochbihler, A. Popescu, and D. Traytel.
Friends with benefits: Implementing corecursion in foundational proof
assistants. http://www2l.in.tum.de/~blanchet/amico.pdf, 2016.

J. C. Blanchette, A. Popescu, and D. Traytel. Foundational extensible
corecursion: A proof assistant perspective. In K. Fisher and J. H. Reppy,
editors, 20th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2015, pages 192-204. ACM, 2015.

P. Di Gianantonio and M. Miculan. A unifying approach to recursive and
co-recursive definitions. In H. Geuvers and F. Wiedijk, editors, TYPES
2002, volume 2646 of LNCS, pages 148-161. Springer, 2003.

https://isabelle.in.tum.de/doc/datatypes.pdf
https://isabelle.in.tum.de/doc/datatypes.pdf
http://www21.in.tum.de/~blanchet/amico.pdf

REFERENCES 19

[5] M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A
Mechanised Logic of Computation, volume 78 of Lecture Notes in Com-
puter Science. Springer, 1979.

[6] R. Hinze. Concrete stream calculus—An extended study. J. Funct. Pro-
gram., 20:463-535, 2010.

[7] J. J. M. M. Rutten. A coinductive calculus of streams. Math. Struct.
Comp. Sci., 15(1):93-147, 2005.

[8] M. Wenzel. The Isabelle/Isar Reference Manual. https://isabelle.
in.tum.de/doc/isar-ref .pdf.

https://isabelle.in.tum.de/doc/isar-ref.pdf
https://isabelle.in.tum.de/doc/isar-ref.pdf

	Introduction
	Introductory Examples
	Simple Corecursion
	Nested Corecursion
	Mixed Recursion–Corecursion
	Self-Friendship
	Coinduction
	Uniqueness Reasoning

	Command Syntax
	corec and corecursive
	friend_of_corec
	coinduction_upto

	Generated Theorems
	corec and corecursive
	friend_of_corec
	coinduction_upto

	Proof Methods
	corec_unique
	transfer_prover_eq

	Attribute
	friend_of_corec_simps

	Known Bugs and Limitations

