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Abstract

We describe the key concepts underlying the Isabelle/Isar implementation,
including ML references for the most important functions. The aim is to
give some insight into the overall system architecture, and provide clues on
implementing applications within this framework.



Isabelle was not designed; it evolved. Not everyone likes this idea.
Specification experts rightly abhor trial-and-error programming. They
suggest that no one should write a program without first writing a com-
plete formal specification. But university departments are not software
houses. Programs like Isabelle are not products: when they have served
their purpose, they are discarded.

Lawrence C. Paulson, “Isabelle: The Next 700 Theorem Provers”

As I did 20 years ago, I still fervently believe that the only way to make
software secure, reliable, and fast is to make it small. Fight features.

Andrew S. Tanenbaum

One thing that UNIX does not need is more features. It is successful
in part because it has a small number of good ideas that work well
together. Merely adding features does not make it easier for users to
do things — it just makes the manual thicker. The right solution in
the right place is always more effective than haphazard hacking.

Rob Pike and Brian W. Kernighan

If you look at software today, through the lens of the history of engi-
neering, it’s certainly engineering of a sort–but it’s the kind of engi-
neering that people without the concept of the arch did. Most software
today is very much like an Egyptian pyramid with millions of bricks
piled on top of each other, with no structural integrity, but just done
by brute force and thousands of slaves.

Alan Kay
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Chapter 0

Isabelle/ML

Isabelle/ML is best understood as a certain culture based on Standard ML.
Thus it is not a new programming language, but a certain way to use SML
at an advanced level within the Isabelle environment. This covers a vari-
ety of aspects that are geared towards an efficient and robust platform for
applications of formal logic with fully foundational proof construction — ac-
cording to the well-known LCF principle. There is specific infrastructure
with library modules to address the needs of this difficult task. For example,
the raw parallel programming model of Poly/ML is presented as considerably
more abstract concept of futures, which is then used to augment the inference
kernel, Isar theory and proof interpreter, and PIDE document management.
The main aspects of Isabelle/ML are introduced below. These first-hand
explanations should help to understand how proper Isabelle/ML is to be read
and written, and to get access to the wealth of experience that is expressed
in the source text and its history of changes.1

0.1 Style and orthography
The sources of Isabelle/Isar are optimized for readability and maintainability.
The main purpose is to tell an informed reader what is really going on and
how things really work. This is a non-trivial aim, but it is supported by
a certain style of writing Isabelle/ML that has emerged from long years of
system development.2

The main principle behind any coding style is consistency. For a single
author of a small program this merely means “choose your style and stick
to it”. A complex project like Isabelle, with long years of development and
different contributors, requires more standardization. A coding style that

1See https://isabelle.in.tum.de/repos/isabelle for the full Mercurial history. There are
symbolic tags to refer to official Isabelle releases, as opposed to arbitrary tip versions that
merely reflect snapshots that are never really up-to-date.

2See also the interesting style guide for OCaml https://caml.inria.fr/resources/doc/
guides/guidelines.en.html which shares many of our means and ends.

1

https://isabelle.in.tum.de/repos/isabelle
https://caml.inria.fr/resources/doc/guides/guidelines.en.html
https://caml.inria.fr/resources/doc/guides/guidelines.en.html


CHAPTER 0. ISABELLE/ML 2

is changed every few years or with every new contributor is no style at all,
because consistency is quickly lost. Global consistency is hard to achieve,
though. Nonetheless, one should always strive at least for local consistency
of modules and sub-systems, without deviating from some general principles
how to write Isabelle/ML.
In a sense, good coding style is like an orthography for the sources: it helps to
read quickly over the text and see through the main points, without getting
distracted by accidental presentation of free-style code.

0.1.1 Header and sectioning
Isabelle source files have a certain standardized header format (with precise
spacing) that follows ancient traditions reaching back to the earliest versions
of the system by Larry Paulson. See ~~/src/Pure/thm.ML, for example.
The header includes at least Title and Author entries, followed by a prose
description of the purpose of the module. The latter can range from a single
line to several paragraphs of explanations.
The rest of the file is divided into chapters, sections, subsections, subsubsec-
tions, paragraphs etc. using a simple layout via ML comments as follows.

(**** chapter ****)

(*** section ***)

(** subsection **)

(* subsubsection *)

(*short paragraph*)

(*
long paragraph,
with more text

*)

As in regular typography, there is some extra space before section headings
that are adjacent to plain text, but not other headings as in the example
above.

The precise wording of the prose text given in these headings is chosen care-
fully to introduce the main theme of the subsequent formal ML text.
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0.1.2 Naming conventions
Since ML is the primary medium to express the meaning of the source text,
naming of ML entities requires special care.

Notation. A name consists of 1–3 words (rarely 4, but not more) that are
separated by underscore. There are three variants concerning upper or lower
case letters, which are used for certain ML categories as follows:

variant example ML categories
lower-case foo_bar values, types, record fields
capitalized Foo_Bar datatype constructors, structures, functors
upper-case FOO_BAR special values, exception constructors, signatures

For historical reasons, many capitalized names omit underscores, e.g. old-
style FooBar instead of Foo_Bar. Genuine mixed-case names are not used,
because clear division of words is essential for readability.3

A single (capital) character does not count as “word” in this respect: some
Isabelle/ML names are suffixed by extra markers like this: foo_barT.
Name variants are produced by adding 1–3 primes, e.g. foo’, foo’’, or
foo’’’, but not foo’’’’ or more. Decimal digits scale better to larger
numbers, e.g. foo0, foo1, foo42.

Scopes. Apart from very basic library modules, ML structures are not
“opened”, but names are referenced with explicit qualification, as in
Syntax.string_of_term for example. When devising names for structures
and their components it is important to aim at eye-catching compositions of
both parts, because this is how they are seen in the sources and documenta-
tion. For the same reasons, aliases of well-known library functions should be
avoided.
Local names of function abstraction or case/let bindings are typically shorter,
sometimes using only rudiments of “words”, while still avoiding cryptic short-
hands. An auxiliary function called helper, aux, or f is considered bad style.
Example:

(* RIGHT *)

3Camel-case was invented to workaround the lack of underscore in some early non-
ASCII character sets. Later it became habitual in some language communities that are
now strong in numbers.
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fun print_foo ctxt foo =
let

fun print t = ... Syntax.string_of_term ctxt t ...
in ... end;

(* RIGHT *)

fun print_foo ctxt foo =
let

val string_of_term = Syntax.string_of_term ctxt;
fun print t = ... string_of_term t ...

in ... end;

(* WRONG *)

val string_of_term = Syntax.string_of_term;

fun print_foo ctxt foo =
let

fun aux t = ... string_of_term ctxt t ...
in ... end;

Specific conventions. Here are some specific name forms that occur fre-
quently in the sources.

• A function that maps foo to bar is called foo_to_bar or bar_of_foo
(never foo2bar, nor bar_from_foo, nor bar_for_foo, nor bar4foo).

• The name component legacy means that the operation is about to be
discontinued soon.

• The name component global means that this works with the back-
ground theory instead of the regular local context (§1.1), sometimes
for historical reasons, sometimes due a genuine lack of locality of the
concept involved, sometimes as a fall-back for the lack of a proper con-
text in the application code. Whenever there is a non-global variant
available, the application should be migrated to use it with a proper
local context.
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• Variables of the main context types of the Isabelle/Isar framework (§1.1
and chapter 8) have firm naming conventions as follows:

– theories are called thy, rarely theory (never thry)
– proof contexts are called ctxt, rarely context (never ctx)
– generic contexts are called context

– local theories are called lthy, except for local theories that are
treated as proof context (which is a semantic super-type)

Variations with primed or decimal numbers are always possible, as well
as semantic prefixes like foo_thy or bar_ctxt, but the base conventions
above need to be preserved. This allows to emphasize their data flow
via plain regular expressions in the text editor.

• The main logical entities (§2) have established naming convention as
follows:

– sorts are called S

– types are called T, U, or ty (never t)
– terms are called t, u, or tm (never trm)
– certified types are called cT, rarely T, with variants as for types
– certified terms are called ct, rarely t, with variants as for terms

(never ctrm)
– theorems are called th, or thm

Proper semantic names override these conventions completely. For ex-
ample, the left-hand side of an equation (as a term) can be called lhs
(not lhs_tm). Or a term that is known to be a variable can be called
v or x.

• Tactics (§4.2) are sufficiently important to have specific naming con-
ventions. The name of a basic tactic definition always has a _tac suffix,
the subgoal index (if applicable) is always called i, and the goal state
(if made explicit) is usually called st instead of the somewhat mislead-
ing thm. Any other arguments are given before the latter two, and the
general context is given first. Example:

fun my_tac ctxt arg1 arg2 i st = ...
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Note that the goal state st above is rarely made explicit, if tactic
combinators (tacticals) are used as usual.
A tactic that requires a proof context needs to make that explicit as seen
in the ctxt argument above. Do not refer to the background theory of
st – it is not a proper context, but merely a formal certificate.

0.1.3 General source layout
The general Isabelle/ML source layout imitates regular type-setting conven-
tions, augmented by the requirements for deeply nested expressions that are
commonplace in functional programming.

Line length is limited to 80 characters according to ancient standards,
but we allow as much as 100 characters (not more).4 The extra 20 characters
acknowledge the space requirements due to qualified library references in
Isabelle/ML.

White-space is used to emphasize the structure of expressions, following
mostly standard conventions for mathematical typesetting, as can be seen
in plain TEX or LATEX. This defines positioning of spaces for parentheses,
punctuation, and infixes as illustrated here:

val x = y + z * (a + b);
val pair = (a, b);
val record = {foo = 1, bar = 2};

Lines are normally broken after an infix operator or punctuation character.
For example:

val x =
a +
b +
c;

4Readability requires to keep the beginning of a line in view while watching its end.
Modern wide-screen displays do not change the way how the human brain works. Sources
also need to be printable on plain paper with reasonable font-size.
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val tuple =
(a,
b,
c);

Some special infixes (e.g. |>) work better at the start of the line, but punc-
tuation is always at the end.
Function application follows the tradition of λ-calculus, not informal mathe-
matics. For example: f a b for a curried function, or g (a, b) for a tupled
function. Note that the space between g and the pair (a, b) follows the
important principle of compositionality: the layout of g p does not change
when p is refined to the concrete pair (a,

b).

Indentation uses plain spaces, never hard tabulators.5

Each level of nesting is indented by 2 spaces, sometimes 1, very rarely 4,
never 8 or any other odd number.
Indentation follows a simple logical format that only depends on the nesting
depth, not the accidental length of the text that initiates a level of nesting.
Example:

(* RIGHT *)

if b then
expr1_part1
expr1_part2

else
expr2_part1
expr2_part2

(* WRONG *)

if b then expr1_part1
expr1_part2

else expr2_part1
expr2_part2

5Tabulators were invented to move the carriage of a type-writer to certain predefined po-
sitions. In software they could be used as a primitive run-length compression of consecutive
spaces, but the precise result would depend on non-standardized text editor configuration.
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The second form has many problems: it assumes a fixed-width font when
viewing the sources, it uses more space on the line and thus makes it hard to
observe its strict length limit (working against readability), it requires extra
editing to adapt the layout to changes of the initial text (working against
maintainability) etc.

For similar reasons, any kind of two-dimensional or tabular layouts, ASCII-
art with lines or boxes of asterisks etc. should be avoided.

Complex expressions that consist of multi-clausal function definitions,
handle, case, let (and combinations) require special attention. The syntax
of Standard ML is quite ambitious and admits a lot of variance that can
distort the meaning of the text.
Multiple clauses of fun, fn, handle, case get extra indentation to indicate
the nesting clearly. Example:

(* RIGHT *)

fun foo p1 =
expr1

| foo p2 =
expr2

(* WRONG *)

fun foo p1 =
expr1
| foo p2 =
expr2

Body expressions consisting of case or let require care to maintain composi-
tionality, to prevent loss of logical indentation where it is especially important
to see the structure of the text. Example:

(* RIGHT *)

fun foo p1 =
(case e of

q1 => ...
| q2 => ...)

| foo p2 =
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let
...

in
...

end

(* WRONG *)

fun foo p1 = case e of
q1 => ...

| q2 => ...
| foo p2 =
let

...
in

...
end

Extra parentheses around case expressions are optional, but help to analyse
the nesting based on character matching in the text editor.

There are two main exceptions to the overall principle of compositionality in
the layout of complex expressions.

1. if expressions are iterated as if ML had multi-branch conditionals, e.g.

(* RIGHT *)

if b1 then e1
else if b2 then e2
else e3

2. fn abstractions are often layed-out as if they would lack any structure
by themselves. This traditional form is motivated by the possibility to
shift function arguments back and forth wrt. additional combinators.
Example:

(* RIGHT *)

fun foo x y = fold (fn z =>
expr)
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Here the visual appearance is that of three arguments x, y, z in a row.

Such weakly structured layout should be use with great care. Here are some
counter-examples involving let expressions:

(* WRONG *)

fun foo x = let
val y = ...

in ... end

(* WRONG *)

fun foo x = let
val y = ...

in ... end

(* WRONG *)

fun foo x =
let

val y = ...
in ... end

(* WRONG *)

fun foo x =
let

val y = ...
in

... end

In general the source layout is meant to emphasize the structure of complex
language expressions, not to pretend that SML had a completely different
syntax (say that of Haskell, Scala, Java).

0.2 ML embedded into Isabelle/Isar
ML and Isar are intertwined via an open-ended bootstrap process that pro-
vides more and more programming facilities and logical content in an alter-
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nating manner. Bootstrapping starts from the raw environment of existing
implementations of Standard ML (mainly Poly/ML).
Isabelle/Pure marks the point where the raw ML toplevel is superseded by
Isabelle/ML within the Isar theory and proof language, with a uniform con-
text for arbitrary ML values (see also §1.1). This formal environment holds
ML compiler bindings, logical entities, and many other things.
Object-logics like Isabelle/HOL are built within the Isabelle/ML/Isar envi-
ronment by introducing suitable theories with associated ML modules, either
inlined within .thy files, or as separate .ML files that are loading from some
theory. Thus Isabelle/HOL is defined as a regular user-space application
within the Isabelle framework. Further add-on tools can be implemented in
ML within the Isar context in the same manner: ML is part of the stan-
dard repertoire of Isabelle, and there is no distinction between “users” and
“developers” in this respect.

0.2.1 Isar ML commands
The primary Isar source language provides facilities to “open a window”
to the underlying ML compiler. Especially see the Isar commands ML_file
and ML: both work the same way, but the source text is provided differently,
via a file vs. inlined, respectively. Apart from embedding ML into the main
theory definition like that, there are many more commands that refer to ML
source, such as setup or declaration. Even more fine-grained embedding
of ML into Isar is encountered in the proof method tactic, which refines the
pending goal state via a given expression of type tactic.

ML Examples
The following artificial example demonstrates some ML toplevel declarations
within the implicit Isar theory context. This is regular functional program-
ming without referring to logical entities yet.
ML ‹

fun factorial 0 = 1
| factorial n = n * factorial (n - 1)

›

Here the ML environment is already managed by Isabelle, i.e. the factorial
function is not yet accessible in the preceding paragraph, nor in a different
theory that is independent from the current one in the import hierarchy.
Removing the above ML declaration from the source text will remove any
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trace of this definition, as expected. The Isabelle/ML toplevel environment
is managed in a stateless way: in contrast to the raw ML toplevel, there are
no global side-effects involved here.6

The next example shows how to embed ML into Isar proofs, using ML_prf
instead of ML. As illustrated below, the effect on the ML environment is
local to the whole proof body, but ignoring the block structure.
notepad
begin

ML_prf ‹val a = 1›
{

ML_prf ‹val b = a + 1›
} — Isar block structure ignored by ML environment
ML_prf ‹val c = b + 1›

end

By side-stepping the normal scoping rules for Isar proof blocks, embedded
ML code can refer to the different contexts and manipulate corresponding
entities, e.g. export a fact from a block context.

Two further ML commands are useful in certain situations: ML_val and
ML_command are diagnostic in the sense that there is no effect on the
underlying environment, and can thus be used anywhere. The examples
below produce long strings of digits by invoking factorial: ML_val takes
care of printing the ML toplevel result, but ML_command is silent so we
produce an explicit output message.
ML_val ‹factorial 100›
ML_command ‹writeln (string_of_int (factorial 100))›

notepad
begin

ML_val ‹factorial 100›
ML_command ‹writeln (string_of_int (factorial 100))›

end

0.2.2 Compile-time context
Whenever the ML compiler is invoked within Isabelle/Isar, the formal context
is passed as a thread-local reference variable. Thus ML code may access the
theory context during compilation, by reading or writing the (local) theory

6Such a stateless compilation environment is also a prerequisite for robust parallel
compilation within independent nodes of the implicit theory development graph.
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under construction. Note that such direct access to the compile-time context
is rare. In practice it is typically done via some derived ML functions instead.

ML Reference
Context.the_generic_context: unit -> Context.generic
Context.>> : (Context.generic -> Context.generic) -> unit
ML_Thms.bind_thms: string * thm list -> unit
ML_Thms.bind_thm: string * thm -> unit

Context.the_generic_context () refers to the theory context of the ML
toplevel — at compile time. ML code needs to take care to refer to
Context.the_generic_context () correctly. Recall that evaluation
of a function body is delayed until actual run-time.

Context.>> f applies context transformation f to the implicit context of
the ML toplevel.

ML_Thms.bind_thms (name, thms) stores a list of theorems produced in ML
both in the (global) theory context and the ML toplevel, associating it
with the provided name.

ML_Thms.bind_thm is similar to ML_Thms.bind_thms but refers to a single-
ton fact.

It is important to note that the above functions are really restricted to the
compile time, even though the ML compiler is invoked at run-time. The
majority of ML code either uses static antiquotations (§0.2.3) or refers to the
theory or proof context at run-time, by explicit functional abstraction.

0.2.3 Antiquotations
A very important consequence of embedding ML into Isar is the concept
of ML antiquotation. The standard token language of ML is augmented by
special syntactic entities of the following form:

antiquote

@{
����name args }

����
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Here name and args are outer syntax categories, as defined in [19].

A regular antiquotation @{name args} processes its arguments by the usual
means of the Isar source language, and produces corresponding ML source
text, either as literal inline text (e.g. @{term t}) or abstract value (e.g.
@{thm th}). This pre-compilation scheme allows to refer to formal entities
in a robust manner, with proper static scoping and with some degree of
logical checking of small portions of the code.

0.2.4 Printing ML values
The ML compiler knows about the structure of values according to their
static type, and can print them in the manner of its toplevel, although the
details are non-portable. The antiquotations make_string and print provide
a quasi-portable way to refer to this potential capability of the underlying
ML system in generic Isabelle/ML sources.
This is occasionally useful for diagnostic or demonstration purposes. Note
that production-quality tools require proper user-level error messages, avoid-
ing raw ML values in the output.

ML Antiquotations
make_string : ML_antiquotation

print : ML_antiquotation

make_string
�� ��
print

�� ���
�embedded

�
�

@{make_string} inlines a function to print arbitrary values similar to
the ML toplevel. The result is compiler dependent and may fall
back on "?" in certain situations. The value of configuration option
ML_print_depth determines further details of output.

@{print f } uses the ML function f : string −> unit to output the result
of @{make_string} above, together with the source position of the
antiquotation. The default output function is writeln.



CHAPTER 0. ISABELLE/ML 15

ML Examples
The following artificial examples show how to produce adhoc output of ML
values for debugging purposes.
ML_val ‹

val x = 42;
val y = true;

writeln (make_string {x = x, y = y});

print {x = x, y = y};
print ‹tracing› {x = x, y = y};

›

0.3 Canonical argument order
Standard ML is a language in the tradition of λ-calculus and higher-order
functional programming, similar to OCaml, Haskell, or Isabelle/Pure and
HOL as logical languages. Getting acquainted with the native style of rep-
resenting functions in that setting can save a lot of extra boiler-plate of
redundant shuffling of arguments, auxiliary abstractions etc.
Functions are usually curried: the idea of turning arguments of type τ i (for
i ∈ {1, . . . n}) into a result of type τ is represented by the iterated function
space τ 1 → . . . → τn → τ . This is isomorphic to the well-known encoding
via tuples τ 1 × . . . × τn → τ , but the curried version fits more smoothly
into the basic calculus.7

Currying gives some flexibility due to partial application. A function f : τ 1
→ τ 2 → τ can be applied to x : τ 1 and the remaining (f x): τ 2 → τ passed
to another function etc. How well this works in practice depends on the
order of arguments. In the worst case, arguments are arranged erratically,
and using a function in a certain situation always requires some glue code.
Thus we would get exponentially many opportunities to decorate the code
with meaningless permutations of arguments.
This can be avoided by canonical argument order, which observes certain
standard patterns and minimizes adhoc permutations in their application.
In Isabelle/ML, large portions of text can be written without auxiliary op-
erations like swap: α × β → β × α or C : (α → β → γ) → (β → α → γ)
(the latter is not present in the Isabelle/ML library).

7The difference is even more significant in HOL, because the redundant tuple structure
needs to be accommodated extraneous proof steps.
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The main idea is that arguments that vary less are moved further to the
left than those that vary more. Two particularly important categories of
functions are selectors and updates.
The subsequent scheme is based on a hypothetical set-like container of type β
that manages elements of type α. Both the names and types of the associated
operations are canonical for Isabelle/ML.

kind canonical name and type
selector member : β → α → bool
update insert: α → β → β

Given a container B: β, the partially applied member B is a predicate over
elements α → bool, and thus represents the intended denotation directly. It
is customary to pass the abstract predicate to further operations, not the
concrete container. The argument order makes it easy to use other combi-
nators: forall (member B) list will check a list of elements for membership
in B etc. Often the explicit list is pointless and can be contracted to forall
(member B) to get directly a predicate again.
In contrast, an update operation varies the container, so it moves to the right:
insert a is a function β → β to insert a value a. These can be composed
naturally as insert c ◦ insert b ◦ insert a. The slightly awkward inversion of
the composition order is due to conventional mathematical notation, which
can be easily amended as explained below.

0.3.1 Forward application and composition
Regular function application and infix notation works best for relatively
deeply structured expressions, e.g. h (f x y + g z). The important spe-
cial case of linear transformation applies a cascade of functions f n (. . . (f 1
x)). This becomes hard to read and maintain if the functions are themselves
given as complex expressions. The notation can be significantly improved by
introducing forward versions of application and composition as follows:

x |> f ≡ f x
(f #> g) x ≡ x |> f |> g

This enables to write conveniently x |> f 1 |> . . . |> f n or f 1 #> . . . #> f n
for its functional abstraction over x.

There is an additional set of combinators to accommodate multiple results
(via pairs) that are passed on as multiple arguments (via currying).
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(x , y) |−> f ≡ f x y
(f #−> g) x ≡ x |> f |−> g

ML Reference
infix |> : ’a * (’a -> ’b) -> ’b
infix |-> : (’c * ’a) * (’c -> ’a -> ’b) -> ’b
infix #> : (’a -> ’b) * (’b -> ’c) -> ’a -> ’c
infix #-> : (’a -> ’c * ’b) * (’c -> ’b -> ’d) -> ’a -> ’d

0.3.2 Canonical iteration
As explained above, a function f : α → β → β can be understood as update
on a configuration of type β, parameterized by an argument of type α. Given
a: α the partial application (f a): β → β operates homogeneously on β. This
can be iterated naturally over a list of parameters [a1, . . ., an] as f a1 #>
. . . #> f an. The latter expression is again a function β → β. It can be
applied to an initial configuration b: β to start the iteration over the given
list of arguments: each a in a1, . . ., an is applied consecutively by updating
a cumulative configuration.
The fold combinator in Isabelle/ML lifts a function f as above to its iterated
version over a list of arguments. Lifting can be repeated, e.g. (fold ◦ fold) f
iterates over a list of lists as expected.
The variant fold_rev works inside-out over the list of arguments, such that
fold_rev f ≡ fold f ◦ rev holds.
The fold_map combinator essentially performs fold and map simultaneously:
each application of f produces an updated configuration together with a side-
result; the iteration collects all such side-results as a separate list.

ML Reference
fold: (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b
fold_rev: (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b
fold_map: (’a -> ’b -> ’c * ’b) -> ’a list -> ’b -> ’c list * ’b

fold f lifts the parametrized update function f to a list of parameters.

fold_rev f is similar to fold f, but works inside-out, as if the list would be
reversed.
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fold_map f lifts the parametrized update function f (with side-result) to a
list of parameters and cumulative side-results.

! The literature on functional programming provides a confusing multitude of
combinators called foldl, foldr etc. SML97 provides its own variations as

List.foldl and List.foldr, while the classic Isabelle library also has the historic
Library.foldl and Library.foldr. To avoid unnecessary complication, all these
historical versions should be ignored, and the canonical fold (or fold_rev) used
exclusively.

ML Examples
The following example shows how to fill a text buffer incrementally by adding
strings, either individually or from a given list.
ML_val ‹

val s =
Buffer.empty
|> Buffer.add "digits: "
|> fold (Buffer.add o string_of_int) (0 upto 9)
|> Buffer.content;

assert (s = "digits: 0123456789");
›

Note how fold (Buffer.add o string_of_int) above saves an extra map
over the given list. This kind of peephole optimization reduces both the code
size and the tree structures in memory (“deforestation”), but it requires some
practice to read and write fluently.

The next example elaborates the idea of canonical iteration, demonstrating
fast accumulation of tree content using a text buffer.
ML ‹

datatype tree = Text of string | Elem of string * tree list;

fun slow_content (Text txt) = txt
| slow_content (Elem (name, ts)) =

"<" ^ name ^ ">" ^
implode (map slow_content ts) ^
"</" ^ name ^ ">"

fun add_content (Text txt) = Buffer.add txt
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| add_content (Elem (name, ts)) =
Buffer.add ("<" ^ name ^ ">") #>
fold add_content ts #>
Buffer.add ("</" ^ name ^ ">");

fun fast_content tree =
Buffer.empty |> add_content tree |> Buffer.content;

›

The slowness of slow_content is due to the implode of the recursive results,
because it copies previously produced strings again and again.
The incremental add_content avoids this by operating on a buffer that is
passed through in a linear fashion. Using #> and contraction over the ac-
tual buffer argument saves some additional boiler-plate. Of course, the two
Buffer.add invocations with concatenated strings could have been split into
smaller parts, but this would have obfuscated the source without making a big
difference in performance. Here we have done some peephole-optimization
for the sake of readability.
Another benefit of add_content is its “open” form as a function on buffers
that can be continued in further linear transformations, folding etc. Thus it
is more compositional than the naive slow_content. As realistic example,
compare the old-style Term.maxidx_of_term: term -> int with the newer
Term.maxidx_term: term -> int -> int in Isabelle/Pure.
Note that fast_content above is only defined as example. In many practical
situations, it is customary to provide the incremental add_content only and
leave the initialization and termination to the concrete application to the
user.

0.4 Message output channels
Isabelle provides output channels for different kinds of messages: regular
output, high-volume tracing information, warnings, and errors.
Depending on the user interface involved, these messages may appear in dif-
ferent text styles or colours. The standard output for batch sessions prefixes
each line of warnings by ### and errors by ***, but leaves anything else
unchanged. The message body may contain further markup and formatting,
which is routinely used in the Prover IDE [20].
Messages are associated with the transaction context of the running Isar
command. This enables the front-end to manage commands and resulting
messages together. For example, after deleting a command from a given
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theory document version, the corresponding message output can be retracted
from the display.

ML Reference
writeln: string -> unit
tracing: string -> unit
warning: string -> unit
error: string -> ’a

writeln text outputs text as regular message. This is the primary message
output operation of Isabelle and should be used by default.

tracing text outputs text as special tracing message, indicating potential
high-volume output to the front-end (hundreds or thousands of mes-
sages issued by a single command). The idea is to allow the user-
interface to downgrade the quality of message display to achieve higher
throughput.
Note that the user might have to take special actions to see tracing
output, e.g. switch to a different output window. So this channel should
not be used for regular output.

warning text outputs text as warning, which typically means some extra
emphasis on the front-end side (color highlighting, icons, etc.).

error text raises exception ERROR text and thus lets the Isar toplevel print
text on the error channel, which typically means some extra emphasis
on the front-end side (color highlighting, icons, etc.).
This assumes that the exception is not handled before the command
terminates. Handling exception ERROR text is a perfectly legal alterna-
tive: it means that the error is absorbed without any message output.

! The actual error channel is accessed via Output.error_message, but this is
normally not used directly in user code.

! Regular Isabelle/ML code should output messages exclusively by the official
channels. Using raw I/O on stdout or stderr instead (e.g. via TextIO.output)

is apt to cause problems in the presence of parallel and asynchronous processing
of Isabelle theories. Such raw output might be displayed by the front-end in some
system console log, with a low chance that the user will ever see it. Moreover, as
a genuine side-effect on global process channels, there is no proper way to retract
output when Isar command transactions are reset by the system.
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! The message channels should be used in a message-oriented manner. This
means that multi-line output that logically belongs together is issued by a

single invocation of writeln etc. with the functional concatenation of all message
constituents.

ML Examples
The following example demonstrates a multi-line warning. Note that in some
situations the user sees only the first line, so the most important point should
be made first.
ML_command ‹

warning (cat_lines
["Beware the Jabberwock, my son!",
"The jaws that bite, the claws that catch!",
"Beware the Jubjub Bird, and shun",
"The frumious Bandersnatch!"]);

›

An alternative is to make a paragraph of freely-floating words as follows.
ML_command ‹

warning (Pretty.string_of (Pretty.para
"Beware the Jabberwock, my son! \
\The jaws that bite, the claws that catch! \
\Beware the Jubjub Bird, and shun \
\The frumious Bandersnatch!"))

›

This has advantages with variable window / popup sizes, but might make it
harder to search for message content systematically, e.g. by other tools or by
humans expecting the “verse” of a formal message in a fixed layout.

0.5 Exceptions
The Standard ML semantics of strict functional evaluation together with
exceptions is rather well defined, but some fine points need to be observed
to avoid that ML programs go wrong despite static type-checking.
Unlike official Standard ML, Isabelle/ML rejects catch-all patterns in handle
clauses: this improves the robustness of ML programs, especially against
arbitrary physical events (interrupts).
Exceptions in Isabelle/ML are subsequently categorized as follows.
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Regular user errors. These are meant to provide informative feedback
about malformed input etc.
The error function raises the corresponding ERROR exception, with a plain
text message as argument. ERROR exceptions can be handled internally, in
order to be ignored, turned into other exceptions, or cascaded by appending
messages. If the corresponding Isabelle/Isar command terminates with an
ERROR exception state, the system will print the result on the error channel
(see §0.4).
It is considered bad style to refer to internal function names or values in
ML source notation in user error messages. Do not use @{make_string} nor
@{here}!
Grammatical correctness of error messages can be improved by omitting final
punctuation: messages are often concatenated or put into a larger context
(e.g. augmented with source position). Note that punctuation after formal
entities (types, terms, theorems) is particularly prone to user confusion.

Program failures. There is a handful of standard exceptions that indicate
general failure situations (e.g. Fail), or failures of core operations on logical
entities (types, terms, theorems, theories, see chapter 2).
These exceptions indicate a genuine breakdown of the program, so the main
purpose is to determine quickly what has happened in the ML program.
Traditionally, the (short) exception message would include the name of an
ML function, although this is not strictly necessary, because the ML runtime
system attaches detailed source position stemming from the corresponding
raise keyword.

User modules can always introduce their own custom exceptions locally, e.g.
to organize internal failures robustly without overlapping with existing ex-
ceptions. Exceptions that are exposed in module signatures require extra
care, though, and should not be introduced by default. Surprise by users of
a module can be often minimized by using plain user errors instead.

Interrupts. These indicate arbitrary system events: both the ML runtime
system and the Isabelle/ML infrastructure may signal various exceptional
situations by raising special exceptions user code, satisfying the predicate
Exn.is_interrupt.
This is the one and only way that physical events can intrude an Isabelle/ML
program. Such an interrupt can mean out-of-memory, stack overflow, time-
out, internal signaling of threads, or a POSIX process signal. An Isabelle/ML



CHAPTER 0. ISABELLE/ML 23

program that intercepts interrupts becomes dependent on physical effects of
the environment (e.g. via Exn.capture without subsequent Exn.release).
Note that the original SML90 language had an Interrupt exception, but
that was excluded from SML97 to simplify ML the mathematical seman-
tics. Isabelle/ML does support physical interrupts thanks to special features
of the underlying Poly/ML compiler and runtime system. This works ro-
bustly, because the old Interrupt constructor has been removed from the
ML environment, and catch-all patterns handle are rejected. Thus user code
becomes strictly transparent wrt. interrupts: physical events are exposed to
the toplevel, and the mathematical meaning of the program becomes a partial
function that is otherwise unchanged.
The Isabelle/ML antiquotation try, with its syntactic variants for catch
or finally, supports intermediate handling of interrupts and subsequent
cleanup-operations, without swallowing such physical event.

ML Reference
try: (’a -> ’b) -> ’a -> ’b option
can: (’a -> ’b) -> ’a -> bool
exception ERROR of string
exception Fail of string
Exn.is_interrupt: exn -> bool
Exn.reraise: exn -> ’a
Runtime.exn_trace: (unit -> ’a) -> ’a

try f x makes the partiality of evaluating f x explicit via the option data-
type. Interrupts are not handled here, i.e. this form serves as safe
replacement for the fragile version (SOME f x handle _ => NONE) that
is occasionally seen in books about SML97.

can is similar to try with more abstract result.

ERROR msg represents user errors; this exception is normally raised indirectly
via the error function (see §0.4).

Fail msg represents general program failures, but not user errors.

Exn.is_interrupt identifies interrupts, without mentioning concrete ex-
ception constructors in user code. Since handle with catch-all pat-
terns is rejected, it cannot handle interrupts at all. In the rare situa-
tions where this is really required, use Exn.capture and Exn.release
(§0.9).
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Exn.reraise exn raises exception exn while preserving its implicit position
information (if possible, depending on the ML platform).

Runtime.exn_trace (fn () => e) evaluates expression e while printing a
full trace of its stack of nested exceptions (if possible, depending on the
ML platform).
Inserting Runtime.exn_trace into ML code temporarily is useful for
debugging, but not suitable for production code.

ML Antiquotations
try : ML_antiquotation
can : ML_antiquotation

assert : ML_antiquotation
undefined : ML_antiquotation

try
�� ���

�can
�� ��

�
�

embedded

@{try} and {can} take embedded ML source as arguments, and modify the
evaluation analogously to the combinators try and can above, but with
special treatment of the interrupt state of the underlying ML thread.
There are also variants to support try_catch and try_finally blocks
similar to Scala.
The substructure of the embedded argument supports the following
syntax variants:

try_catch

expr catch
�� ��handler

try_finally

expr finally
�� ��cleanup

try

expr
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can

expr

The handler of try_catch follows the syntax of fn patterns, so it
is similar to handle: the key difference is that interrupts are always
passed-through via Exn.reraise.
The cleanup expression of try_finally is always invoked, regardless
of the overall exception result, and afterwards exceptions are passed-
through via Exn.reraise.
Both the handler and cleanup are evaluated with further interrupts
disabled! These expressions should terminate promptly; timeouts don’t
work here.

Implementation details can be seen in Isabelle_Thread.try_catch,
Isabelle_Thread.try_finally, Isabelle_Thread.try, and
Isabelle_Thread.can, respectively. The ML antiquotations add func-
tional abstractions as required for these “special forms” of Isabelle/ML.

@{assert} inlines a function bool -> unit that raises Fail if the argument
is false. Due to inlining the source position of failed assertions is
included in the error output.

@{undefined} inlines raise Match, i.e. the ML program behaves as in some
function application of an undefined case.

ML Examples
We define total versions of division: any failures are swept under the carpet
and mapped to a default value. Thus division-by-zero becomes 0, but there
could be other exceptions like overflow that produce the same result.
For unbounded integers such side-errors do not happen, but it might still be
better to be explicit about exception patterns (second version below).
ML ‹

fun div_total1 x y = try ‹x div y catch _ => 0›;
fun div_total2 x y = try ‹x div y catch Div => 0›;

assert (div_total1 1 0 = 0);
assert (div_total2 1 0 = 0);
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›

The ML function undefined is defined in ~~/src/Pure/library.ML as fol-
lows:
ML ‹fun undefined _ = raise Match›

The following variant uses the antiquotation undefined instead:
ML ‹fun undefined _ = @{undefined}›

Here is the same, using control-symbol notation for the antiquotation, with
special rendering of \<^undefined>:
ML ‹fun undefined _ = undefined ›

Semantically, all forms are equivalent to a function definition without any
clauses, but that is syntactically not allowed in ML.

0.6 Strings of symbols
A symbol constitutes the smallest textual unit in Isabelle/ML — raw ML
characters are normally not encountered at all. Isabelle strings consist of a
sequence of symbols, represented as a packed string or an exploded list of
strings. Each symbol is in itself a small string, which has either one of the
following forms:

1. a single ASCII character “c”, for example “a”,

2. a codepoint according to UTF-8 (non-ASCII byte sequence),

3. a regular symbol “\<ident>”, for example “\<alpha>”,

4. a control symbol “\<^ident>”, for example “\<^bold>”,

The ident syntax for symbol names is letter (letter | digit)∗, where letter =
A..Za..z and digit = 0..9. There are infinitely many regular symbols and
control symbols, but a fixed collection of standard symbols is treated specif-
ically. For example, “\<alpha>” is classified as a letter, which means it may
occur within regular Isabelle identifiers.
The character set underlying Isabelle symbols is 7-bit ASCII, but 8-bit char-
acter sequences are passed-through unchanged. Unicode/UCS data in UTF-8
encoding is processed in a non-strict fashion, such that well-formed code se-
quences are recognized accordingly. Unicode provides its own collection of
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mathematical symbols, but within the core Isabelle/ML world there is no
link to the standard collection of Isabelle regular symbols.

Output of Isabelle symbols depends on the print mode. For example, the
standard LATEX setup of the Isabelle document preparation system would
present “\<alpha>” as α, and “\<^bold>\<alpha>” as α. On-screen render-
ing usually works by mapping a finite subset of Isabelle symbols to suitable
Unicode characters.

ML Reference
type Symbol.symbol = string
Symbol.explode: string -> Symbol.symbol list
Symbol.is_letter: Symbol.symbol -> bool
Symbol.is_digit: Symbol.symbol -> bool
Symbol.is_quasi: Symbol.symbol -> bool
Symbol.is_blank: Symbol.symbol -> bool

type Symbol.sym
Symbol.decode: Symbol.symbol -> Symbol.sym

Type Symbol.symbol represents individual Isabelle symbols.

Symbol.explode str produces a symbol list from the packed form. This
function supersedes String.explode for virtually all purposes of ma-
nipulating text in Isabelle!8

Symbol.is_letter, Symbol.is_digit, Symbol.is_quasi, Symbol.is_blank
classify standard symbols according to fixed syntactic conventions of
Isabelle, cf. [19].

Type Symbol.sym is a concrete datatype that represents the different kinds
of symbols explicitly, with constructors Symbol.Char, Symbol.UTF8,
Symbol.Sym, Symbol.Control, Symbol.Malformed.

Symbol.decode converts the string representation of a symbol into the data-
type version.

8The runtime overhead for exploded strings is mainly that of the list structure: in-
dividual symbols that happen to be a singleton string do not require extra memory in
Poly/ML.
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Historical note. In the original SML90 standard the primitive ML
type char did not exists, and explode: string -> string list produced
a list of singleton strings like raw_explode: string -> string list in
Isabelle/ML today. When SML97 came out, Isabelle did not adopt its some-
what anachronistic 8-bit or 16-bit characters, but the idea of exploding a
string into a list of small strings was extended to “symbols” as explained
above. Thus Isabelle sources can refer to an infinite store of user-defined
symbols, without having to worry about the multitude of Unicode encodings
that have emerged over the years.

0.7 Basic data types
The basis library proposal of SML97 needs to be treated with caution.
Many of its operations simply do not fit with important Isabelle/ML con-
ventions (like “canonical argument order”, see §0.3), others cause problems
with the parallel evaluation model of Isabelle/ML (such as TextIO.print or
OS.Process.system).
Subsequently we give a brief overview of important operations on basic ML
data types.

0.7.1 Characters

ML Reference
type char

Type char is not used. The smallest textual unit in Isabelle is represented
as a “symbol” (see §0.6).

0.7.2 Strings

ML Reference
type string

Type string represents immutable vectors of 8-bit characters. There are
operations in SML to convert back and forth to actual byte vectors,
which are seldom used.
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This historically important raw text representation is used for Isabelle-
specific purposes with the following implicit substructures packed into
the string content:

1. sequence of Isabelle symbols (see also §0.6), with Symbol.explode
as key operation;

2. XML tree structure via YXML (see also [18]), with
YXML.parse_body as key operation.

Note that Isabelle/ML string literals may refer Isabelle symbols like
“\<alpha>” natively, without escaping the backslash. This is a conse-
quence of Isabelle treating all source text as strings of symbols, instead
of raw characters.

! The regular 64_32 platform of Poly/ML has a size limit of 64 MB for string
values. This is usually sufficient for text applications, with a little bit of YXML

markup. Very large XML trees or binary blobs are better stored as scalable byte
strings, see type Bytes.T and corresponding operations in ~~/src/Pure/General/
bytes.ML.

ML Examples
The subsequent example illustrates the difference of physical addressing of
bytes versus logical addressing of symbols in Isabelle strings.
ML_val ‹

val s = "A";

assert (length (Symbol.explode s) = 1);
assert (size s = 4);

›

Note that in Unicode renderings of the symbol A, variations of encodings
like UTF-8 or UTF-16 pose delicate questions about the multi-byte repre-
sentations of its codepoint, which is outside of the 16-bit address space of
the original Unicode standard from the 1990-ies. In Isabelle/ML it is just
“\<A>” literally, using plain ASCII characters beyond any doubts.
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0.7.3 Integers

ML Reference
type int

Type int represents regular mathematical integers, which are unbounded.
Overflow is treated properly, but should never happen in practice.9

Structure IntInf of SML97 is obsolete and superseded by Int. Struc-
ture Integer in ~~/src/Pure/General/integer.ML provides some ad-
ditional operations.

0.7.4 Rational numbers

ML Reference
type Rat.rat

Type Rat.rat represents rational numbers, based on the unbounded inte-
gers of Poly/ML.
Literal rationals may be written with special antiquotation syntax
@int/nat or @int (without any white space). For example @~1/4 or
@10. The ML toplevel pretty printer uses the same format.
Standard operations are provided via ad-hoc overloading of +, -, *, /,
etc.

0.7.5 Time

ML Reference
type Time.time
seconds: real -> Time.time

Type Time.time represents time abstractly according to the SML97 basis
library definition. This is adequate for internal ML operations, but
awkward in concrete time specifications.

9The size limit for integer bit patterns in memory is 64 MB for the regular 64_32
platform, and much higher for native 64 architecture.
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seconds s turns the concrete scalar s (measured in seconds) into an abstract
time value. Floating point numbers are easy to use as configuration op-
tions in the context (see §1.1.5) or system options that are maintained
externally.

0.7.6 Options

ML Reference
Option.map: (’a -> ’b) -> ’a option -> ’b option
is_some: ’a option -> bool
is_none: ’a option -> bool
the: ’a option -> ’a
these: ’a list option -> ’a list
the_list: ’a option -> ’a list
the_default: ’a -> ’a option -> ’a

if_none : ML_antiquotation

if_none
�� ��embedded

Apart from Option.map most other operations defined in structure Option
are alien to Isabelle/ML and never used. The operations shown above are
defined in ~~/src/Pure/General/basics.ML.
Note that the function the_default is strict in all of its arguments, the
default value is evaluated beforehand, even if not required later. In contrast,
the antiquotation if_none is non-strict: the given expression is only evaluated
for an application to NONE. This allows to work with exceptions like this:
ML ‹

fun div_total x y =
try ‹x div y› |> the_default 0;

fun div_error x y =
try ‹x div y› |> if_none ‹error "Division by zero"›;

›

Of course, it is also possible to handle exceptions directly, without an inter-
mediate option construction:
ML ‹
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fun div_total x y =
x div y handle Div => 0;

fun div_error x y =
x div y handle Div => error "Division by zero";

›

The first form works better in longer chains of functional composition, with
combinators like |> or #> or o. The second form is more adequate in elemen-
tary expressions: there is no need to pretend that Isabelle/ML is actually a
version of Haskell.

0.7.7 Lists
Lists are ubiquitous in ML as simple and light-weight “collections” for many
everyday programming tasks. Isabelle/ML provides important additions and
improvements over operations that are predefined in the SML97 library.

ML Reference
cons: ’a -> ’a list -> ’a list
member: (’b * ’a -> bool) -> ’a list -> ’b -> bool
insert: (’a * ’a -> bool) -> ’a -> ’a list -> ’a list
remove: (’b * ’a -> bool) -> ’b -> ’a list -> ’a list
update: (’a * ’a -> bool) -> ’a -> ’a list -> ’a list

cons x xs evaluates to x :: xs.
Tupled infix operators are a historical accident in Standard ML. The
curried cons amends this, but it should be only used when partial
application is required.

member, insert, remove, update treat lists as a set-like container that main-
tains the order of elements. See ~~/src/Pure/library.ML for the full
specifications (written in ML). There are some further derived opera-
tions like union or inter.
Note that insert is conservative about elements that are already a
member of the list, while update ensures that the latest entry is always
put in front. The latter discipline is often more appropriate in declara-
tions of context data (§1.1.4) that are issued by the user in Isar source:
later declarations take precedence over earlier ones.
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ML Examples
Using canonical fold together with cons (or similar standard operations)
alternates the orientation of data. The is quite natural and should not
be altered forcible by inserting extra applications of rev. The alternative
fold_rev can be used in the few situations, where alternation should be
prevented.
ML_val ‹

val items = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

val list1 = fold cons items [];
assert (list1 = rev items);

val list2 = fold_rev cons items [];
assert (list2 = items);

›

The subsequent example demonstrates how to merge two lists in a natural
way.
ML_val ‹

fun merge_lists eq (xs, ys) = fold_rev (insert eq) ys xs;
›

Here the first list is treated conservatively: only the new elements from the
second list are inserted. The inside-out order of insertion via fold_rev at-
tempts to preserve the order of elements in the result.
This way of merging lists is typical for context data (§1.1.4). See also merge
as defined in ~~/src/Pure/library.ML.

0.7.8 Association lists
The operations for association lists interpret a concrete list of pairs as a
finite function from keys to values. Redundant representations with multiple
occurrences of the same key are implicitly normalized: lookup and update
only take the first occurrence into account.

AList.lookup: (’a * ’b -> bool) -> (’b * ’c) list -> ’a -> ’c option
AList.defined: (’a * ’b -> bool) -> (’b * ’c) list -> ’a -> bool
AList.update: (’a * ’a -> bool) -> ’a * ’b -> (’a * ’b) list -> (’a * ’b) list

AList.lookup, AList.defined, AList.update implement the main
“framework operations” for mappings in Isabelle/ML, following stan-
dard conventions for their names and types.
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Note that a function called lookup is obliged to express its partiality
via an explicit option element. There is no choice to raise an exception,
without changing the name to something like the_element or get.
The defined operation is essentially a contraction of is_some and
lookup, but this is sufficiently frequent to justify its independent exis-
tence. This also gives the implementation some opportunity for peep-
hole optimization.

Association lists are adequate as simple implementation of finite mappings
in many practical situations. A more advanced table structure is defined in
~~/src/Pure/General/table.ML; that version scales easily to thousands or
millions of elements.

0.7.9 Unsynchronized references

ML Reference
type ’a Unsynchronized.ref
Unsynchronized.ref: ’a -> ’a Unsynchronized.ref
! : ’a Unsynchronized.ref -> ’a
infix := : ’a Unsynchronized.ref * ’a -> unit

Due to ubiquitous parallelism in Isabelle/ML (see also §0.8), the mutable
reference cells of Standard ML are notorious for causing problems. In a highly
parallel system, both correctness and performance are easily degraded when
using mutable data.
The unwieldy name of Unsynchronized.ref for the constructor for refer-
ences in Isabelle/ML emphasizes the inconveniences caused by mutability.
Existing operations ! and := are unchanged, but should be used with special
precautions, say in a strictly local situation that is guaranteed to be restricted
to sequential evaluation — now and in the future.

! Never open Unsynchronized, not even in a local scope! Pretending that mu-
table state is no problem is a very bad idea.

0.8 Thread-safe programming
Multi-threaded execution has become an everyday reality in Isabelle since
Poly/ML 5.2.1 and Isabelle2008. Isabelle/ML provides implicit and explicit
parallelism by default, and there is no way for user-space tools to “opt out”.
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ML programs that are purely functional, output messages only via the official
channels (§0.4), and do not intercept interrupts (§0.5) can participate in the
multi-threaded environment immediately without further ado.
More ambitious tools with more fine-grained interaction with the environ-
ment need to observe the principles explained below.

0.8.1 Multi-threading with shared memory
Multiple threads help to organize advanced operations of the system, such
as real-time conditions on command transactions, sub-components with ex-
plicit communication, general asynchronous interaction etc. Moreover, par-
allel evaluation is a prerequisite to make adequate use of the CPU resources
that are available on multi-core systems.10

Isabelle/Isar exploits the inherent structure of theories and proofs to support
implicit parallelism to a large extent. LCF-style theorem proving provides
almost ideal conditions for that, see also [21]. This means, significant parts
of theory and proof checking is parallelized by default. In Isabelle2013, a
maximum speedup-factor of 3.5 on 4 cores and 6.5 on 8 cores can be expected
[22].

ML threads lack the memory protection of separate processes, and operate
concurrently on shared heap memory. This has the advantage that results of
independent computations are directly available to other threads: abstract
values can be passed without copying or awkward serialization that is typi-
cally required for separate processes.
To make shared-memory multi-threading work robustly and efficiently, some
programming guidelines need to be observed. While the ML system is re-
sponsible to maintain basic integrity of the representation of ML values in
memory, the application programmer needs to ensure that multi-threaded
execution does not break the intended semantics.

! To participate in implicit parallelism, tools need to be thread-safe. A single
ill-behaved tool can affect the stability and performance of the whole system.

Apart from observing the principles of thread-safeness passively, advanced
tools may also exploit parallelism actively, e.g. by using library functions for
parallel list operations (§0.9.1).

10Multi-core computing does not mean that there are “spare cycles” to be wasted. It
means that the continued exponential speedup of CPU performance due to “Moore’s Law”
follows different rules: clock frequency has reached its peak around 2005, and applications
need to be parallelized in order to avoid a perceived loss of performance. See also [17].
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! Parallel computing resources are managed centrally by the Isabelle/ML infras-
tructure. User programs should not fork their own ML threads to perform

heavy computations.

0.8.2 Critical shared resources
Thread-safeness is mainly concerned about concurrent read/write access to
shared resources, which are outside the purely functional world of ML. This
covers the following in particular.

• Global references (or arrays), i.e. mutable memory cells that persist
over several invocations of associated operations.11

• Global state of the running Isabelle/ML process, i.e. raw I/O channels,
environment variables, current working directory.

• Writable resources in the file-system that are shared among different
threads or external processes.

Isabelle/ML provides various mechanisms to avoid critical shared resources
in most situations. As last resort there are some mechanisms for explicit syn-
chronization. The following guidelines help to make Isabelle/ML programs
work smoothly in a concurrent environment.

• Avoid global references altogether. Isabelle/Isar maintains a uniform
context that incorporates arbitrary data declared by user programs
(§1.1.4). This context is passed as plain value and user tools can
get/map their own data in a purely functional manner. Configuration
options within the context (§1.1.5) provide simple drop-in replacements
for historic reference variables.

• Keep components with local state information re-entrant. Instead of
poking initial values into (private) global references, a new state record
can be created on each invocation, and passed through any auxiliary
functions of the component. The state record contain mutable refer-
ences in special situations, without requiring any synchronization, as
long as each invocation gets its own copy and the tool itself is single-
threaded.

11This is independent of the visibility of such mutable values in the toplevel scope.
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• Avoid raw output on stdout or stderr. The Poly/ML library is thread-
safe for each individual output operation, but the ordering of parallel
invocations is arbitrary. This means raw output will appear on some
system console with unpredictable interleaving of atomic chunks.
Note that this does not affect regular message output channels (§0.4).
An official message id is associated with the command transaction from
where it originates, independently of other transactions. This means
each running Isar command has effectively its own set of message chan-
nels, and interleaving can only happen when commands use parallelism
internally (and only at message boundaries).

• Treat environment variables and the current working directory of the
running process as read-only.

• Restrict writing to the file-system to unique temporary files. Isabelle
already provides a temporary directory that is unique for the running
process, and there is a centralized source of unique serial numbers in
Isabelle/ML. Thus temporary files that are passed to to some external
process will be always disjoint, and thus thread-safe.

ML Reference
File.tmp_path: Path.T -> Path.T
serial_string: unit -> string

File.tmp_path path relocates the base component of path into the unique
temporary directory of the running Isabelle/ML process.

serial_string () creates a new serial number that is unique over the run-
time of the Isabelle/ML process.

ML Examples
The following example shows how to create unique temporary file names.
ML_val ‹

val tmp1 = File.tmp_path (Path.basic ("foo" ^ serial_string ()));
val tmp2 = File.tmp_path (Path.basic ("foo" ^ serial_string ()));
assert (tmp1 <> tmp2);

›
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0.8.3 Explicit synchronization
Isabelle/ML provides explicit synchronization for mutable variables over im-
mutable data, which may be updated atomically and exclusively. This ad-
dresses the rare situations where mutable shared resources are really required.
Synchronization in Isabelle/ML is based on primitives of Poly/ML, which
have been adapted to the specific assumptions of the concurrent Isabelle en-
vironment. User code should not break this abstraction, but stay within the
confines of concurrent Isabelle/ML.
A synchronized variable is an explicit state component associated with mech-
anisms for locking and signaling. There are operations to await a condition,
change the state, and signal the change to all other waiting threads. Synchro-
nized access to the state variable is not re-entrant: direct or indirect nesting
within the same thread will cause a deadlock!

ML Reference
type ’a Synchronized.var
Synchronized.var: string -> ’a -> ’a Synchronized.var
Synchronized.guarded_access: ’a Synchronized.var ->

(’a -> (’b * ’a) option) -> ’b

Type ’a Synchronized.var represents synchronized variables with state
of type ’a.

Synchronized.var name x creates a synchronized variable that is initialized
with value x. The name is used for tracing.

Synchronized.guarded_access var f lets the function f operate within a
critical section on the state x as follows: if f x produces NONE, it con-
tinues to wait on the internal condition variable, expecting that some
other thread will eventually change the content in a suitable manner;
if f x produces SOME (y, x ′) it is satisfied and assigns the new state
value x ′, broadcasts a signal to all waiting threads on the associated
condition variable, and returns the result y.

There are some further variants of the Synchronized.guarded_access com-
binator, see ~~/src/Pure/Concurrent/synchronized.ML for details.
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ML Examples
The following example implements a counter that produces positive integers
that are unique over the runtime of the Isabelle process:
ML_val ‹

local
val counter = Synchronized.var "counter" 0;

in
fun next () =

Synchronized.guarded_access counter
(fn i =>

let val j = i + 1
in SOME (j, j) end);

end;

val a = next ();
val b = next ();
assert (a <> b);

›

See ~~/src/Pure/Concurrent/mailbox.ML how to implement a mailbox as
synchronized variable over a purely functional list.

0.9 Managed evaluation
Execution of Standard ML follows the model of strict functional evaluation
with optional exceptions. Evaluation happens whenever some function is
applied to (sufficiently many) arguments. The result is either an explicit
value or an implicit exception.
Managed evaluation in Isabelle/ML organizes expressions and results to con-
trol certain physical side-conditions, to say more specifically when and how
evaluation happens. For example, the Isabelle/ML library supports lazy
evaluation with memoing, parallel evaluation via futures, asynchronous eval-
uation via promises, evaluation with time limit etc.

An unevaluated expression is represented either as unit abstraction fn () =>
a of type unit -> ’a or as regular function fn a => b of type ’a -> ’b.
Both forms occur routinely, and special care is required to tell them apart
— the static type-system of SML is only of limited help here.
The first form is more intuitive: some combinator (unit -> ’a) -> ’a ap-
plies the given function to () to initiate the postponed evaluation process.
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The second form is more flexible: some combinator (’a -> ’b) -> ’a ->
’b acts like a modified form of function application; several such combinators
may be cascaded to modify a given function, before it is ultimately applied
to some argument.

Reified results make the disjoint sum of regular values versions exceptional
situations explicit as ML datatype: ′a result = Res of ′a | Exn of exn. This
is typically used for administrative purposes, to store the overall outcome of
an evaluation process.
Parallel exceptions aggregate reified results, such that multiple exceptions are
digested as a collection in canonical form that identifies exceptions according
to their original occurrence. This is particular important for parallel evalu-
ation via futures §0.9.3, which are organized as acyclic graph of evaluations
that depend on other evaluations: exceptions stemming from shared sub-
graphs are exposed exactly once and in the order of their original occurrence
(e.g. when printed at the toplevel). Interrupt counts as neutral element here:
it is treated as minimal information about some canceled evaluation process,
and is absorbed by the presence of regular program exceptions.

ML Reference
type ’a Exn.result
Exn.capture: (’a -> ’b) -> ’a -> ’b Exn.result
Exn.result: (’a -> ’b) -> ’a -> ’b Exn.result
Exn.release: ’a Exn.result -> ’a
Par_Exn.release_all: ’a Exn.result list -> ’a list
Par_Exn.release_first: ’a Exn.result list -> ’a list

Type ’a Exn.result represents the disjoint sum of ML results explicitly,
with constructor Exn.Res for regular values and Exn.Exn for excep-
tions.

Exn.capture f x manages the evaluation of f x such that exceptions are
made explicit as Exn.Exn. Note that this includes physical interrupts
(see also §0.5), so the same precautions apply to user code: interrupts
must not be absorbed accidentally!

Exn.result is similar to Exn.capture, but interrupts are immediately re-
raised as required for user code.

Exn.release result releases the original runtime result, exposing its regular
value or raising the reified exception.
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Par_Exn.release_all results combines results that were produced inde-
pendently (e.g. by parallel evaluation). If all results are regular values,
that list is returned. Otherwise, the collection of all exceptions is raised,
wrapped-up as collective parallel exception. Note that the latter pre-
vents access to individual exceptions by conventional handle of ML.

Par_Exn.release_first is similar to Par_Exn.release_all, but only the
first (meaningful) exception that has occurred in the original evaluation
process is raised again, the others are ignored. That single exception
may get handled by conventional means in ML.

0.9.1 Parallel skeletons
Algorithmic skeletons are combinators that operate on lists in parallel, in the
manner of well-known map, exists, forall etc. Management of futures (§0.9.3)
and their results as reified exceptions is wrapped up into simple programming
interfaces that resemble the sequential versions.
What remains is the application-specific problem to present expressions with
suitable granularity: each list element corresponds to one evaluation task. If
the granularity is too coarse, the available CPUs are not saturated. If it is
too fine-grained, CPU cycles are wasted due to the overhead of organizing
parallel processing. In the worst case, parallel performance will be less than
the sequential counterpart!

ML Reference
Par_List.map: (’a -> ’b) -> ’a list -> ’b list
Par_List.get_some: (’a -> ’b option) -> ’a list -> ’b option

Par_List.map f [x1, . . ., xn] is like map f [x1, . . ., xn], but the evaluation of
f x i for i = 1, . . ., n is performed in parallel.
An exception in any f x i cancels the overall evaluation process. The fi-
nal result is produced via Par_Exn.release_first as explained above,
which means the first program exception that happened to occur in the
parallel evaluation is propagated, and all other failures are ignored.

Par_List.get_some f [x1, . . ., xn] produces some f x i that is of the
form SOME yi , if that exists, otherwise NONE. Thus it is similar to
Library.get_first, but subject to a non-deterministic parallel choice
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process. The first successful result cancels the overall evaluation pro-
cess; other exceptions are propagated as for Par_List.map.
This generic parallel choice combinator is the basis for derived forms,
such as Par_List.find_some, Par_List.exists, Par_List.forall.

ML Examples
Subsequently, the Ackermann function is evaluated in parallel for some ranges
of arguments.
ML_val ‹

fun ackermann 0 n = n + 1
| ackermann m 0 = ackermann (m - 1) 1
| ackermann m n = ackermann (m - 1) (ackermann m (n - 1));

Par_List.map (ackermann 2) (500 upto 1000);
Par_List.map (ackermann 3) (5 upto 10);

›

0.9.2 Lazy evaluation
Classic lazy evaluation works via the lazy / force pair of operations: lazy to
wrap an unevaluated expression, and force to evaluate it once and store its re-
sult persistently. Later invocations of force retrieve the stored result without
another evaluation. Isabelle/ML refines this idea to accommodate the as-
pects of multi-threading, synchronous program exceptions and asynchronous
interrupts.
The first thread that invokes force on an unfinished lazy value changes its
state into a promise of the eventual result and starts evaluating it. Any other
threads that force the same lazy value in the meantime need to wait for it to
finish, by producing a regular result or program exception. If the evaluation
attempt is interrupted, this event is propagated to all waiting threads and
the lazy value is reset to its original state.
This means a lazy value is completely evaluated at most once, in a thread-
safe manner. There might be multiple interrupted evaluation attempts, and
multiple receivers of intermediate interrupt events. Interrupts are not made
persistent: later evaluation attempts start again from the original expression.
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ML Reference
type ’a lazy
Lazy.lazy: (unit -> ’a) -> ’a lazy
Lazy.value: ’a -> ’a lazy
Lazy.force: ’a lazy -> ’a

Type ’a lazy represents lazy values over type ’a.

Lazy.lazy (fn () => e) wraps the unevaluated expression e as unfinished
lazy value.

Lazy.value a wraps the value a as finished lazy value. When forced, it
returns a without any further evaluation.
There is very low overhead for this proforma wrapping of strict values
as lazy values.

Lazy.force x produces the result of the lazy value in a thread-safe manner
as explained above. Thus it may cause the current thread to wait on a
pending evaluation attempt by another thread.

0.9.3 Futures
Futures help to organize parallel execution in a value-oriented manner, with
fork / join as the main pair of operations, and some further variants; see
also [21, 22]. Unlike lazy values, futures are evaluated strictly and sponta-
neously on separate worker threads. Futures may be canceled, which leads
to interrupts on running evaluation attempts, and forces structurally related
futures to fail for all time; already finished futures remain unchanged. Excep-
tions between related futures are propagated as well, and turned into parallel
exceptions (see above).
Technically, a future is a single-assignment variable together with a task that
serves administrative purposes, notably within the task queue where new
futures are registered for eventual evaluation and the worker threads retrieve
their work.
The pool of worker threads is limited, in correlation with the number of
physical cores on the machine. Note that allocation of runtime resources
may be distorted either if workers yield CPU time (e.g. via system sleep or
wait operations), or if non-worker threads contend for significant runtime
resources independently. There is a limited number of replacement worker
threads that get activated in certain explicit wait conditions, after a timeout.
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Each future task belongs to some task group, which represents the hierarchic
structure of related tasks, together with the exception status a that point.
By default, the task group of a newly created future is a new sub-group of
the presently running one, but it is also possible to indicate different group
layouts under program control.
Cancellation of futures actually refers to the corresponding task group and
all its sub-groups. Thus interrupts are propagated down the group hierarchy.
Regular program exceptions are treated likewise: failure of the evaluation of
some future task affects its own group and all sub-groups. Given a particular
task group, its group status cumulates all relevant exceptions according to
its position within the group hierarchy. Interrupted tasks that lack regular
result information, will pick up parallel exceptions from the cumulative group
status.

A passive future or promise is a future with slightly different evaluation poli-
cies: there is only a single-assignment variable and some expression to evalu-
ate for the failed case (e.g. to clean up resources when canceled). A regular
result is produced by external means, using a separate fulfill operation.
Promises are managed in the same task queue, so regular futures may depend
on them. This allows a form of reactive programming, where some promises
are used as minimal elements (or guards) within the future dependency graph:
when these promises are fulfilled the evaluation of subsequent futures starts
spontaneously, according to their own inter-dependencies.

ML Reference
type ’a future
Future.fork: (unit -> ’a) -> ’a future
Future.forks: Future.params -> (unit -> ’a) list -> ’a future list
Future.join: ’a future -> ’a
Future.joins: ’a future list -> ’a list
Future.value: ’a -> ’a future
Future.map: (’a -> ’b) -> ’a future -> ’b future
Future.cancel: ’a future -> unit
Future.cancel_group: Future.group -> unit
Future.promise: (unit -> unit) -> ’a future
Future.fulfill: ’a future -> ’a -> unit

Type ’a future represents future values over type ’a.

Future.fork (fn () => e) registers the unevaluated expression e as unfin-
ished future value, to be evaluated eventually on the parallel worker-
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thread farm. This is a shorthand for Future.forks below, with default
parameters and a single expression.

Future.forks params exprs is the general interface to fork several futures
simultaneously. The params consist of the following fields:

• name : string (default "") specifies a common name for the tasks
of the forked futures, which serves diagnostic purposes.

• group : Future.group option (default NONE) specifies an optional
task group for the forked futures. NONE means that a new sub-
group of the current worker-thread task context is created. If this
is not a worker thread, the group will be a new root in the group
hierarchy.

• deps : Future.task list (default []) specifies dependencies on other
future tasks, i.e. the adjacency relation in the global task queue.
Dependencies on already finished tasks are ignored.

• pri : int (default 0) specifies a priority within the task queue.
Typically there is only little deviation from the default priority 0.
As a rule of thumb, ~1 means “low priority" and 1 means “high
priority”.
Note that the task priority only affects the position in the queue,
not the thread priority. When a worker thread picks up a task for
processing, it runs with the normal thread priority to the end (or
until canceled). Higher priority tasks that are queued later need
to wait until this (or another) worker thread becomes free again.

• interrupts : bool (default true) tells whether the worker thread
that processes the corresponding task is initially put into inter-
ruptible state. This state may change again while running, by
modifying the thread attributes.
With interrupts disabled, a running future task cannot be can-
celed. It is the responsibility of the programmer that this special
state is retained only briefly.

Future.join x retrieves the value of an already finished future, which may
lead to an exception, according to the result of its previous evaluation.
For an unfinished future there are several cases depending on the role
of the current thread and the status of the future. A non-worker thread
waits passively until the future is eventually evaluated. A worker thread
temporarily changes its task context and takes over the responsibility
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to evaluate the future expression on the spot. The latter is done in a
thread-safe manner: other threads that intend to join the same future
need to wait until the ongoing evaluation is finished.
Note that excessive use of dynamic dependencies of futures by adhoc
joining may lead to bad utilization of CPU cores, due to threads wait-
ing on other threads to finish required futures. The future task farm
has a limited amount of replacement threads that continue working on
unrelated tasks after some timeout.
Whenever possible, static dependencies of futures should be specified
explicitly when forked (see deps above). Thus the evaluation can work
from the bottom up, without join conflicts and wait states.

Future.joins xs joins the given list of futures simultaneously, which is
more efficient than map Future.join xs.
Based on the dependency graph of tasks, the current thread takes over
the responsibility to evaluate future expressions that are required for
the main result, working from the bottom up. Waiting on future results
that are presently evaluated on other threads only happens as last
resort, when no other unfinished futures are left over.

Future.value a wraps the value a as finished future value, bypassing the
worker-thread farm. When joined, it returns a without any further
evaluation.
There is very low overhead for this proforma wrapping of strict values
as futures.

Future.map f x is a fast-path implementation of Future.fork (fn () =>
f (Future.join x)), which avoids the full overhead of the task queue
and worker-thread farm as far as possible. The function f is supposed
to be some trivial post-processing or projection of the future result.

Future.cancel x cancels the task group of the given future, using
Future.cancel_group below.

Future.cancel_group group cancels all tasks of the given task group for
all time. Threads that are presently processing a task of the given
group are interrupted: it may take some time until they are actually
terminated. Tasks that are queued but not yet processed are dequeued
and forced into interrupted state. Since the task group is itself invali-
dated, any further attempt to fork a future that belongs to it will yield
a canceled result as well.
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Future.promise abort registers a passive future with the given abort oper-
ation: it is invoked when the future task group is canceled.

Future.fulfill x a finishes the passive future x by the given value a. If
the promise has already been canceled, the attempt to fulfill it causes
an exception.



Chapter 1

Preliminaries

1.1 Contexts
A logical context represents the background that is required for formulating
statements and composing proofs. It acts as a medium to produce formal
content, depending on earlier material (declarations, results etc.).
For example, derivations within the Isabelle/Pure logic can be described as
a judgment Γ `Θ ϕ, which means that a proposition ϕ is derivable from hy-
potheses Γ within the theory Θ. There are logical reasons for keeping Θ and
Γ separate: theories can be liberal about supporting type constructors and
schematic polymorphism of constants and axioms, while the inner calculus
of Γ ` ϕ is strictly limited to Simple Type Theory (with fixed type variables
in the assumptions).

Contexts and derivations are linked by the following key principles:

• Transfer: monotonicity of derivations admits results to be transferred
into a larger context, i.e. Γ `Θ ϕ implies Γ ′ `Θ ′ ϕ for contexts Θ ′ ⊇ Θ
and Γ ′ ⊇ Γ.

• Export: discharge of hypotheses admits results to be exported into a
smaller context, i.e. Γ ′ `Θ ϕ implies Γ `Θ ∆ =⇒ ϕ where Γ ′ ⊇ Γ and
∆ = Γ ′ − Γ. Note that Θ remains unchanged here, only the Γ part is
affected.

By modeling the main characteristics of the primitive Θ and Γ above, and
abstracting over any particular logical content, we arrive at the fundamental
notions of theory context and proof context in Isabelle/Isar. These implement
a certain policy to manage arbitrary context data. There is a strongly-typed
mechanism to declare new kinds of data at compile time.
The internal bootstrap process of Isabelle/Pure eventually reaches a stage
where certain data slots provide the logical content of Θ and Γ sketched
above, but this does not stop there! Various additional data slots support all
kinds of mechanisms that are not necessarily part of the core logic.

48
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For example, there would be data for canonical introduction and elimination
rules for arbitrary operators (depending on the object-logic and application),
which enables users to perform standard proof steps implicitly (cf. the rule
method [19]).

Thus Isabelle/Isar is able to bring forth more and more concepts successively.
In particular, an object-logic like Isabelle/HOL continues the Isabelle/Pure
setup by adding specific components for automated reasoning (classical rea-
soner, tableau prover, structured induction etc.) and derived specification
mechanisms (inductive predicates, recursive functions etc.). All of this is ul-
timately based on the generic data management by theory and proof contexts
introduced here.

1.1.1 Theory context
A theory is a data container with explicit name and unique identifier. Theo-
ries are related by a (nominal) sub-theory relation, which corresponds to the
dependency graph of the original construction; each theory is derived from a
certain sub-graph of ancestor theories. To this end, the system maintains a
set of symbolic “identification stamps” within each theory.
The begin operation starts a new theory by importing several parent theories
(with merged contents) and entering a special mode of nameless incremental
updates, until the final end operation is performed.

The example in figure 1.1 below shows a theory graph derived from Pure,
with theory Length importing Nat and List. The body of Length consists
of a sequence of updates, resulting in locally a linear sub-theory relation for
each intermediate step.

Derived formal entities may retain a reference to the background theory in
order to indicate the formal context from which they were produced. This
provides an immutable certificate of the background theory.

ML Reference
type theory
Context.eq_thy: theory * theory -> bool
Context.subthy: theory * theory -> bool
Theory.begin_theory: string * Position.T -> theory list -> theory
Theory.parents_of: theory -> theory list
Theory.ancestors_of: theory -> theory list
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Pure
↓

FOL
↙ ↘

Nat List
↘ ↙

Length
begin
...

end

Figure 1.1: A theory definition depending on ancestors

Type theory represents theory contexts.

Context.eq_thy (thy1, thy2) check strict identity of two theories.

Context.subthy (thy1, thy2) compares theories according to the intrinsic
graph structure of the construction. This sub-theory relation is a nom-
inal approximation of inclusion (⊆) of the corresponding content (ac-
cording to the semantics of the ML modules that implement the data).

Theory.begin_theory name parents constructs a new theory based on the
given parents. This ML function is normally not invoked directly.

Theory.parents_of thy returns the direct ancestors of thy.

Theory.ancestors_of thy returns all ancestors of thy (not including thy
itself).

ML Antiquotations
theory : ML_antiquotation

theory_context : ML_antiquotation

theory
�� ���

�embedded

�
�
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theory_context
�� ��embedded

@{theory} refers to the background theory of the current context — as
abstract value.

@{theory A} refers to an explicitly named ancestor theory A of the back-
ground theory of the current context — as abstract value.

@{theory_context A} is similar to @{theory A}, but presents the result as
initial Proof.context (see also Proof_Context.init_global).

1.1.2 Proof context
A proof context is a container for pure data that refers to the theory from
which it is derived. The init operation creates a proof context from a given
theory. There is an explicit transfer operation to force resynchronization
with updates to the background theory – this is rarely required in practice.
Entities derived in a proof context need to record logical requirements ex-
plicitly, since there is no separate context identification or symbolic inclusion
as for theories. For example, hypotheses used in primitive derivations (cf.
§2.3) are recorded separately within the sequent Γ ` ϕ, just to make double
sure. Results could still leak into an alien proof context due to program-
ming errors, but Isabelle/Isar includes some extra validity checks in critical
positions, notably at the end of a sub-proof.
Proof contexts may be manipulated arbitrarily, although the common disci-
pline is to follow block structure as a mental model: a given context is ex-
tended consecutively, and results are exported back into the original context.
Note that an Isar proof state models block-structured reasoning explicitly,
using a stack of proof contexts internally. For various technical reasons, the
background theory of an Isar proof state must not be changed while the proof
is still under construction!

ML Reference
type Proof.context
Proof_Context.init_global: theory -> Proof.context
Proof_Context.theory_of: Proof.context -> theory
Proof_Context.transfer: theory -> Proof.context -> Proof.context
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Type Proof.context represents proof contexts.

Proof_Context.init_global thy produces a proof context derived from
thy, initializing all data.

Proof_Context.theory_of ctxt selects the background theory from ctxt.

Proof_Context.transfer thy ctxt promotes the background theory of ctxt
to the super theory thy.

ML Antiquotations
context : ML_antiquotation

@{context} refers to the context at compile-time — as abstract value. In-
dependently of (local) theory or proof mode, this always produces a
meaningful result.
This is probably the most common antiquotation in interactive exper-
imentation with ML inside Isar.

1.1.3 Generic contexts
A generic context is the disjoint sum of either a theory or proof context. Oc-
casionally, this enables uniform treatment of generic context data, typically
extra-logical information. Operations on generic contexts include the usual
injections, partial selections, and combinators for lifting operations on either
component of the disjoint sum.
Moreover, there are total operations theory_of and proof_of to convert a
generic context into either kind: a theory can always be selected from the
sum, while a proof context might have to be constructed by an ad-hoc init
operation, which incurs a small runtime overhead.

ML Reference
type Context.generic
Context.theory_of: Context.generic -> theory
Context.proof_of: Context.generic -> Proof.context
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Type Context.generic is the direct sum of theory and Proof.context,
with the datatype constructors Context.Theory and Context.Proof.

Context.theory_of context always produces a theory from the generic con-
text, using Proof_Context.theory_of as required.

Context.proof_of context always produces a proof context from the
generic context, using Proof_Context.init_global as required (note
that this re-initializes the context data with each invocation).

1.1.4 Context data
The main purpose of theory and proof contexts is to manage arbitrary (pure)
data. New data types can be declared incrementally at compile time. There
are separate declaration mechanisms for any of the three kinds of contexts:
theory, proof, generic.

Theory data declarations need to implement the following ML signature:

type T representing type
val empty: T empty default value
val extend: T → T obsolete (identity function)
val merge: T × T → T merge data

The empty value acts as initial default for any theory that does not declare
actual data content; extend is obsolete: it needs to be the identity function.
The merge operation needs to join the data from two theories in a conser-
vative manner. The standard scheme for merge (data1, data2) inserts those
parts of data2 into data1 that are not yet present, while keeping the general
order of things. The Library.merge function on plain lists may serve as
canonical template. Particularly note that shared parts of the data must not
be duplicated by naive concatenation, or a theory graph that resembles a
chain of diamonds would cause an exponential blowup!
Sometimes, the data consists of a single item that cannot be “merged” in a
sensible manner. Then the standard scheme degenerates to the projection to
data1, ignoring data2 outright.

Proof context data declarations need to implement the following ML
signature:
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type T representing type
val init: theory → T produce initial value

The init operation is supposed to produce a pure value from the given back-
ground theory and should be somehow “immediate”. Whenever a proof con-
text is initialized, which happens frequently, the the system invokes the init
operation of all theory data slots ever declared. This also means that one
needs to be economic about the total number of proof data declarations in
the system, i.e. each ML module should declare at most one, sometimes two
data slots for its internal use. Repeated data declarations to simulate a
record type should be avoided!

Generic data provides a hybrid interface for both theory and proof data.
The init operation for proof contexts is predefined to select the current data
value from the background theory.

Any of the above data declarations over type T result in an ML structure
with the following signature:

get: context → T
put: T → context → context
map: (T → T ) → context → context

These other operations provide exclusive access for the particular kind of
context (theory, proof, or generic context). This interface observes the ML
discipline for types and scopes: there is no other way to access the corre-
sponding data slot of a context. By keeping these operations private, an
Isabelle/ML module may maintain abstract values authentically.

ML Reference
functor Theory_Data
functor Proof_Data
functor Generic_Data

Theory_Data(spec) declares data for type theory according to the specifica-
tion provided as argument structure. The resulting structure provides
data init and access operations as described above.

Proof_Data(spec) is analogous to Theory_Data for type Proof.context.

Generic_Data(spec) is analogous to Theory_Data for type Context.generic.
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ML Examples
The following artificial example demonstrates theory data: we maintain a set
of terms that are supposed to be wellformed wrt. the enclosing theory. The
public interface is as follows:
ML ‹

signature WELLFORMED_TERMS =
sig

val get: theory -> term list
val add: term -> theory -> theory

end;
›

The implementation uses private theory data internally, and only exposes an
operation that involves explicit argument checking wrt. the given theory.
ML ‹

structure Wellformed_Terms: WELLFORMED_TERMS =
struct

structure Terms = Theory_Data
(

type T = term Ord_List.T;
val empty = [];
fun merge (ts1, ts2) =

Ord_List.union Term_Ord.fast_term_ord ts1 ts2;
);

val get = Terms.get;

fun add raw_t thy =
let

val t = Sign.cert_term thy raw_t;
in

Terms.map (Ord_List.insert Term_Ord.fast_term_ord t) thy
end;

end;
›

Type term Ord_List.T is used for reasonably efficient representation of a
set of terms: all operations are linear in the number of stored elements. Here
we assume that users of this module do not care about the declaration order,
since that data structure forces its own arrangement of elements.
Observe how the merge operation joins the data slots of the two con-
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stituents: Ord_List.union prevents duplication of common data from dif-
ferent branches, thus avoiding the danger of exponential blowup. Plain list
append etc. must never be used for theory data merges!

Our intended invariant is achieved as follows:

1. Wellformed_Terms.add only admits terms that have passed the
Sign.cert_term check of the given theory at that point.

2. Wellformedness in the sense of Sign.cert_term is monotonic wrt. the
sub-theory relation. So our data can move upwards in the hierarchy
(via extension or merges), and maintain wellformedness without further
checks.

Note that all basic operations of the inference kernel (which in-
cludes Sign.cert_term) observe this monotonicity principle, but other
user-space tools don’t. For example, fully-featured type-inference via
Syntax.check_term (cf. §3.3) is not necessarily monotonic wrt. the back-
ground theory, since constraints of term constants can be modified by later
declarations, for example.
In most cases, user-space context data does not have to take such invariants
too seriously. The situation is different in the implementation of the inference
kernel itself, which uses the very same data mechanisms for types, constants,
axioms etc.

1.1.5 Configuration options
A configuration option is a named optional value of some basic type (Boolean,
integer, string) that is stored in the context. It is a simple application of
general context data (§1.1.4) that is sufficiently common to justify customized
setup, which includes some concrete declarations for end-users using existing
notation for attributes (cf. §7.3).
For example, the predefined configuration option show_types controls output
of explicit type constraints for variables in printed terms (cf. §3.1). Its value
can be modified within Isar text like this:
experiment
begin

declare [[show_types = false]]
— declaration within (local) theory context
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notepad
begin

note [[show_types = true]]
— declaration within proof (forward mode)

term x

have x = x
using [[show_types = false]]

— declaration within proof (backward mode)
..

end

end

Configuration options that are not set explicitly hold a default value that
can depend on the application context. This allows to retrieve the value
from another slot within the context, or fall back on a global preference
mechanism, for example.
The operations to declare configuration options and get/map their values are
modeled as direct replacements for historic global references, only that the
context is made explicit. This allows easy configuration of tools, without
relying on the execution order as required for old-style mutable references.

ML Reference
Config.get: Proof.context -> ’a Config.T -> ’a
Config.map: ’a Config.T -> (’a -> ’a) -> Proof.context -> Proof.context
Attrib.setup_config_bool: binding -> (Context.generic -> bool) ->

bool Config.T
Attrib.setup_config_int: binding -> (Context.generic -> int) ->

int Config.T
Attrib.setup_config_real: binding -> (Context.generic -> real) ->

real Config.T
Attrib.setup_config_string: binding -> (Context.generic -> string) ->

string Config.T

Config.get ctxt config gets the value of config in the given context.

Config.map config f ctxt updates the context by updating the value of config.

config = Attrib.setup_config_bool name default creates a named con-
figuration option of type bool, with the given default depending on the
application context. The resulting config can be used to get/map its
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value in a given context. There is an implicit update of the background
theory that registers the option as attribute with some concrete syntax.

Attrib.config_int, Attrib.config_real, and Attrib.config_string
work like Attrib.config_bool, but for types int and string, respec-
tively.

ML Examples
The following example shows how to declare and use a Boolean configuration
option called my_flag with constant default value false.
ML ‹

val my_flag =
Attrib.setup_config_bool binding ‹my_flag› (K false)

›

Now the user can refer to my_flag in declarations, while ML tools can retrieve
the current value from the context via Config.get.
ML_val ‹assert (Config.get context my_flag = false)›

declare [[my_flag = true]]

ML_val ‹assert (Config.get context my_flag = true)›

notepad
begin

{
note [[my_flag = false]]
ML_val ‹assert (Config.get context my_flag = false)›

}
ML_val ‹assert (Config.get context my_flag = true)›

end

Here is another example involving ML type real (floating-point numbers).
ML ‹

val airspeed_velocity =
Attrib.setup_config_real binding ‹airspeed_velocity› (K 0.0)

›

declare [[airspeed_velocity = 10]]
declare [[airspeed_velocity = 9.9]]
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1.2 Names
In principle, a name is just a string, but there are various conventions for
representing additional structure. For example, “Foo.bar .baz” is considered
as a long name consisting of qualifier Foo.bar and base name baz. The indi-
vidual constituents of a name may have further substructure, e.g. the string
“\<alpha>” encodes as a single symbol (§0.6).

Subsequently, we shall introduce specific categories of names. Roughly speak-
ing these correspond to logical entities as follows:

• Basic names (§1.2.1): free and bound variables.

• Indexed names (§1.2.2): schematic variables.

• Long names (§1.2.3): constants of any kind (type constructors, term
constants, other concepts defined in user space). Such entities are typ-
ically managed via name spaces (§1.2.4).

1.2.1 Basic names
A basic name essentially consists of a single Isabelle identifier. There are
conventions to mark separate classes of basic names, by attaching a suffix
of underscores: one underscore means internal name, two underscores means
Skolem name, three underscores means internal Skolem name.
For example, the basic name foo has the internal version foo_, with Skolem
versions foo__ and foo___, respectively.
These special versions provide copies of the basic name space, apart from
anything that normally appears in the user text. For example, system gen-
erated variables in Isar proof contexts are usually marked as internal, which
prevents mysterious names like xaa to appear in human-readable text.

Manipulating binding scopes often requires on-the-fly renamings. A name
context contains a collection of already used names. The declare operation
adds names to the context.
The invents operation derives a number of fresh names from a given starting
point. For example, the first three names derived from a are a, b, c.
The variants operation produces fresh names by incrementing tentative
names as base-26 numbers (with digits a..z) until all clashes are resolved.
For example, name foo results in variants fooa, foob, fooc, . . . , fooaa, fooab
etc.; each renaming step picks the next unused variant from this sequence.



CHAPTER 1. PRELIMINARIES 60

ML Reference
Name.internal: string -> string
Name.skolem: string -> string

type Name.context
Name.context: Name.context
Name.declare: string -> Name.context -> Name.context
Name.invent: Name.context -> string -> int -> string list
Name.variant: string -> Name.context -> string * Name.context

Variable.names_of: Proof.context -> Name.context

Name.internal name produces an internal name by adding one underscore.

Name.skolem name produces a Skolem name by adding two underscores.

Type Name.context represents the context of already used names; the initial
value is Name.context.

Name.declare name enters a used name into the context.

Name.invent context name n produces n fresh names derived from name.

Name.variant name context produces a fresh variant of name; the result is
declared to the context.

Variable.names_of ctxt retrieves the context of declared type and term
variable names. Projecting a proof context down to a primitive name
context is occasionally useful when invoking lower-level operations.
Regular management of “fresh variables” is done by suitable opera-
tions of structure Variable, which is also able to provide an official
status of “locally fixed variable” within the logical environment (cf.
§6.1).

ML Examples
The following simple examples demonstrate how to produce fresh names from
the initial Name.context.
ML_val ‹

val list1 = Name.invent Name.context "a" 5;
assert (list1 = ["a", "b", "c", "d", "e"]);

val list2 =
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#1 (fold_map Name.variant ["x", "x", "a", "a", "’a", "’a"]
Name.context);

assert (list2 = ["x", "xa", "a", "aa", "’a", "’aa"]);
›

The same works relatively to the formal context as follows.
experiment fixes a b c :: ′a
begin

ML_val ‹
val names = Variable.names_of context ;

val list1 = Name.invent names "a" 5;
assert (list1 = ["d", "e", "f", "g", "h"]);

val list2 =
#1 (fold_map Name.variant ["x", "x", "a", "a", "’a", "’a"]

names);
assert (list2 = ["x", "xa", "aa", "ab", "’aa", "’ab"]);

›

end

1.2.2 Indexed names
An indexed name (or indexname) is a pair of a basic name and a natural num-
ber. This representation allows efficient renaming by incrementing the second
component only. The canonical way to rename two collections of indexnames
apart from each other is this: determine the maximum index maxidx of the
first collection, then increment all indexes of the second collection by maxidx
+ 1; the maximum index of an empty collection is −1.
Occasionally, basic names are injected into the same pair type of indexed
names: then (x , −1) is used to encode the basic name x.

Isabelle syntax observes the following rules for representing an indexname
(x , i) as a packed string:

• ?x if x does not end with a digit and i = 0,

• ?xi if x does not end with a digit,

• ?x .i otherwise.
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Indexnames may acquire large index numbers after several maxidx shifts have
been applied. Results are usually normalized towards 0 at certain check-
points, notably at the end of a proof. This works by producing variants of
the corresponding basic name components. For example, the collection ?x1,
?x7, ?x42 becomes ?x , ?xa, ?xb.

ML Reference
type indexname = string * int

Type indexname represents indexed names. This is an abbreviation for
string * int. The second component is usually non-negative, except
for situations where (x , −1) is used to inject basic names into this type.
Other negative indexes should not be used.

1.2.3 Long names
A long name consists of a sequence of non-empty name components. The
packed representation uses a dot as separator, as in “A.b.c”. The last com-
ponent is called base name, the remaining prefix is called qualifier (which
may be empty). The qualifier can be understood as the access path to the
named entity while passing through some nested block-structure, although
our free-form long names do not really enforce any strict discipline.
For example, an item named “A.b.c” may be understood as a local entity
c, within a local structure b, within a global structure A. In practice, long
names usually represent 1–3 levels of qualification. User ML code should not
make any assumptions about the particular structure of long names!
The empty name is commonly used as an indication of unnamed entities, or
entities that are not entered into the corresponding name space, whenever
this makes any sense. The basic operations on long names map empty names
again to empty names.

ML Reference
Long_Name.base_name: string -> string
Long_Name.qualifier: string -> string
Long_Name.append: string -> string -> string
Long_Name.implode: string list -> string
Long_Name.explode: string -> string list
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Long_Name.base_name name returns the base name of a long name.

Long_Name.qualifier name returns the qualifier of a long name.

Long_Name.append name1 name2 appends two long names.

Long_Name.implode names and Long_Name.explode name convert be-
tween the packed string representation and the explicit list form of
long names.

1.2.4 Name spaces
A name space manages a collection of long names, together with a mapping
between partially qualified external names and fully qualified internal names
(in both directions). Note that the corresponding intern and extern opera-
tions are mostly used for parsing and printing only! The declare operation
augments a name space according to the accesses determined by a given
binding, and a naming policy from the context.

A binding specifies details about the prospective long name of a newly in-
troduced formal entity. It consists of a base name, prefixes for qualification
(separate ones for system infrastructure and user-space mechanisms), a slot
for the original source position, and some additional flags.

A naming provides some additional details for producing a long name from
a binding. Normally, the naming is implicit in the theory or proof context.
The full operation (and its variants for different context types) produces a
fully qualified internal name to be entered into a name space. The main
equation of this “chemical reaction” when binding new entities in a context
is as follows:

binding + naming −→ long name + name space accesses

As a general principle, there is a separate name space for each kind of formal
entity, e.g. fact, logical constant, type constructor, type class. It is usually
clear from the occurrence in concrete syntax (or from the scope) which kind
of entity a name refers to. For example, the very same name c may be used
uniformly for a constant, type constructor, and type class.
There are common schemes to name derived entities systematically according
to the name of the main logical entity involved, e.g. fact c.intro for a canonical
introduction rule related to constant c. This technique of mapping names
from one space into another requires some care in order to avoid conflicts.
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In particular, theorem names derived from a type constructor or type class
should get an additional suffix in addition to the usual qualification. This
leads to the following conventions for derived names:

logical entity fact name
constant c c.intro
type c c_type.intro
class c c_class.intro

ML Reference
type binding
Binding.empty: binding
Binding.name: string -> binding
Binding.qualify: bool -> string -> binding -> binding
Binding.prefix: bool -> string -> binding -> binding
Binding.concealed: binding -> binding
Binding.print: binding -> string

type Name_Space.naming
Name_Space.global_naming: Name_Space.naming
Name_Space.add_path: string -> Name_Space.naming -> Name_Space.naming
Name_Space.full_name: Name_Space.naming -> binding -> string

type Name_Space.T
Name_Space.empty: string -> Name_Space.T
Name_Space.merge: Name_Space.T * Name_Space.T -> Name_Space.T
Name_Space.declare: Context.generic -> bool ->

binding -> Name_Space.T -> string * Name_Space.T
Name_Space.intern: Name_Space.T -> string -> string
Name_Space.extern: Proof.context -> Name_Space.T -> string -> string
Name_Space.is_concealed: Name_Space.T -> string -> bool

Type binding represents the abstract concept of name bindings.

Binding.empty is the empty binding.

Binding.name name produces a binding with base name name. Note that
this lacks proper source position information; see also the ML antiquo-
tation binding.

Binding.qualify mandatory name binding prefixes qualifier name to bind-
ing. The mandatory flag tells if this name component always needs to
be given in name space accesses — this is mostly false in practice. Note
that this part of qualification is typically used in derived specification
mechanisms.
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Binding.prefix is similar to Binding.qualify, but affects the system pre-
fix. This part of extra qualification is typically used in the infrastruc-
ture for modular specifications, notably “local theory targets” (see also
chapter 8).

Binding.concealed binding indicates that the binding shall refer to an
entity that serves foundational purposes only. This flag helps to
mark implementation details of specification mechanism etc. Other
tools should not depend on the particulars of concealed entities (cf.
Name_Space.is_concealed).

Binding.print binding produces a string representation for human-
readable output, together with some formal markup that might get
used in GUI front-ends, for example.

Type Name_Space.naming represents the abstract concept of a naming pol-
icy.

Name_Space.global_naming is the default naming policy: it is global and
lacks any path prefix. In a regular theory context this is augmented by
a path prefix consisting of the theory name.

Name_Space.add_path path naming augments the naming policy by extend-
ing its path component.

Name_Space.full_name naming binding turns a name binding (usually a
basic name) into the fully qualified internal name, according to the
given naming policy.

Type Name_Space.T represents name spaces.

Name_Space.empty kind and Name_Space.merge (space1, space2) are the
canonical operations for maintaining name spaces according to theory
data management (§1.1.4); kind is a formal comment to characterize
the purpose of a name space.

Name_Space.declare context strict binding space enters a name binding as
fully qualified internal name into the name space, using the naming of
the context.

Name_Space.intern space name internalizes a (partially qualified) external
name.
This operation is mostly for parsing! Note that fully qualified names
stemming from declarations are produced via Name_Space.full_name
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and Name_Space.declare (or their derivatives for theory and
Proof.context).

Name_Space.extern ctxt space name externalizes a (fully qualified) internal
name.
This operation is mostly for printing! User code should not rely on the
precise result too much.

Name_Space.is_concealed space name indicates whether name refers to a
strictly private entity that other tools are supposed to ignore!

ML Antiquotations
binding : ML_antiquotation

binding
�� ��embedded

@{binding name} produces a binding with base name name and the source
position taken from the concrete syntax of this antiquotation. In many
situations this is more appropriate than the more basic Binding.name
function.

ML Examples
The following example yields the source position of some concrete binding
inlined into the text:
ML_val ‹Binding.pos_of binding ‹here››

That position can be also printed in a message as follows:
ML_command

‹writeln
("Look here" ^ Position.here (Binding.pos_of binding ‹here›))›

This illustrates a key virtue of formalized bindings as opposed to raw spec-
ifications of base names: the system can use this additional information for
feedback given to the user (error messages etc.).

The following example refers to its source position directly, which is occa-
sionally useful for experimentation and diagnostic purposes:
ML_command ‹warning ("Look here" ^ Position.here here )›



Chapter 2

Primitive logic

The logical foundations of Isabelle/Isar are that of the Pure logic, which has
been introduced as a Natural Deduction framework in [14]. This is essentially
the same logic as “λHOL” in the more abstract setting of Pure Type Systems
(PTS) [1], although there are some key differences in the specific treatment
of simple types in Isabelle/Pure.
Following type-theoretic parlance, the Pure logic consists of three levels of
λ-calculus with corresponding arrows, ⇒ for syntactic function space (terms
depending on terms), ∧ for universal quantification (proofs depending on
terms), and =⇒ for implication (proofs depending on proofs).
Derivations are relative to a logical theory, which declares type construc-
tors, constants, and axioms. Theory declarations support schematic poly-
morphism, which is strictly speaking outside the logic.1

2.1 Types
The language of types is an uninterpreted order-sorted first-order algebra;
types are qualified by ordered type classes.

A type class is an abstract syntactic entity declared in the theory context.
The subclass relation c1 ⊆ c2 is specified by stating an acyclic generating
relation; the transitive closure is maintained internally. The resulting relation
is an ordering: reflexive, transitive, and antisymmetric.
A sort is a list of type classes written as s = {c1, . . ., cm}, it represents
symbolic intersection. Notationally, the curly braces are omitted for singleton
intersections, i.e. any class c may be read as a sort {c}. The ordering on type
classes is extended to sorts according to the meaning of intersections: {c1, . . .
cm} ⊆ {d1, . . ., dn} iff ∀ j. ∃ i. ci ⊆ d j . The empty intersection {} refers to

1This is the deeper logical reason, why the theory context Θ is separate from the proof
context Γ of the core calculus: type constructors, term constants, and facts (proof con-
stants) may involve arbitrary type schemes, but the type of a locally fixed term parameter
is also fixed!

67
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the universal sort, which is the largest element wrt. the sort order. Thus {}
represents the “full sort”, not the empty one! The intersection of all (finitely
many) classes declared in the current theory is the least element wrt. the sort
ordering.

A fixed type variable is a pair of a basic name (starting with a ′ character)
and a sort constraint, e.g. ( ′a, s) which is usually printed as αs. A schematic
type variable is a pair of an indexname and a sort constraint, e.g. (( ′a, 0), s)
which is usually printed as ?αs.
Note that all syntactic components contribute to the identity of type vari-
ables: basic name, index, and sort constraint. The core logic handles type
variables with the same name but different sorts as different, although the
type-inference layer (which is outside the core) rejects anything like that.
A type constructor κ is a k-ary operator on types declared in the theory.
Type constructor application is written postfix as (α1, . . ., αk)κ. For k =
0 the argument tuple is omitted, e.g. prop instead of ()prop. For k = 1 the
parentheses are omitted, e.g. α list instead of (α)list. Further notation is
provided for specific constructors, notably the right-associative infix α ⇒ β
instead of (α, β)fun.
The logical category type is defined inductively over type variables and type
constructors as follows: τ = αs | ?αs | (τ 1, . . ., τ k)κ.
A type abbreviation is a syntactic definition (~α)κ = τ of an arbitrary type ex-
pression τ over variables ~α. Type abbreviations appear as type constructors
in the syntax, but are expanded before entering the logical core.
A type arity declares the image behavior of a type constructor wrt. the algebra
of sorts: κ :: (s1, . . ., sk)s means that (τ 1, . . ., τ k)κ is of sort s if every
argument type τ i is of sort si . Arity declarations are implicitly completed,
i.e. κ :: (~s)c entails κ :: (~s)c ′ for any c ′ ⊇ c.

The sort algebra is always maintained as coregular, which means that type
arities are consistent with the subclass relation: for any type constructor κ,
and classes c1 ⊆ c2, and arities κ :: (~s1)c1 and κ :: (~s2)c2 holds ~s1 ⊆ ~s2
component-wise.
The key property of a coregular order-sorted algebra is that sort constraints
can be solved in a most general fashion: for each type constructor κ and sort s
there is a most general vector of argument sorts (s1, . . ., sk) such that a type
scheme (αs1 , . . ., αsk)κ is of sort s. Consequently, type unification has most
general solutions (modulo equivalence of sorts), so type-inference produces
primary types as expected [12].



CHAPTER 2. PRIMITIVE LOGIC 69

ML Reference
type class = string
type sort = class list
type arity = string * sort list * sort
type typ
Term.map_atyps: (typ -> typ) -> typ -> typ
Term.fold_atyps: (typ -> ’a -> ’a) -> typ -> ’a -> ’a

Sign.subsort: theory -> sort * sort -> bool
Sign.of_sort: theory -> typ * sort -> bool
Sign.add_type: Proof.context -> binding * int * mixfix -> theory -> theory
Sign.add_type_abbrev: Proof.context ->

binding * string list * typ -> theory -> theory
Sign.primitive_class: binding * class list -> theory -> theory
Sign.primitive_classrel: class * class -> theory -> theory
Sign.primitive_arity: arity -> theory -> theory

Type class represents type classes.

Type sort represents sorts, i.e. finite intersections of classes. The empty
list []: sort refers to the empty class intersection, i.e. the “full sort”.

Type arity represents type arities. A triple (κ, ~s, s) : arity represents κ ::
(~s)s as described above.

Type typ represents types; this is a datatype with constructors TFree, TVar,
Type.

Term.map_atyps f τ applies the mapping f to all atomic types (TFree,
TVar) occurring in τ .

Term.fold_atyps f τ iterates the operation f over all occurrences of atomic
types (TFree, TVar) in τ ; the type structure is traversed from left to
right.

Sign.subsort thy (s1, s2) tests the subsort relation s1 ⊆ s2.

Sign.of_sort thy (τ , s) tests whether type τ is of sort s.

Sign.add_type ctxt (κ, k, mx) declares a new type constructors κ with k
arguments and optional mixfix syntax.

Sign.add_type_abbrev ctxt (κ, ~α, τ) defines a new type abbreviation (~α)κ
= τ .

Sign.primitive_class (c, [c1, . . ., cn]) declares a new class c, together
with class relations c ⊆ ci , for i = 1, . . ., n.
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Sign.primitive_classrel (c1, c2) declares the class relation c1 ⊆ c2.

Sign.primitive_arity (κ, ~s, s) declares the arity κ :: (~s)s.

ML Antiquotations
class : ML_antiquotation
sort : ML_antiquotation

type_name : ML_antiquotation
type_abbrev : ML_antiquotation
nonterminal : ML_antiquotation

typ : ML_antiquotation
Type : ML_antiquotation

Type_fn : ML_antiquotation

class
�� ��embedded

sort
�� ��sort

type_name
�� ���

�type_abbrev
�� ���nonterminal
�� ��

�
�
�

embedded

typ
�� ��type

Type
�� ���

�Type_fn
�� ��

�
�

embedded

@{class c} inlines the internalized class c — as string literal.

@{sort s} inlines the internalized sort s — as string

list literal.
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@{type_name c} inlines the internalized type constructor c — as string
literal.

@{type_abbrev c} inlines the internalized type abbreviation c — as string
literal.

@{nonterminal c} inlines the internalized syntactic type / grammar non-
terminal c — as string literal.

@{typ τ} inlines the internalized type τ — as constructor term for datatype
typ.

@{Type source} refers to embedded source text to produce a type construc-
tor with name (formally checked) and arguments (inlined ML text).
The embedded source follows the syntax category type_const defined
below.

@{Type_fn source} is similar to @{Type source}, but produces a partial
ML function that matches against a type constructor pattern, following
syntax category type_const_fn below.

type_const

name �
�embedded_ml

�
�

type_const_fn

type_const =>
�� ��embedded_ml

embedded_ml

_
�����

�embedded

�control_symbol embedded

�
�
�

The text provided as embedded_ml is treated as regular Isabelle/ML source,
possibly with nested antiquotations. ML text that only consists of a single
antiquotation in compact control-cartouche notation, can be written without
an extra level of nesting embedded text (see the last example below).
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ML Examples
Here are some minimal examples for type constructor antiquotations.
ML ‹

— type constructor without arguments:
val natT = Type ‹nat›;

— type constructor with arguments:
fun mk_funT (A, B) = Type ‹fun A B›;

— type constructor decomposition as partial function:
val dest_funT = Type_fn ‹fun A B => ‹(A, B)››;

— nested type constructors:
fun mk_relT A = Type ‹fun A Type ‹fun A Type ‹bool›››;

assert (mk_relT natT = typ ‹nat ⇒ nat ⇒ bool›);
›

2.2 Terms
The language of terms is that of simply-typed λ-calculus with de-Bruijn
indices for bound variables (cf. [6] or [15]), with the types being determined
by the corresponding binders. In contrast, free variables and constants have
an explicit name and type in each occurrence.

A bound variable is a natural number b, which accounts for the number of
intermediate binders between the variable occurrence in the body and its
binding position. For example, the de-Bruijn term λbool. λbool. 1 ∧ 0 would
correspond to λxbool. λybool. x ∧ y in a named representation. Note that a
bound variable may be represented by different de-Bruijn indices at different
occurrences, depending on the nesting of abstractions.
A loose variable is a bound variable that is outside the scope of local binders.
The types (and names) for loose variables can be managed as a separate
context, that is maintained as a stack of hypothetical binders. The core logic
operates on closed terms, without any loose variables.
A fixed variable is a pair of a basic name and a type, e.g. (x , τ) which is
usually printed xτ here. A schematic variable is a pair of an indexname and
a type, e.g. ((x , 0), τ) which is likewise printed as ?xτ .

A constant is a pair of a basic name and a type, e.g. (c, τ) which is usually
printed as cτ here. Constants are declared in the context as polymorphic



CHAPTER 2. PRIMITIVE LOGIC 73

families c :: σ, meaning that all substitution instances cτ for τ = σθ are
valid.
The vector of type arguments of constant cτ wrt. the declaration c :: σ is
defined as the codomain of the matcher θ = {?α1 7→ τ 1, . . ., ?αn 7→ τn}
presented in canonical order (τ 1, . . ., τn), corresponding to the left-to-right
occurrences of the αi in σ. Within a given theory context, there is a one-to-
one correspondence between any constant cτ and the application c(τ 1, . . .,
τn) of its type arguments. For example, with plus :: α ⇒ α ⇒ α, the instance
plusnat ⇒ nat ⇒ nat corresponds to plus(nat).
Constant declarations c :: σ may contain sort constraints for type variables
in σ. These are observed by type-inference as expected, but ignored by the
core logic. This means the primitive logic is able to reason with instances of
polymorphic constants that the user-level type-checker would reject due to
violation of type class restrictions.

An atomic term is either a variable or constant. The logical category term
is defined inductively over atomic terms, with abstraction and application as
follows: t = b | xτ | ?xτ | cτ | λτ . t | t1 t2. Parsing and printing takes care of
converting between an external representation with named bound variables.
Subsequently, we shall use the latter notation instead of internal de-Bruijn
representation.
The inductive relation t :: τ assigns a (unique) type to a term according to
the structure of atomic terms, abstractions, and applications:

aτ :: τ
t :: σ

(λxτ . t) :: τ ⇒ σ
t :: τ ⇒ σ u :: τ

t u :: σ

A well-typed term is a term that can be typed according to these rules.
Typing information can be omitted: type-inference is able to reconstruct the
most general type of a raw term, while assigning most general types to all
of its variables and constants. Type-inference depends on a context of type
constraints for fixed variables, and declarations for polymorphic constants.
The identity of atomic terms consists both of the name and the type compo-
nent. This means that different variables xτ1 and xτ2 may become the same
after type instantiation. Type-inference rejects variables of the same name,
but different types. In contrast, mixed instances of polymorphic constants
occur routinely.

The hidden polymorphism of a term t :: σ is the set of type variables occurring
in t, but not in its type σ. This means that the term implicitly depends
on type arguments that are not accounted in the result type, i.e. there are
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different type instances tθ :: σ and tθ ′ :: σ with the same type. This slightly
pathological situation notoriously demands additional care.

A term abbreviation is a syntactic definition cσ ≡ t of a closed term t of
type σ, without any hidden polymorphism. A term abbreviation looks like
a constant in the syntax, but is expanded before entering the logical core.
Abbreviations are usually reverted when printing terms, using t → cσ as
rules for higher-order rewriting.

Canonical operations on λ-terms include αβη-conversion: α-conversion refers
to capture-free renaming of bound variables; β-conversion contracts an ab-
straction applied to an argument term, substituting the argument in the
body: (λx . b)a becomes b[a/x ]; η-conversion contracts vacuous application-
abstraction: λx . f x becomes f, provided that the bound variable does not
occur in f.
Terms are normally treated modulo α-conversion, which is implicit in the
de-Bruijn representation. Names for bound variables in abstractions are
maintained separately as (meaningless) comments, mostly for parsing and
printing. Full αβη-conversion is commonplace in various standard opera-
tions (§2.4) that are based on higher-order unification and matching.

ML Reference
type term
infix aconv: term * term -> bool
Term.map_types: (typ -> typ) -> term -> term
Term.fold_types: (typ -> ’a -> ’a) -> term -> ’a -> ’a
Term.map_aterms: (term -> term) -> term -> term
Term.fold_aterms: (term -> ’a -> ’a) -> term -> ’a -> ’a

fastype_of: term -> typ
lambda: term -> term -> term
betapply: term * term -> term
incr_boundvars: int -> term -> term
Sign.declare_const: Proof.context ->

(binding * typ) * mixfix -> theory -> term * theory
Sign.add_abbrev: string -> binding * term ->

theory -> (term * term) * theory
Sign.const_typargs: theory -> string * typ -> typ list
Sign.const_instance: theory -> string * typ list -> typ

Type term represents de-Bruijn terms, with comments in abstractions, and
explicitly named free variables and constants; this is a datatype with
constructors Bound, Free, Var, Const, Abs, infix $.
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t aconv u checks α-equivalence of two terms. This is the basic equality
relation on type term; raw datatype equality should only be used for
operations related to parsing or printing!

Term.map_types f t applies the mapping f to all types occurring in t.

Term.fold_types f t iterates the operation f over all occurrences of types
in t; the term structure is traversed from left to right.

Term.map_aterms f t applies the mapping f to all atomic terms (Bound,
Free, Var, Const) occurring in t.

Term.fold_aterms f t iterates the operation f over all occurrences of atomic
terms (Bound, Free, Var, Const) in t; the term structure is traversed
from left to right.

fastype_of t determines the type of a well-typed term. This operation is
relatively slow, despite the omission of any sanity checks.

lambda a b produces an abstraction λa. b, where occurrences of the atomic
term a in the body b are replaced by bound variables.

betapply (t, u) produces an application t u, with topmost β-conversion if
t is an abstraction.

incr_boundvars j increments a term’s dangling bound variables by the
offset j. This is required when moving a subterm into a context where
it is enclosed by a different number of abstractions. Bound variables
with a matching abstraction are unaffected.

Sign.declare_const ctxt ((c, σ), mx) declares a new constant c :: σ with
optional mixfix syntax.

Sign.add_abbrev print_mode (c, t) introduces a new term abbreviation c
≡ t.

Sign.const_typargs thy (c, τ) and Sign.const_instance thy (c, [τ 1, . . .,
τn]) convert between two representations of polymorphic constants: full
type instance vs. compact type arguments form.
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ML Antiquotations
const_name : ML_antiquotation

const_abbrev : ML_antiquotation
const : ML_antiquotation
term : ML_antiquotation
prop : ML_antiquotation

Const : ML_antiquotation
Const_ : ML_antiquotation

Const_fn : ML_antiquotation

const_name
�� ���

�const_abbrev
�� ��

�
�

embedded

const
�� ���

� (
���� type�

� ,
����

�
�

)
����

�
�

term
�� ��term

prop
�� ��prop

Const
�� ���

�Const_
�� ���Const_fn
�� ��

�
�
�

embedded

@{const_name c} inlines the internalized logical constant name c — as
string literal.

@{const_abbrev c} inlines the internalized abbreviated constant name c —
as string literal.
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@{const c(~τ)} inlines the internalized constant c with precise type instan-
tiation in the sense of Sign.const_instance — as Const constructor
term for datatype term.

@{term t} inlines the internalized term t — as constructor term for datatype
term.

@{prop ϕ} inlines the internalized proposition ϕ — as constructor term for
datatype term.

@{Const source} refers to embedded source text to produce a term con-
structor with name (formally checked), type arguments and term ar-
guments (inlined ML text). The embedded source follows the syntax
category term_const defined below, using embedded_ml from antiquo-
tation Type (§2.1).

@{Const_ source} is similar to @{Const source} for patterns instead of
closed values. This distinction is required due to redundant type in-
formation within term constants: subtrees with duplicate ML pattern
variable need to be suppressed (replaced by dummy patterns). The
embedded source follows the syntax category term_const defined be-
low.

@{Const_fn source} is similar to @{Const_ source}, but produces a proper
fn expression with function body. The embedded source follows the
syntax category term_const_fn defined below.

term_const

name �
�embedded_ml

�
�

�
�for_args

�
�

term_const_fn

term_const =>
�� ��embedded_ml

for_args

for
�� �� embedded_ml�

�
�
�
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ML Examples
Here are some minimal examples for term constant antiquotations. Type
arguments for constants are analogous to type constructors (§2.1). Term
arguments are different: a flexible number of arguments is inserted via curried
applications (op $).
ML ‹

— constant without type argument:
fun mk_conj (A, B) = Const ‹conj for A B›;
val dest_conj = Const_fn ‹conj for A B => ‹(A, B)››;

— constant with type argument:
fun mk_eq T (t, u) = Const ‹HOL.eq T for t u›;
val dest_eq = Const_fn ‹HOL.eq T for t u => ‹(T, (t, u))››;

— constant with variable number of term arguments:
val c = Const (const_name ‹conj›, typ ‹bool ⇒ bool ⇒ bool›);
val P = term ‹P::bool›;
val Q = term ‹Q::bool›;
assert (Const ‹conj› = c);
assert (Const ‹conj for P› = c $ P);
assert (Const ‹conj for P Q› = c $ P $ Q);

›

2.3 Theorems
A proposition is a well-typed term of type prop, a theorem is a proven propo-
sition (depending on a context of hypotheses and the background theory).
Primitive inferences include plain Natural Deduction rules for the primary
connectives ∧ and =⇒ of the framework. There is also a builtin notion of
equality/equivalence ≡.

2.3.1 Primitive connectives and rules
The theory Pure contains constant declarations for the primitive connectives∧, =⇒, and ≡ of the logical framework, see figure 2.1. The derivability judg-
ment A1, . . ., An ` B is defined inductively by the primitive inferences given
in figure 2.2, with the global restriction that the hypotheses must not contain
any schematic variables. The builtin equality is conceptually axiomatized as
shown in figure 2.3, although the implementation works directly with derived
inferences.
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all :: (α ⇒ prop) ⇒ prop universal quantification (binder ∧)
=⇒ :: prop ⇒ prop ⇒ prop implication (right associative infix)
≡ :: α ⇒ α ⇒ prop equality relation (infix)

Figure 2.1: Primitive connectives of Pure

A ∈ Θ
` A (axiom) A ` A (assume)

Γ ` B[x ] x /∈ Γ

Γ ` ∧x . B[x ] (
∧-intro)

Γ ` ∧x . B[x ]
Γ ` B[a] (

∧-elim)

Γ ` B
Γ − A ` A =⇒ B (=⇒-intro) Γ1 ` A =⇒ B Γ2 ` A

Γ1 ∪ Γ2 ` B (=⇒-elim)

Figure 2.2: Primitive inferences of Pure

The introduction and elimination rules for ∧ and =⇒ are analogous to forma-
tion of dependently typed λ-terms representing the underlying proof objects.
Proof terms are irrelevant in the Pure logic, though; they cannot occur within
propositions. The system provides a runtime option to record explicit proof
terms for primitive inferences, see also §2.5. Thus all three levels of λ-calculus
become explicit: ⇒ for terms, and ∧

/=⇒ for proofs (cf. [2]).
Observe that locally fixed parameters (as in ∧-intro) need not be recorded
in the hypotheses, because the simple syntactic types of Pure are always
inhabitable. “Assumptions” x :: τ for type-membership are only present as
long as some xτ occurs in the statement body.2

2This is the key difference to “λHOL” in the PTS framework [1], where hypotheses x :
A are treated uniformly for propositions and types.

` (λx . b[x ]) a ≡ b[a] β-conversion
` x ≡ x reflexivity
` x ≡ y =⇒ P x =⇒ P y substitution
` (

∧x . f x ≡ g x) =⇒ f ≡ g extensionality
` (A =⇒ B) =⇒ (B =⇒ A) =⇒ A ≡ B logical equivalence

Figure 2.3: Conceptual axiomatization of Pure equality
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The axiomatization of a theory is implicitly closed by forming all instances
of type and term variables: ` Aθ holds for any substitution instance of an
axiom ` A. By pushing substitutions through derivations inductively, we also
get admissible generalize and instantiate rules as shown in figure 2.4.

Γ ` B[α] α /∈ Γ

Γ ` B[?α]
Γ ` B[x ] x /∈ Γ

Γ ` B[?x ] (generalize)

Γ ` B[?α]
Γ ` B[τ ]

Γ ` B[?x ]
Γ ` B[t] (instantiate)

Figure 2.4: Admissible substitution rules

Note that instantiate does not require an explicit side-condition, because Γ
may never contain schematic variables.
In principle, variables could be substituted in hypotheses as well, but this
would disrupt the monotonicity of reasoning: deriving Γθ ` Bθ from Γ `
B is correct, but Γθ ⊇ Γ does not necessarily hold: the result belongs to a
different proof context.

An oracle is a function that produces axioms on the fly. Logically, this is an
instance of the axiom rule (figure 2.2), but there is an operational difference.
The inference kernel records oracle invocations within derivations of theorems
by a unique tag. This also includes implicit type-class reasoning via the order-
sorted algebra of class relations and type arities (see also instantiation and
instance).
Axiomatizations should be limited to the bare minimum, typically as part
of the initial logical basis of an object-logic formalization. Later on, theories
are usually developed in a strictly definitional fashion, by stating only certain
equalities over new constants.
A simple definition consists of a constant declaration c :: σ together with an
axiom ` c ≡ t, where t :: σ is a closed term without any hidden polymor-
phism. The RHS may depend on further defined constants, but not c itself.
Definitions of functions may be presented as c ~x ≡ t instead of the puristic
c ≡ λ~x . t.
An overloaded definition consists of a collection of axioms for the same con-
stant, with zero or one equations c((~α)κ) ≡ t for each type constructor κ (for
distinct variables ~α). The RHS may mention previously defined constants as
above, or arbitrary constants d(αi) for some αi projected from ~α. Thus over-
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loaded definitions essentially work by primitive recursion over the syntactic
structure of a single type argument. See also [8, §4.3].

ML Reference
Logic.all: term -> term -> term
Logic.mk_implies: term * term -> term

type ctyp
type cterm
Thm.ctyp_of: Proof.context -> typ -> ctyp
Thm.cterm_of: Proof.context -> term -> cterm
Thm.apply: cterm -> cterm -> cterm
Thm.lambda: cterm -> cterm -> cterm
Thm.all: Proof.context -> cterm -> cterm -> cterm
Drule.mk_implies: cterm * cterm -> cterm

type thm
Thm.transfer: theory -> thm -> thm
Thm.assume: cterm -> thm
Thm.forall_intr: cterm -> thm -> thm
Thm.forall_elim: cterm -> thm -> thm
Thm.implies_intr: cterm -> thm -> thm
Thm.implies_elim: thm -> thm -> thm
Thm.generalize: Names.set * Names.set -> int -> thm -> thm
Thm.instantiate: ctyp TVars.table * cterm Vars.table -> thm -> thm
Thm.add_axiom: Proof.context ->

binding * term -> theory -> (string * thm) * theory
Thm.add_oracle: binding * (’a -> cterm) -> theory ->

(string * (’a -> thm)) * theory
Thm.add_def: Defs.context -> bool -> bool ->

binding * term -> theory -> (string * thm) * theory

Theory.add_deps: Defs.context -> string ->
Defs.entry -> Defs.entry list -> theory -> theory

Thm_Deps.all_oracles: thm list -> Proofterm.oracle list

Logic.all a B produces a Pure quantification ∧a. B, where occurrences
of the atomic term a in the body proposition B are replaced by bound
variables. (See also lambda on terms.)

Logic.mk_implies (A, B) produces a Pure implication A =⇒ B.

Types ctyp and cterm represent certified types and terms, respectively.
These are abstract datatypes that guarantee that its values have passed
the full well-formedness (and well-typedness) checks, relative to the dec-
larations of type constructors, constants etc. in the background theory.
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The abstract types ctyp and cterm are part of the same inference ker-
nel that is mainly responsible for thm. Thus syntactic operations on
ctyp and cterm are located in the Thm module, even though theorems
are not yet involved at that stage.

Thm.ctyp_of ctxt τ and Thm.cterm_of ctxt t explicitly check types and
terms, respectively. This also involves some basic normalizations, such
expansion of type and term abbreviations from the underlying theory
context. Full re-certification is relatively slow and should be avoided
in tight reasoning loops.

Thm.apply, Thm.lambda, Thm.all, Drule.mk_implies etc. compose
certified terms (or propositions) incrementally. This is equiv-
alent to Thm.cterm_of after unchecked $, lambda, Logic.all,
Logic.mk_implies etc., but there can be a big difference in per-
formance when large existing entities are composed by a few extra
constructions on top. There are separate operations to decompose
certified terms and theorems to produce certified terms again.

Type thm represents proven propositions. This is an abstract datatype that
guarantees that its values have been constructed by basic principles
of the Thm module. Every thm value refers its background theory, cf.
§1.1.1.

Thm.transfer thy thm transfers the given theorem to a larger theory, see
also §1.1. This formal adjustment of the background context has no
logical significance, but is occasionally required for formal reasons, e.g.
when theorems that are imported from more basic theories are used in
the current situation.

Thm.assume, Thm.forall_intr, Thm.forall_elim, Thm.implies_intr,
and Thm.implies_elim correspond to the primitive inferences of fig-
ure 2.2.

Thm.generalize (~α, ~x) corresponds to the generalize rules of figure 2.4.
Here collections of type and term variables are generalized simultane-
ously, specified by the given sets of basic names.

Thm.instantiate (~αs, ~xτ ) corresponds to the instantiate rules of figure 2.4.
Type variables are substituted before term variables. Note that the
types in ~xτ refer to the instantiated versions.

Thm.add_axiom ctxt (name, A) declares an arbitrary proposition as axiom,
and retrieves it as a theorem from the resulting theory, cf. axiom in
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figure 2.2. Note that the low-level representation in the axiom table
may differ slightly from the returned theorem.

Thm.add_oracle (binding, oracle) produces a named oracle rule, essentially
generating arbitrary axioms on the fly, cf. axiom in figure 2.2.

Thm.add_def ctxt unchecked overloaded (name, c ~x ≡ t) states a defini-
tional axiom for an existing constant c. Dependencies are recorded via
Theory.add_deps, unless the unchecked option is set. Note that the
low-level representation in the axiom table may differ slightly from the
returned theorem.

Theory.add_deps ctxt name cτ
~dσ declares dependencies of a named speci-

fication for constant cτ , relative to existing specifications for constants
~dσ. This also works for type constructors.

Thm_Deps.all_oracles thms returns all oracles used in the internal deriva-
tion of the given theorems; this covers the full graph of transi-
tive dependencies. The result contains an authentic oracle name; if
Proofterm.proofs was at least 1 during the oracle inference, it also
contains the position of the oracle invocation and its proposition. See
also the command thm_oracles.

ML Antiquotations
ctyp : ML_antiquotation

cterm : ML_antiquotation
cprop : ML_antiquotation

thm : ML_antiquotation
thms : ML_antiquotation

lemma : ML_antiquotation
oracle_name : ML_antiquotation

ctyp
�� ��typ

cterm
�� ��term

cprop
�� ��prop
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thm
�� ��thm

thms
�� ��thms

lemma
�� ��embedded_lemma

embedded_lemma �
� (

����open
�� ��)

����
�
�

prop�
�

�
�

�

� and
�� ��

�

�

�

��
�for_fixes by

�� ��method �
�method

�
�

oracle_name
�� ��embedded

@{ctyp τ} produces a certified type wrt. the current background theory —
as abstract value of type ctyp.

@{cterm t} and @{cprop ϕ} produce a certified term wrt. the current back-
ground theory — as abstract value of type cterm.

@{thm a} produces a singleton fact — as abstract value of type thm.

@{thms a} produces a general fact — as abstract value of type thm list.

@{lemma ϕ by meth} produces a fact that is proven on the spot according
to the minimal proof, which imitates a terminal Isar proof. The result
is an abstract value of type thm or thm list, depending on the number
of propositions given here.
The internal derivation object lacks a proper theorem name, but it is
formally closed, unless the (open) option is specified (this may impact
performance of applications with proof terms).
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Since ML antiquotations are always evaluated at compile-time, there
is no run-time overhead even for non-trivial proofs. Nonetheless, the
justification is syntactically limited to a single by step. More complex
Isar proofs should be done in regular theory source, before compiling
the corresponding ML text that uses the result.

@{oracle_name a} inlines the internalized oracle name a — as string
literal.

2.3.2 Auxiliary connectives
Theory Pure provides a few auxiliary connectives that are defined on top of
the primitive ones, see figure 2.5. These special constants are useful in certain
internal encodings, and are normally not directly exposed to the user.

conjunction :: prop ⇒ prop ⇒ prop (infix &&&)
` A &&& B ≡ (

∧C . (A =⇒ B =⇒ C ) =⇒ C )

prop :: prop ⇒ prop (prefix #, suppressed)
#A ≡ A
term :: α ⇒ prop (prefix TERM )
term x ≡ (

∧A. A =⇒ A)

type :: α itself (prefix TYPE)
(unspecified)

Figure 2.5: Definitions of auxiliary connectives

The introduction A =⇒ B =⇒ A &&& B, and eliminations (projections) A
&&& B =⇒ A and A &&& B =⇒ B are available as derived rules. Conjunc-
tion allows to treat simultaneous assumptions and conclusions uniformly, e.g.
consider A =⇒ B =⇒ C &&& D. In particular, the goal mechanism rep-
resents multiple claims as explicit conjunction internally, but this is refined
(via backwards introduction) into separate sub-goals before the user com-
mences the proof; the final result is projected into a list of theorems using
eliminations (cf. §4.1).
The prop marker (#) makes arbitrarily complex propositions appear as
atomic, without changing the meaning: Γ ` A and Γ ` #A are interchange-
able. See §4.1 for specific operations.
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The term marker turns any well-typed term into a derivable proposition: `
TERM t holds unconditionally. Although this is logically vacuous, it allows
to treat terms and proofs uniformly, similar to a type-theoretic framework.
The TYPE constructor is the canonical representative of the unspecified type
α itself ; it essentially injects the language of types into that of terms. There
is specific notation TYPE(τ) for TYPEτ itself. Although being devoid of any
particular meaning, the term TYPE(τ) accounts for the type τ within the
term language. In particular, TYPE(α) may be used as formal argument
in primitive definitions, in order to circumvent hidden polymorphism (cf.
§2.2). For example, c TYPE(α) ≡ A[α] defines c :: α itself ⇒ prop in terms
of a proposition A that depends on an additional type argument, which is
essentially a predicate on types.

ML Reference
Conjunction.intr: thm -> thm -> thm
Conjunction.elim: thm -> thm * thm
Drule.mk_term: cterm -> thm
Drule.dest_term: thm -> cterm
Logic.mk_type: typ -> term
Logic.dest_type: term -> typ

Conjunction.intr derives A &&& B from A and B.

Conjunction.elim derives A and B from A &&& B.

Drule.mk_term derives TERM t.

Drule.dest_term recovers term t from TERM t.

Logic.mk_type τ produces the term TYPE(τ).

Logic.dest_type TYPE(τ) recovers the type τ .

2.3.3 Sort hypotheses
Type variables are decorated with sorts, as explained in §2.1. This constrains
type instantiation to certain ranges of types: variable αs may only be assigned
to types τ that belong to sort s. Within the logic, sort constraints act like
implicit preconditions on the result (|α1 : s1|), . . ., (|αn : sn|), Γ ` ϕ where the
type variables α1, . . ., αn cover the propositions Γ, ϕ, as well as the proof of
Γ ` ϕ.
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These sort hypothesis of a theorem are passed monotonically through further
derivations. They are redundant, as long as the statement of a theorem still
contains the type variables that are accounted here. The logical significance
of sort hypotheses is limited to the boundary case where type variables dis-
appear from the proposition, e.g. (|αs : s|) ` ϕ. Since such dangling type
variables can be renamed arbitrarily without changing the proposition ϕ,
the inference kernel maintains sort hypotheses in anonymous form s ` ϕ.
In most practical situations, such extra sort hypotheses may be stripped in a
final bookkeeping step, e.g. at the end of a proof: they are typically left over
from intermediate reasoning with type classes that can be satisfied by some
concrete type τ of sort s to replace the hypothetical type variable αs.

ML Reference
Thm.extra_shyps: thm -> sort list
Thm.strip_shyps: thm -> thm

Thm.extra_shyps thm determines the extraneous sort hypotheses of the
given theorem, i.e. the sorts that are not present within type variables
of the statement.

Thm.strip_shyps thm removes any extraneous sort hypotheses that can be
witnessed from the type signature.

ML Examples
The following artificial example demonstrates the derivation of False with a
pending sort hypothesis involving a logically empty sort.
class empty =

assumes bad:
∧
(x:: ′a) y. x 6= y

theorem (in empty) false: False
using bad by blast

ML_val ‹assert (Thm.extra_shyps @{thm false} = [sort ‹empty›])›

Thanks to the inference kernel managing sort hypothesis according to their
logical significance, this example is merely an instance of ex falso quodlibet
consequitur — not a collapse of the logical framework!
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2.4 Object-level rules
The primitive inferences covered so far mostly serve foundational purposes.
User-level reasoning usually works via object-level rules that are represented
as theorems of Pure. Composition of rules involves backchaining, higher-order
unification modulo αβη-conversion of λ-terms, and so-called lifting of rules
into a context of ∧ and =⇒ connectives. Thus the full power of higher-order
Natural Deduction in Isabelle/Pure becomes readily available.

2.4.1 Hereditary Harrop Formulae
The idea of object-level rules is to model Natural Deduction inferences in the
style of Gentzen [7], but we allow arbitrary nesting similar to [16]. The most
basic rule format is that of a Horn Clause:

A1 . . . An
A

where A, A1, . . ., An are atomic propositions of the framework, usually of
the form Trueprop B, where B is a (compound) object-level statement. This
object-level inference corresponds to an iterated implication in Pure like this:

A1 =⇒ . . . An =⇒ A

As an example consider conjunction introduction: A =⇒ B =⇒ A ∧ B. Any
parameters occurring in such rule statements are conceptionally treated as
arbitrary:

∧x1 . . . xm. A1 x1 . . . xm =⇒ . . . An x1 . . . xm =⇒ A x1 . . . xm

Nesting of rules means that the positions of Ai may again hold compound
rules, not just atomic propositions. Propositions of this format are called
Hereditary Harrop Formulae in the literature [10]. Here we give an inductive
characterization as follows:
x set of variables
A set of atomic propositions
H =

∧x∗. H∗ =⇒ A set of Hereditary Harrop Formulas

Thus we essentially impose nesting levels on propositions formed from ∧ and
=⇒. At each level there is a prefix of parameters and compound premises,
concluding an atomic proposition. Typical examples are −→-introduction
(A =⇒ B) =⇒ A −→ B or mathematical induction P 0 =⇒ (

∧n. P n =⇒
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P (Suc n)) =⇒ P n. Even deeper nesting occurs in well-founded induction
(
∧x . (∧y. y ≺ x =⇒ P y) =⇒ P x) =⇒ P x, but this already marks the

limit of rule complexity that is usually seen in practice.

Regular user-level inferences in Isabelle/Pure always maintain the following
canonical form of results:

• Normalization by (A =⇒ (
∧x . B x)) ≡ (

∧x . A =⇒ B x), which is a
theorem of Pure, means that quantifiers are pushed in front of implica-
tion at each level of nesting. The normal form is a Hereditary Harrop
Formula.

• The outermost prefix of parameters is represented via schematic vari-
ables: instead of ∧

~x . ~H ~x =⇒ A ~x we have ~H ?~x =⇒ A ?~x . Note that
this representation looses information about the order of parameters,
and vacuous quantifiers vanish automatically.

ML Reference
Simplifier.norm_hhf: Proof.context -> thm -> thm

Simplifier.norm_hhf ctxt thm normalizes the given theorem according to
the canonical form specified above. This is occasionally helpful to repair
some low-level tools that do not handle Hereditary Harrop Formulae
properly.

2.4.2 Rule composition
The rule calculus of Isabelle/Pure provides two main inferences: resolution
(i.e. back-chaining of rules) and assumption (i.e. closing a branch), both
modulo higher-order unification. There are also combined variants, notably
elim_resolution and dest_resolution.
To understand the all-important resolution principle, we first consider raw
composition (modulo higher-order unification with substitution θ):

~A =⇒ B B ′ =⇒ C Bθ = B ′θ
~Aθ =⇒ Cθ

(composition)

Here the conclusion of the first rule is unified with the premise of the second;
the resulting rule instance inherits the premises of the first and conclusion
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of the second. Note that C can again consist of iterated implications. We
can also permute the premises of the second rule back-and-forth in order
to compose with B ′ in any position (subsequently we shall always refer to
position 1 w.l.o.g.).
In composition the internal structure of the common part B and B ′ is not
taken into account. For proper resolution we require B to be atomic, and
explicitly observe the structure ∧

~x . ~H ~x =⇒ B ′ ~x of the premise of the second
rule. The idea is to adapt the first rule by “lifting” it into this context, by
means of iterated application of the following inferences:

~A =⇒ B
(~H =⇒ ~A) =⇒ (~H =⇒ B)

(imp_lift)

~A ?~a =⇒ B ?~a
(
∧
~x . ~A (?~a ~x)) =⇒ (

∧
~x . B (?~a ~x))

(all_lift)

By combining raw composition with lifting, we get full resolution as follows:

~A ?~a =⇒ B ?~a
(
∧
~x . ~H ~x =⇒ B ′ ~x) =⇒ C

(λ~x . B (?~a ~x))θ = B ′θ

(
∧
~x . ~H ~x =⇒ ~A (?~a ~x))θ =⇒ Cθ

(resolution)

Continued resolution of rules allows to back-chain a problem towards more
and sub-problems. Branches are closed either by resolving with a rule of 0
premises, or by producing a “short-circuit” within a solved situation (again
modulo unification):

(
∧
~x . ~H ~x =⇒ A ~x) =⇒ C Aθ = H iθ (for some i)

Cθ (assumption)

ML Reference
infix RSN: thm * (int * thm) -> thm
infix RS: thm * thm -> thm
infix RLN: thm list * (int * thm list) -> thm list
infix RL: thm list * thm list -> thm list
infix MRS: thm list * thm -> thm
infix OF: thm * thm list -> thm
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rule1 RSN (i, rule2) resolves the conclusion of rule1 with the i-th premise
of rule2, according to the resolution principle explained above. Unless
there is precisely one resolvent it raises exception THM.
This corresponds to the rule attribute THEN in Isar source language.

rule1 RS rule2 abbreviates rule1 RSN (1, rule2).

rules1 RLN (i, rules2) joins lists of rules. For every rule1 in rules1 and
rule2 in rules2, it resolves the conclusion of rule1 with the i-th premise of
rule2, accumulating multiple results in one big list. Note that such strict
enumerations of higher-order unifications can be inefficient compared
to the lazy variant seen in elementary tactics like resolve_tac.

rules1 RL rules2 abbreviates rules1 RLN (1, rules2).

[rule1, . . ., rulen] MRS rule resolves rulei against premise i of rule, for i =
n, . . ., 1. By working from right to left, newly emerging premises are
concatenated in the result, without interfering.

rule OF rules is an alternative notation for rules MRS rule, which makes
rule composition look more like function application. Note that the
argument rules need not be atomic.
This corresponds to the rule attribute OF in Isar source language.

2.5 Proof terms
The Isabelle/Pure inference kernel can record the proof of each theorem as a
proof term that contains all logical inferences in detail. Rule composition by
resolution (§2.4) and type-class reasoning is broken down to primitive rules
of the logical framework. The proof term can be inspected by a separate
proof-checker, for example.
According to the well-known Curry-Howard isomorphism, a proof can be
viewed as a λ-term. Following this idea, proofs in Isabelle are internally
represented by a datatype similar to the one for terms described in §2.2. On
top of these syntactic terms, two more layers of λ-calculus are added, which
correspond to ∧x :: α. B x and A =⇒ B according to the propositions-as-
types principle. The resulting 3-level λ-calculus resembles “λHOL” in the
more abstract setting of Pure Type Systems (PTS) [1], if some fine points
like schematic polymorphism and type classes are ignored.
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Proof abstractions of the form λx :: α. prf or λp : A. prf correspond to
introduction of ∧/=⇒, and proof applications of the form p · t or p · q
correspond to elimination of ∧/=⇒. Actual types α, propositions A, and
terms t might be suppressed and reconstructed from the overall proof term.

Various atomic proofs indicate special situations within the proof construc-
tion as follows.
A bound proof variable is a natural number b that acts as de-Bruijn index for
proof term abstractions.
A minimal proof “?” is a dummy proof term. This indicates some unrecorded
part of the proof.
Hyp A refers to some pending hypothesis by giving its proposition. This indi-
cates an open context of implicit hypotheses, similar to loose bound variables
or free variables within a term (§2.2).
An axiom or oracle a : A[~τ ] refers some postulated proof constant, which
is subject to schematic polymorphism of theory content, and the particular
type instantiation may be given explicitly. The vector of types ~τ refers to
the schematic type variables in the generic proposition A in canonical order.
A proof promise a : A[~τ ] is a placeholder for some proof of polymorphic
proposition A, with explicit type instantiation as given by the vector ~τ , as
above. Unlike axioms or oracles, proof promises may be fulfilled eventually,
by substituting a by some particular proof q at the corresponding type in-
stance. This acts like Hindley-Milner let-polymorphism: a generic local proof
definition may get used at different type instances, and is replaced by the
concrete instance eventually.
A named theorem wraps up some concrete proof as a closed formal entity, in
the manner of constant definitions for proof terms. The proof body of such
boxed theorems involves some digest about oracles and promises occurring
in the original proof. This allows the inference kernel to manage this critical
information without the full overhead of explicit proof terms.

2.5.1 Reconstructing and checking proof terms
Fully explicit proof terms can be large, but most of this information is redun-
dant and can be reconstructed from the context. Therefore, the Isabelle/Pure
inference kernel records only implicit proof terms, by omitting all typing in-
formation in terms, all term and type labels of proof abstractions, and some
argument terms of applications p · t (if possible).
There are separate operations to reconstruct the full proof term later on,
using higher-order pattern unification [11, 2].
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The proof checker expects a fully reconstructed proof term, and can turn it
into a theorem by replaying its primitive inferences within the kernel.

2.5.2 Concrete syntax of proof terms
The concrete syntax of proof terms is a slight extension of the regular inner
syntax of Isabelle/Pure [19]. Its main syntactic category proof is defined as
follows:

proof = λ params . proof
| proof · any
| proof · proof
| id | longid

param = idt
| idt : prop
| ( param )

params = param
| param params

Implicit term arguments in partial proofs are indicated by “_”. Type ar-
guments for theorems and axioms may be specified using p · TYPE(type)
(they must appear before any other term argument of a theorem or axiom,
but may be omitted altogether).

There are separate read and print operations for proof terms, in order to
avoid conflicts with the regular term language.

ML Reference
type proof
type proof_body
Proofterm.proofs: int Unsynchronized.ref
Proofterm.reconstruct_proof: theory -> term -> proof -> proof
Proofterm.expand_proof: theory ->

(Proofterm.thm_header -> Thm_Name.P option) -> proof -> proof
Proof_Checker.thm_of_proof: theory -> proof -> thm
Proof_Syntax.read_proof: theory -> bool -> bool -> string -> proof
Proof_Syntax.pretty_proof: Proof.context -> proof -> Pretty.T

Type proof represents proof terms; this is a datatype with constructors
Abst, AbsP, infix %, infix %%, PBound, MinProof, Hyp, PAxm, Oracle,
PThm as explained above.
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Type proof_body represents the nested proof information of a named the-
orem, consisting of a digest of oracles and named theorem over some
proof term. The digest only covers the directly visible part of the proof:
in order to get the full information, the implicit graph of nested theo-
rems needs to be traversed (e.g. using Proofterm.fold_body_thms).

Thm.proof_of thm and Thm.proof_body_of thm produce the proof term or
proof body (with digest of oracles and theorems) from a given theorem.
Note that this involves a full join of internal futures that fulfill pending
proof promises, and thus disrupts the natural bottom-up construction
of proofs by introducing dynamic ad-hoc dependencies. Parallel per-
formance may suffer by inspecting proof terms at run-time.

Proofterm.proofs specifies the detail of proof recording within thm values
produced by the inference kernel: 0 records only the names of oracles,
1 records oracle names and propositions, 2 additionally records full
proof terms. Officially named theorems that contribute to a result are
recorded in any case.

Proofterm.reconstruct_proof thy prop prf turns the implicit proof term
prf into a full proof of the given proposition.
Reconstruction may fail if prf is not a proof of prop, or if it does
not contain sufficient information for reconstruction. Failure may only
happen for proofs that are constructed manually, but not for those
produced automatically by the inference kernel.

Proofterm.expand_proof thy expand prf reconstructs and expands the
proofs of nested theorems according to the given expand function: a
result of SOME "" means full expansion, SOME name means to keep the
theorem node but replace its internal name, NONE means no change.

Proof_Checker.thm_of_proof thy prf turns the given (full) proof into a
theorem, by replaying it using only primitive rules of the inference
kernel.

Proof_Syntax.read_proof thy b1 b2 s reads in a proof term. The Boolean
flags indicate the use of sort and type information. Usually, typing
information is left implicit and is inferred during proof reconstruction.

Proof_Syntax.pretty_proof ctxt prf pretty-prints the given proof term.
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ML Examples
• ~~/src/HOL/Proofs/ex/Proof_Terms.thy provides basic examples

involving proof terms.

• ~~/src/HOL/Proofs/ex/XML_Data.thy demonstrates export and im-
port of proof terms via XML/ML data representation.

2.6 Instantiation of formal entities
The construction of formal entities (types, terms, theorems) in Isabelle/ML
can be tedious, error-prone, and costly at run-time. Repeated certification
of types/terms, or proof steps for theorems should be minimized, when per-
formance is relevant.
For example, consider a proof-producing decision procedure that refers to
certain term schemes and derived rules that need to be applied repeatedly.
A reasonably efficient approach is the subsequent separation of Isabelle/ML
compile-time vs. run-time. Lets say there is an ML module that is loaded
into the theory context to provide a tool as proof method, to be used later
in a different context.

• At compile-time, the ML module constructs templates for relevant for-
mal entities, e.g. as certified types/terms and proven theorems (with
parameters). This uses the source notation for types, terms, proposi-
tions, inlined into Isabelle/ML. Formal parameters are taken from the
template, and turned into ML names (as in let expressions).

• At run-time, the ML tool takes concrete entities from the application
context, and instantiates the above templates accordingly. The formal
parameters of the compile-time template get assigned to concrete ML
values. ML names and types have already been properly checked by
the ML compiler, and the running program cannot go wrong in that
respect. (It can go wrong, concerning types of the implemented logic,
though).

This approach is supported by ML antiquotations as follows.
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ML Antiquotations
instantiate : ML_antiquotation

instantiate
�� ��embedded

@{instantiation source} refers to embedded source text to produce an
instantiation for a logical entity that is given literally in the text.
The content of the embedded argument follows the syntax category
instantiation defined below, using embedded_ml from antiquotation
Type (§2.1), and embedded_lemma from antiquotation lemma (§2.3).

instantiation

�
�no_beta

�
�

inst�
�and

�� ��
�
�

in
����body

no_beta

(
����no_beta

�� ��)
����

schematic

(
����schematic

�� ��)
����

inst

type_ident�
�name

�
�

�
�=

����embedded_ml

�
�

body

body_type�
�body_term

�body_prop

�body_lemma

�
�
�
�
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body_type

typ
�� ���

�ctyp
�� ��

�
�

�
�schematic

�
�

embedded

body_term

term
�� ���

�cterm
�� ��

�
�

�
�schematic

�
�

embedded

body_prop

prop
�� ���

�cprop
�� ��

�
�

�
�schematic

�
�

embedded

body_lemma

lemma
�� ���

�schematic

�
�

embedded_lemma

• An inst entry assigns a type/term variable to a suitable ML value,
given as ML expression in the current program context. The ML
type of the expression needs to fit to the situation: ’a = ty refers
to ty: typ or ty: ctyp, and a = tm refers to tm: term or tm:
cterm. Only a body for uncertified typ / term / prop admits un-
certified typ or term parameters. The other cases require certified
ctyp or cterm parameters.
If the RHS of the inst entry is omitted, it defaults to the LHS: a
becomes a = a. This only works for term variables that happen
to be legal ML identifiers, and not for type variables.

• The “(schematic)” option disables the usual check that all LHS
names in inst are exactly those present as free variables in the body
entity (type, term, prop, lemma statement). By default, omitted
variables cause an error, but with “(schematic)” they remain as
schematic variables. The latter needs to be used with care, because
unexpected variables may emerge, when the theory name space for
constants changes over time.
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• The “(no_beta)” option disables the usual β-normalization for
body_term / body_prop / body_lemma, but has no effect on body_
type. This is occasionally useful for low-level applications, where
β-conversion is treated explicitly in primitive inferences.

ML Examples
Below are some examples that demonstrate the antiquotation syntax. Real-
world applications may be found in the Isabelle sources, by searching for the
literal text “\<^instantiate>”.
ML ‹

— uncertified type parameters
fun make_assoc_type (A: typ, B: typ) : typ =

instantiate ‹’a = A and ’b = B in typ ‹(’a × ’b) list››;

— uncertified term parameters
val make_assoc_list : (term * term) list -> term list =

map (fn (x, y) =>
instantiate ‹’a = ‹fastype_of x› and ’b = ‹fastype_of y› and

x and y in term ‹(x, y)› for x :: ’a and y :: ’b›);

— theorem with certified term parameters
fun symmetry (x: cterm) (y: cterm) : thm =

instantiate ‹’a = ‹Thm.ctyp_of_cterm x› and x and y in
lemma ‹x = y =⇒ y = x› for x y :: ’a by simp›

— theorem with certified type parameter, and schematic result
fun symmetry_schematic (A: ctyp) : thm =

instantiate ‹’a = A in
lemma (schematic) ‹x = y =⇒ y = x› for x y :: ’a by simp›

›



Chapter 3

Concrete syntax and
type-checking

Pure λ-calculus as introduced in chapter 2 is an adequate foundation for
logical languages — in the tradition of higher-order abstract syntax — but
end-users require additional means for reading and printing of terms and
types. This important add-on outside the logical core is called inner syntax
in Isabelle jargon, as opposed to the outer syntax of the theory and proof
language [19].
For example, according to [4] quantifiers are represented as higher-order con-
stants All :: ( ′a ⇒ bool) ⇒ bool such that All (λx :: ′a. B x) faithfully repre-
sents the idea that is displayed in Isabelle as ∀ x :: ′a. B x via binder notation.
Moreover, type-inference in the style of Hindley-Milner [5] (and extensions)
enables users to write ∀ x . B x concisely, when the type ′a is already clear
from the context.1

The main inner syntax operations are read for parsing together with type-
checking, and pretty for formatted output. See also §3.1.
Furthermore, the input and output syntax layers are sub-divided into sep-
arate phases for concrete syntax versus abstract syntax, see also §3.2 and
§3.3, respectively. This results in the following decomposition of the main
operations:

• read = parse; check

• pretty = uncheck; unparse

For example, some specification package might thus intercept syntax process-
ing at a well-defined stage after parse, to a augment the resulting pre-term
before full type-reconstruction is performed by check. Note that the formal
status of bound variables, versus free variables, versus constants must not be
changed between these phases.

1Type-inference taken to the extreme can easily confuse users. Beginners often stumble
over unexpectedly general types inferred by the system.
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In general, check and uncheck operate simultaneously on a list of terms. This
is particular important for type-checking, to reconstruct types for several
terms of the same context and scope. In contrast, parse and unparse operate
separately on single terms.
There are analogous operations to read and print types, with the same sub-
division into phases.

3.1 Reading and pretty printing
Read and print operations are roughly dual to each other, such that for the
user s ′ = pretty (read s) looks similar to the original source text s, but the
details depend on many side-conditions. There are also explicit options to
control the removal of type information in the output. The default config-
uration routinely looses information, so t ′ = read (pretty t) might fail, or
produce a differently typed term, or a completely different term in the face
of syntactic overloading.

ML Reference
Syntax.read_typs: Proof.context -> string list -> typ list
Syntax.read_terms: Proof.context -> string list -> term list
Syntax.read_props: Proof.context -> string list -> term list
Syntax.read_typ: Proof.context -> string -> typ
Syntax.read_term: Proof.context -> string -> term
Syntax.read_prop: Proof.context -> string -> term
Syntax.pretty_typ: Proof.context -> typ -> Pretty.T
Syntax.pretty_term: Proof.context -> term -> Pretty.T
Syntax.string_of_typ: Proof.context -> typ -> string
Syntax.string_of_term: Proof.context -> term -> string

Syntax.read_typs ctxt strs parses and checks a simultaneous list of source
strings as types of the logic.

Syntax.read_terms ctxt strs parses and checks a simultaneous list of source
strings as terms of the logic. Type-reconstruction puts all parsed terms
into the same scope: types of free variables ultimately need to coincide.
If particular type-constraints are required for some of the arguments,
the read operations needs to be split into its parse and check phases.
Then it is possible to use Type.constraint on the intermediate pre-
terms (§3.3).
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Syntax.read_props ctxt strs parses and checks a simultaneous list of
source strings as terms of the logic, with an implicit type-constraint
for each argument to enforce type prop; this also affects the inner
syntax for parsing. The remaining type-reconstruction works as for
Syntax.read_terms.

Syntax.read_typ, Syntax.read_term, Syntax.read_prop are like the si-
multaneous versions, but operate on a single argument only. This con-
venient shorthand is adequate in situations where a single item in its
own scope is processed. Do not use map o Syntax.read_term where
Syntax.read_terms is actually intended!

Syntax.pretty_typ ctxt T and Syntax.pretty_term ctxt t uncheck and
pretty-print the given type or term, respectively. Although the uncheck
phase acts on a simultaneous list as well, this is rarely used in practice,
so only the singleton case is provided as combined pretty operation.
There is no distinction of term vs. proposition.

Syntax.string_of_typ and Syntax.string_of_term are convenient com-
positions of Syntax.pretty_typ and Syntax.pretty_term with
Pretty.string_of for output. The result may be concatenated with
other strings, as long as there is no further formatting and line-breaking
involved.

Syntax.read_term, Syntax.read_prop, and Syntax.string_of_term are
the most important operations in practice.

Note that the string values that are passed in and out are annotated by the
system, to carry further markup that is relevant for the Prover IDE [20].
User code should neither compose its own input strings, nor try to analyze
the output strings. Conceptually this is an abstract datatype, encoded as
concrete string for historical reasons.
The standard way to provide the required position markup for input works
via the outer syntax parser wrapper Parse.inner_syntax, which is already
part of Parse.typ, Parse.term, Parse.prop. So a string obtained from one
of the latter may be directly passed to the corresponding read operation: this
yields PIDE markup of the input and precise positions for warning and error
messages.
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3.2 Parsing and unparsing
Parsing and unparsing converts between actual source text and a certain pre-
term format, where all bindings and scopes are already resolved faithfully.
Thus the names of free variables or constants are determined in the sense of
the logical context, but type information might be still missing. Pre-terms
support an explicit language of type constraints that may be augmented by
user code to guide the later check phase.
Actual parsing is based on traditional lexical analysis and Earley parsing for
arbitrary context-free grammars. The user can specify the grammar declar-
atively via mixfix annotations. Moreover, there are syntax translations that
can be augmented by the user, either declaratively via translations or pro-
grammatically via parse_translation, print_translation [19]. The final
scope-resolution is performed by the system, according to name spaces for
types, term variables and constants determined by the context.

ML Reference
Syntax.parse_typ: Proof.context -> string -> typ
Syntax.parse_term: Proof.context -> string -> term
Syntax.parse_prop: Proof.context -> string -> term
Syntax.unparse_typ: Proof.context -> typ -> Pretty.T
Syntax.unparse_term: Proof.context -> term -> Pretty.T

Syntax.parse_typ ctxt str parses a source string as pre-type that is ready
to be used with subsequent check operations.

Syntax.parse_term ctxt str parses a source string as pre-term that is ready
to be used with subsequent check operations.

Syntax.parse_prop ctxt str parses a source string as pre-term that is ready
to be used with subsequent check operations. The inner syntax category
is prop and a suitable type-constraint is included to ensure that this
information is observed in subsequent type reconstruction.

Syntax.unparse_typ ctxt T unparses a type after uncheck operations, to
turn it into a pretty tree.

Syntax.unparse_term ctxt T unparses a term after uncheck operations, to
turn it into a pretty tree. There is no distinction for propositions here.

These operations always operate on a single item; use the combinator map to
apply them to a list.
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3.3 Checking and unchecking
These operations define the transition from pre-terms and fully-annotated
terms in the sense of the logical core (chapter 2).
The check phase is meant to subsume a variety of mechanisms in the manner
of “type-inference” or “type-reconstruction” or “type-improvement”, not just
type-checking in the narrow sense. The uncheck phase is roughly dual, it
prunes type-information before pretty printing.
A typical add-on for the check/uncheck syntax layer is the abbreviation
mechanism [19]. Here the user specifies syntactic definitions that are man-
aged by the system as polymorphic let bindings. These are expanded during
the check phase, and contracted during the uncheck phase, without affecting
the type-assignment of the given terms.

The precise meaning of type checking depends on the context — additional
check/uncheck modules might be defined in user space.
For example, the class command defines a context where check treats cer-
tain type instances of overloaded constants according to the “dictionary con-
struction” of its logical foundation. This involves “type improvement” (spe-
cialization of slightly too general types) and replacement by certain locale
parameters. See also [9].

ML Reference
Syntax.check_typs: Proof.context -> typ list -> typ list
Syntax.check_terms: Proof.context -> term list -> term list
Syntax.check_props: Proof.context -> term list -> term list
Syntax.uncheck_typs: Proof.context -> typ list -> typ list
Syntax.uncheck_terms: Proof.context -> term list -> term list

Syntax.check_typs ctxt Ts checks a simultaneous list of pre-types as types
of the logic. Typically, this involves normalization of type synonyms.

Syntax.check_terms ctxt ts checks a simultaneous list of pre-terms as terms
of the logic. Typically, this involves type-inference and normalization
term abbreviations. The types within the given terms are treated in
the same way as for Syntax.check_typs.
Applications sometimes need to check several types and terms together.
The standard approach uses Logic.mk_type to embed the language of
types into that of terms; all arguments are appended into one list of
terms that is checked; afterwards the type arguments are recovered with
Logic.dest_type.



CHAPTER 3. CONCRETE SYNTAX AND TYPE-CHECKING 104

Syntax.check_props ctxt ts checks a simultaneous list of pre-terms as terms
of the logic, such that all terms are constrained by type prop. The
remaining check operation works as Syntax.check_terms above.

Syntax.uncheck_typs ctxt Ts unchecks a simultaneous list of types of the
logic, in preparation of pretty printing.

Syntax.uncheck_terms ctxt ts unchecks a simultaneous list of terms of the
logic, in preparation of pretty printing. There is no distinction for
propositions here.

These operations always operate simultaneously on a list; use the combinator
singleton to apply them to a single item.



Chapter 4

Tactical reasoning

Tactical reasoning works by refining an initial claim in a backwards fashion,
until a solved form is reached. A goal consists of several subgoals that need
to be solved in order to achieve the main statement; zero subgoals means
that the proof may be finished. A tactic is a refinement operation that maps
a goal to a lazy sequence of potential successors. A tactical is a combinator
for composing tactics.

4.1 Goals
Isabelle/Pure represents a goal as a theorem stating that the subgoals imply
the main goal: A1 =⇒ . . . =⇒ An =⇒ C. The outermost goal structure is
that of a Horn Clause: i.e. an iterated implication without any quantifiers1.
For n = 0 a goal is called “solved”.
The structure of each subgoal Ai is that of a general Hereditary Harrop
Formula ∧x1 . . .

∧xk . H 1 =⇒ . . . =⇒ H m =⇒ B. Here x1, . . ., xk are goal
parameters, i.e. arbitrary-but-fixed entities of certain types, and H 1, . . .,
H m are goal hypotheses, i.e. facts that may be assumed locally. Together,
this forms the goal context of the conclusion B to be established. The goal
hypotheses may be again arbitrary Hereditary Harrop Formulas, although
the level of nesting rarely exceeds 1–2 in practice.
The main conclusion C is internally marked as a protected proposition, which
is represented explicitly by the notation #C here. This ensures that the de-
composition into subgoals and main conclusion is well-defined for arbitrarily
structured claims.

Basic goal management is performed via the following Isabelle/Pure rules:

C =⇒ #C (init) #C
C (finish)

1Recall that outermost
∧

x. ϕ[x] is always represented via schematic variables in the
body: ϕ[?x]. These variables may get instantiated during the course of reasoning.
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The following low-level variants admit general reasoning with protected
propositions:

A1 =⇒ . . . =⇒ An =⇒ C
A1 =⇒ . . . =⇒ An =⇒ #C (protect n)

A =⇒ . . . =⇒ #C
A =⇒ . . . =⇒ C (conclude)

ML Reference
Goal.init: cterm -> thm
Goal.finish: Proof.context -> thm -> thm
Goal.protect: int -> thm -> thm
Goal.conclude: thm -> thm

Goal.init C initializes a tactical goal from the well-formed proposition C.

Goal.finish ctxt thm checks whether theorem thm is a solved goal (no
subgoals), and concludes the result by removing the goal protection.
The context is only required for printing error messages.

Goal.protect n thm protects the statement of theorem thm. The parameter
n indicates the number of premises to be retained.

Goal.conclude thm removes the goal protection, even if there are pending
subgoals.

4.2 Tactics
A tactic is a function goal → goal∗∗ that maps a given goal state (represented
as a theorem, cf. §4.1) to a lazy sequence of potential successor states. The
underlying sequence implementation is lazy both in head and tail, and is
purely functional in not supporting memoing.2

An empty result sequence means that the tactic has failed: in a compound
tactic expression other tactics might be tried instead, or the whole refinement

2The lack of memoing and the strict nature of ML requires some care when working
with low-level sequence operations, to avoid duplicate or premature evaluation of results.
It also means that modified runtime behavior, such as timeout, is very hard to achieve for
general tactics.
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step might fail outright, producing a toplevel error message in the end. When
implementing tactics from scratch, one should take care to observe the basic
protocol of mapping regular error conditions to an empty result; only serious
faults should emerge as exceptions.
By enumerating multiple results, a tactic can easily express the potential out-
come of an internal search process. There are also combinators for building
proof tools that involve search systematically, see also §4.3.

As explained before, a goal state essentially consists of a list of subgoals that
imply the main goal (conclusion). Tactics may operate on all subgoals or on
a particularly specified subgoal, but must not change the main conclusion
(apart from instantiating schematic goal variables).
Tactics with explicit subgoal addressing are of the form int → tactic and may
be applied to a particular subgoal (counting from 1). If the subgoal number
is out of range, the tactic should fail with an empty result sequence, but must
not raise an exception!
Operating on a particular subgoal means to replace it by an interval of zero or
more subgoals in the same place; other subgoals must not be affected, apart
from instantiating schematic variables ranging over the whole goal state.
A common pattern of composing tactics with subgoal addressing is to try the
first one, and then the second one only if the subgoal has not been solved
yet. Special care is required here to avoid bumping into unrelated subgoals
that happen to come after the original subgoal. Assuming that there is only
a single initial subgoal is a very common error when implementing tactics!
Tactics with internal subgoal addressing should expose the subgoal index as
int argument in full generality; a hardwired subgoal 1 is not acceptable.

The main well-formedness conditions for proper tactics are summarized as
follows.

• General tactic failure is indicated by an empty result, only serious faults
may produce an exception.

• The main conclusion must not be changed, apart from instantiating
schematic variables.

• A tactic operates either uniformly on all subgoals, or specifically on a
selected subgoal (without bumping into unrelated subgoals).

• Range errors in subgoal addressing produce an empty result.

Some of these conditions are checked by higher-level goal infrastructure
(§6.3); others are not checked explicitly, and violating them merely results
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in ill-behaved tactics experienced by the user (e.g. tactics that insist in be-
ing applicable only to singleton goals, or prevent composition via standard
tacticals such as REPEAT).

ML Reference
type tactic = thm -> thm Seq.seq
no_tac: tactic
all_tac: tactic
print_tac: Proof.context -> string -> tactic

PRIMITIVE: (thm -> thm) -> tactic

SUBGOAL: (term * int -> tactic) -> int -> tactic
CSUBGOAL: (cterm * int -> tactic) -> int -> tactic
SELECT_GOAL: tactic -> int -> tactic
PREFER_GOAL: tactic -> int -> tactic

Type tactic represents tactics. The well-formedness conditions described
above need to be observed. See also ~~/src/Pure/General/seq.ML
for the underlying implementation of lazy sequences.

Type int -> tactic represents tactics with explicit subgoal addressing,
with well-formedness conditions as described above.

no_tac is a tactic that always fails, returning the empty sequence.

all_tac is a tactic that always succeeds, returning a singleton sequence
with unchanged goal state.

print_tac ctxt message is like all_tac, but prints a message together with
the goal state on the tracing channel.

PRIMITIVE rule turns a primitive inference rule into a tactic with unique
result. Exception THM is considered a regular tactic failure and produces
an empty result; other exceptions are passed through.

SUBGOAL (fn (subgoal, i) => tactic) is the most basic form to produce a
tactic with subgoal addressing. The given abstraction over the subgoal
term and subgoal number allows to peek at the relevant information of
the full goal state. The subgoal range is checked as required above.

CSUBGOAL is similar to SUBGOAL, but passes the subgoal as cterm instead
of raw term. This avoids expensive re-certification in situations where
the subgoal is used directly for primitive inferences.
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SELECT_GOAL tac i confines a tactic to the specified subgoal i. This rear-
ranges subgoals and the main goal protection (§4.1), while retaining
the syntactic context of the overall goal state (concerning schematic
variables etc.).

PREFER_GOAL tac i rearranges subgoals to put i in front. This is similar to
SELECT_GOAL, but without changing the main goal protection.

4.2.1 Resolution and assumption tactics
Resolution is the most basic mechanism for refining a subgoal using a theo-
rem as object-level rule. Elim-resolution is particularly suited for elimination
rules: it resolves with a rule, proves its first premise by assumption, and fi-
nally deletes that assumption from any new subgoals. Destruct-resolution
is like elim-resolution, but the given destruction rules are first turned into
canonical elimination format. Forward-resolution is like destruct-resolution,
but without deleting the selected assumption. The r/e/d/f naming conven-
tion is maintained for several different kinds of resolution rules and tactics.
Assumption tactics close a subgoal by unifying some of its premises against
its conclusion.

All the tactics in this section operate on a subgoal designated by a positive
integer. Other subgoals might be affected indirectly, due to instantiation of
schematic variables.
There are various sources of non-determinism, the tactic result sequence enu-
merates all possibilities of the following choices (if applicable):

1. selecting one of the rules given as argument to the tactic;

2. selecting a subgoal premise to eliminate, unifying it against the first
premise of the rule;

3. unifying the conclusion of the subgoal to the conclusion of the rule.

Recall that higher-order unification may produce multiple results that are
enumerated here.
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ML Reference
resolve_tac: Proof.context -> thm list -> int -> tactic
eresolve_tac: Proof.context -> thm list -> int -> tactic
dresolve_tac: Proof.context -> thm list -> int -> tactic
forward_tac: Proof.context -> thm list -> int -> tactic
biresolve_tac: Proof.context -> (bool * thm) list -> int -> tactic

assume_tac: Proof.context -> int -> tactic
eq_assume_tac: int -> tactic

match_tac: Proof.context -> thm list -> int -> tactic
ematch_tac: Proof.context -> thm list -> int -> tactic
dmatch_tac: Proof.context -> thm list -> int -> tactic
bimatch_tac: Proof.context -> (bool * thm) list -> int -> tactic

resolve_tac ctxt thms i refines the goal state using the given theorems,
which should normally be introduction rules. The tactic resolves a
rule’s conclusion with subgoal i, replacing it by the corresponding ver-
sions of the rule’s premises.

eresolve_tac ctxt thms i performs elim-resolution with the given theorems,
which are normally be elimination rules.
Note that eresolve_tac ctxt [asm_rl] is equivalent to assume_tac
ctxt, which facilitates mixing of assumption steps with genuine elimi-
nations.

dresolve_tac ctxt thms i performs destruct-resolution with the given the-
orems, which should normally be destruction rules. This replaces an
assumption by the result of applying one of the rules.

forward_tac is like dresolve_tac except that the selected assumption is
not deleted. It applies a rule to an assumption, adding the result as a
new assumption.

biresolve_tac ctxt brls i refines the proof state by resolution or elim-
resolution on each rule, as indicated by its flag. It affects subgoal i of
the proof state.
For each pair (flag, rule), it applies resolution if the flag is false and
elim-resolution if the flag is true. A single tactic call handles a mixture
of introduction and elimination rules, which is useful to organize the
search process systematically in proof tools.

assume_tac ctxt i attempts to solve subgoal i by assumption (modulo
higher-order unification).
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eq_assume_tac is similar to assume_tac, but checks only for immediate
α-convertibility instead of using unification. It succeeds (with a unique
next state) if one of the assumptions is equal to the subgoal’s con-
clusion. Since it does not instantiate variables, it cannot make other
subgoals unprovable.

match_tac, ematch_tac, dmatch_tac, and bimatch_tac are similar to
resolve_tac, eresolve_tac, dresolve_tac, and biresolve_tac, re-
spectively, but do not instantiate schematic variables in the goal state.3
These tactics were written for a specific application within the classical
reasoner.
Flexible subgoals are not updated at will, but are left alone.

4.2.2 Explicit instantiation within a subgoal context
The main resolution tactics (§4.2.1) use higher-order unification, which works
well in many practical situations despite its daunting theoretical properties.
Nonetheless, there are important problem classes where unguided higher-
order unification is not so useful. This typically involves rules like universal
elimination, existential introduction, or equational substitution. Here the
unification problem involves fully flexible ?P ?x schemes, which are hard to
manage without further hints.
By providing a (small) rigid term for ?x explicitly, the remaining unification
problem is to assign a (large) term to ?P, according to the shape of the given
subgoal. This is sufficiently well-behaved in most practical situations.

Isabelle provides separate versions of the standard r/e/d/f resolution tactics
that allow to provide explicit instantiations of unknowns of the given rule,
wrt. terms that refer to the implicit context of the selected subgoal.
An instantiation consists of a list of pairs of the form (?x , t), where ?x is
a schematic variable occurring in the given rule, and t is a term from the
current proof context, augmented by the local goal parameters of the selected
subgoal; cf. the focus operation described in §6.1.
Entering the syntactic context of a subgoal is a brittle operation, because its
exact form is somewhat accidental, and the choice of bound variable names

3Strictly speaking, matching means to treat the unknowns in the goal state as constants,
but these tactics merely discard unifiers that would update the goal state. In rare situations
(where the conclusion and goal state have flexible terms at the same position), the tactic
will fail even though an acceptable unifier exists.
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depends on the presence of other local and global names. Explicit renaming
of subgoal parameters prior to explicit instantiation might help to achieve a
bit more robustness.
Type instantiations may be given as well, via pairs like (? ′a, τ). Type in-
stantiations are distinguished from term instantiations by the syntactic form
of the schematic variable. Types are instantiated before terms are. Since
term instantiation already performs simple type-inference, so explicit type
instantiations are seldom necessary.

ML Reference
Rule_Insts.res_inst_tac: Proof.context ->

((indexname * Position.T) * string) list -> (binding * string option * mixfix) list ->
thm -> int -> tactic

Rule_Insts.eres_inst_tac: Proof.context ->
((indexname * Position.T) * string) list -> (binding * string option * mixfix) list ->
thm -> int -> tactic

Rule_Insts.dres_inst_tac: Proof.context ->
((indexname * Position.T) * string) list -> (binding * string option * mixfix) list ->
thm -> int -> tactic

Rule_Insts.forw_inst_tac: Proof.context ->
((indexname * Position.T) * string) list -> (binding * string option * mixfix) list ->
thm -> int -> tactic

Rule_Insts.subgoal_tac: Proof.context -> string ->
(binding * string option * mixfix) list -> int -> tactic

Rule_Insts.thin_tac: Proof.context -> string ->
(binding * string option * mixfix) list -> int -> tactic

rename_tac: string list -> int -> tactic

Rule_Insts.res_inst_tac ctxt insts thm i instantiates the rule thm with
the instantiations insts, as described above, and then performs resolu-
tion on subgoal i.

Rule_Insts.eres_inst_tac is like Rule_Insts.res_inst_tac, but per-
forms elim-resolution.

Rule_Insts.dres_inst_tac is like Rule_Insts.res_inst_tac, but per-
forms destruct-resolution.

Rule_Insts.forw_inst_tac is like Rule_Insts.dres_inst_tac except
that the selected assumption is not deleted.

Rule_Insts.subgoal_tac ctxt ϕ i adds the proposition ϕ as local premise
to subgoal i, and poses the same as a new subgoal i + 1 (in the original
context).
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Rule_Insts.thin_tac ctxt ϕ i deletes the specified premise from subgoal
i. Note that ϕ may contain schematic variables, to abbreviate the
intended proposition; the first matching subgoal premise will be deleted.
Removing useless premises from a subgoal increases its readability and
can make search tactics run faster.

rename_tac names i renames the innermost parameters of subgoal i ac-
cording to the provided names (which need to be distinct identifiers).

For historical reasons, the above instantiation tactics take unparsed string
arguments, which makes them hard to use in general ML code. The slightly
more advanced Subgoal.FOCUS combinator of §6.3 allows to refer to internal
goal structure with explicit context management.

4.2.3 Rearranging goal states
In rare situations there is a need to rearrange goal states: either the overall
collection of subgoals, or the local structure of a subgoal. Various adminis-
trative tactics allow to operate on the concrete presentation these conceptual
sets of formulae.

ML Reference
rotate_tac: int -> int -> tactic
distinct_subgoals_tac: tactic
flexflex_tac: Proof.context -> tactic

rotate_tac n i rotates the premises of subgoal i by n positions: from right
to left if n is positive, and from left to right if n is negative.

distinct_subgoals_tac removes duplicate subgoals from a proof state.
This is potentially inefficient.

flexflex_tac removes all flex-flex pairs from the proof state by applying
the trivial unifier. This drastic step loses information. It is already
part of the Isar infrastructure for facts resulting from goals, and rarely
needs to be invoked manually.
Flex-flex constraints arise from difficult cases of higher-order unifica-
tion. To prevent this, use Rule_Insts.res_inst_tac to instantiate
some variables in a rule. Normally flex-flex constraints can be ignored;
they often disappear as unknowns get instantiated.
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4.2.4 Raw composition: resolution without lifting
Raw composition of two rules means resolving them without prior lifting
or renaming of unknowns. This low-level operation, which underlies the
resolution tactics, may occasionally be useful for special effects. Schematic
variables are not renamed by default, so beware of clashes!

ML Reference
compose_tac: Proof.context -> (bool * thm * int) -> int -> tactic
Drule.compose: thm * int * thm -> thm
infix COMP: thm * thm -> thm

compose_tac ctxt (flag, rule, m) i refines subgoal i using rule, without
lifting. The rule is taken to have the form ψ1 =⇒ . . . ψm =⇒ ψ, where
ψ need not be atomic; thus m determines the number of new subgoals.
If flag is true then it performs elim-resolution — it solves the first
premise of rule by assumption and deletes that assumption.

Drule.compose (thm1, i, thm2) uses thm1, regarded as an atomic formula,
to solve premise i of thm2. Let thm1 and thm2 be ψ and ϕ1 =⇒ . . . ϕn
=⇒ ϕ. The unique s that unifies ψ and ϕi yields the theorem (ϕ1 =⇒
. . . ϕi−1 =⇒ ϕi+1 =⇒ . . . ϕn =⇒ ϕ)s. Multiple results are considered
as error (exception THM).

thm1 COMP thm2 is the same as Drule.compose (thm1, 1, thm2).

! These low-level operations are stepping outside the structure imposed by regu-
lar rule resolution. Used without understanding of the consequences, they may

produce results that cause problems with standard rules and tactics later on.

4.3 Tacticals
A tactical is a functional combinator for building up complex tactics from
simpler ones. Common tacticals perform sequential composition, disjunc-
tive choice, iteration, or goal addressing. Various search strategies may be
expressed via tacticals.
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4.3.1 Combining tactics
Sequential composition and alternative choices are the most basic ways to
combine tactics, similarly to “,” and “|” in Isar method notation. This
corresponds to THEN and ORELSE in ML, but there are further possibilities
for fine-tuning alternation of tactics such as APPEND. Further details become
visible in ML due to explicit subgoal addressing.

ML Reference
infix THEN: tactic * tactic -> tactic
infix ORELSE: tactic * tactic -> tactic
infix APPEND: tactic * tactic -> tactic
EVERY: tactic list -> tactic
FIRST: tactic list -> tactic
infix THEN’: (’a -> tactic) * (’a -> tactic) -> ’a -> tactic
infix ORELSE’: (’a -> tactic) * (’a -> tactic) -> ’a -> tactic
infix APPEND’: (’a -> tactic) * (’a -> tactic) -> ’a -> tactic
EVERY’: (’a -> tactic) list -> ’a -> tactic
FIRST’: (’a -> tactic) list -> ’a -> tactic

tac1 THEN tac2 is the sequential composition of tac1 and tac2. Applied to a
goal state, it returns all states reachable in two steps by applying tac1

followed by tac2. First, it applies tac1 to the goal state, getting a se-
quence of possible next states; then, it applies tac2 to each of these and
concatenates the results to produce again one flat sequence of states.

tac1 ORELSE tac2 makes a choice between tac1 and tac2. Applied to a state,
it tries tac1 and returns the result if non-empty; if tac1 fails then it
uses tac2. This is a deterministic choice: if tac1 succeeds then tac2 is
excluded from the result.

tac1 APPEND tac2 concatenates the possible results of tac1 and tac2. Unlike
ORELSE there is no commitment to either tactic, so APPEND helps to
avoid incompleteness during search, at the cost of potential inefficien-
cies.

EVERY [tac1, . . ., tacn] abbreviates tac1 THEN . . . THEN tacn. Note that EVERY
[] is the same as all_tac: it always succeeds.

FIRST [tac1, . . ., tacn] abbreviates tac1 ORELSE . . . ORELSE tacn. Note that
FIRST [] is the same as no_tac: it always fails.



CHAPTER 4. TACTICAL REASONING 116

THEN’ is the lifted version of THEN, for tactics with explicit subgoal address-
ing. So (tac1 THEN’ tac2) i is the same as (tac1 i THEN tac2 i).
The other primed tacticals work analogously.

4.3.2 Repetition tacticals
These tacticals provide further control over repetition of tactics, beyond the
stylized forms of “?” and “+” in Isar method expressions.

ML Reference
TRY: tactic -> tactic
REPEAT: tactic -> tactic
REPEAT1: tactic -> tactic
REPEAT_DETERM: tactic -> tactic
REPEAT_DETERM_N: int -> tactic -> tactic

TRY tac applies tac to the goal state and returns the resulting sequence, if
non-empty; otherwise it returns the original state. Thus, it applies tac
at most once.
Note that for tactics with subgoal addressing, the combinator can be
applied via functional composition: TRY o tac. There is no need for
TRY’.

REPEAT tac applies tac to the goal state and, recursively, to each element of
the resulting sequence. The resulting sequence consists of those states
that make tac fail. Thus, it applies tac as many times as possible
(including zero times), and allows backtracking over each invocation of
tac. REPEAT is more general than REPEAT_DETERM, but requires more
space.

REPEAT1 tac is like REPEAT tac but it always applies tac at least once, failing
if this is impossible.

REPEAT_DETERM tac applies tac to the goal state and, recursively, to the
head of the resulting sequence. It returns the first state to make tac
fail. It is deterministic, discarding alternative outcomes.

REPEAT_DETERM_N n tac is like REPEAT_DETERM tac but the number of rep-
etitions is bound by n (where ~1 means ∞).
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ML Examples
The basic tactics and tacticals considered above follow some algebraic laws:

• all_tac is the identity element of the tactical THEN.

• no_tac is the identity element of ORELSE and APPEND. Also, it is a zero
element for THEN, which means that tac THEN no_tac is equivalent to
no_tac.

• TRY and REPEAT can be expressed as (recursive) functions over more
basic combinators (ignoring some internal implementation tricks):

ML ‹
fun TRY tac = tac ORELSE all_tac;
fun REPEAT tac st = ((tac THEN REPEAT tac) ORELSE all_tac) st;

›

If tac can return multiple outcomes then so can REPEAT tac. REPEAT uses
ORELSE and not APPEND, it applies tac as many times as possible in each
outcome.

! Note the explicit abstraction over the goal state in the ML definition of REPEAT.
Recursive tacticals must be coded in this awkward fashion to avoid infinite

recursion of eager functional evaluation in Standard ML. The following attempt
would make REPEAT tac loop:

ML_val ‹
(*BAD -- does not terminate!*)
fun REPEAT tac = (tac THEN REPEAT tac) ORELSE all_tac;

›

4.3.3 Applying tactics to subgoal ranges
Tactics with explicit subgoal addressing int -> tactic can be used together
with tacticals that act like “subgoal quantifiers”: guided by success of the
body tactic a certain range of subgoals is covered. Thus the body tactic is
applied to all subgoals, some subgoal etc.
Suppose that the goal state has n ≥ 0 subgoals. Many of these tacticals
address subgoal ranges counting downwards from n towards 1. This has the
fortunate effect that newly emerging subgoals are concatenated in the result,
without interfering each other. Nonetheless, there might be situations where
a different order is desired.
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ML Reference
ALLGOALS: (int -> tactic) -> tactic
SOMEGOAL: (int -> tactic) -> tactic
FIRSTGOAL: (int -> tactic) -> tactic
HEADGOAL: (int -> tactic) -> tactic
REPEAT_SOME: (int -> tactic) -> tactic
REPEAT_FIRST: (int -> tactic) -> tactic
RANGE: (int -> tactic) list -> int -> tactic

ALLGOALS tac is equivalent to tac n THEN . . . THEN tac 1. It applies the tac
to all the subgoals, counting downwards.

SOMEGOAL tac is equivalent to tac n ORELSE . . . ORELSE tac 1. It applies tac
to one subgoal, counting downwards.

FIRSTGOAL tac is equivalent to tac 1 ORELSE . . . ORELSE tac n. It applies
tac to one subgoal, counting upwards.

HEADGOAL tac is equivalent to tac 1. It applies tac unconditionally to the
first subgoal.

REPEAT_SOME tac applies tac once or more to a subgoal, counting down-
wards.

REPEAT_FIRST tac applies tac once or more to a subgoal, counting upwards.

RANGE [tac1, . . ., tack ] i is equivalent to tack (i + k − 1) THEN . . . THEN tac1

i. It applies the given list of tactics to the corresponding range of
subgoals, counting downwards.

4.3.4 Control and search tacticals
A predicate on theorems thm -> bool can test whether a goal state enjoys
some desirable property — such as having no subgoals. Tactics that search
for satisfactory goal states are easy to express. The main search procedures,
depth-first, breadth-first and best-first, are provided as tacticals. They gen-
erate the search tree by repeatedly applying a given tactic.
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ML Reference

Filtering a tactic’s results

FILTER: (thm -> bool) -> tactic -> tactic
CHANGED: tactic -> tactic

FILTER sat tac applies tac to the goal state and returns a sequence consisting
of those result goal states that are satisfactory in the sense of sat.

CHANGED tac applies tac to the goal state and returns precisely those states
that differ from the original state (according to Thm.eq_thm). Thus
CHANGED tac always has some effect on the state.

Depth-first search

DEPTH_FIRST: (thm -> bool) -> tactic -> tactic
DEPTH_SOLVE: tactic -> tactic
DEPTH_SOLVE_1: tactic -> tactic

DEPTH_FIRST sat tac returns the goal state if sat returns true. Otherwise it
applies tac, then recursively searches from each element of the result-
ing sequence. The code uses a stack for efficiency, in effect applying
tac THEN DEPTH_FIRST sat tac to the state.

DEPTH_SOLVEtac uses DEPTH_FIRST to search for states having no subgoals.

DEPTH_SOLVE_1 tac uses DEPTH_FIRST to search for states having fewer
subgoals than the given state. Thus, it insists upon solving at least one
subgoal.

Other search strategies

BREADTH_FIRST: (thm -> bool) -> tactic -> tactic
BEST_FIRST: (thm -> bool) * (thm -> int) -> tactic -> tactic
THEN_BEST_FIRST: tactic -> (thm -> bool) * (thm -> int) -> tactic -> tactic

These search strategies will find a solution if one exists. However, they do
not enumerate all solutions; they terminate after the first satisfactory result
from tac.

BREADTH_FIRST sat tac uses breadth-first search to find states for which sat
is true. For most applications, it is too slow.



CHAPTER 4. TACTICAL REASONING 120

BEST_FIRST (sat, dist) tac does a heuristic search, using dist to estimate
the distance from a satisfactory state (in the sense of sat). It maintains
a list of states ordered by distance. It applies tac to the head of this
list; if the result contains any satisfactory states, then it returns them.
Otherwise, BEST_FIRST adds the new states to the list, and continues.
The distance function is typically size_of_thm, which computes the
size of the state. The smaller the state, the fewer and simpler subgoals
it has.

THEN_BEST_FIRST tac0 (sat, dist) tac is like BEST_FIRST, except that the
priority queue initially contains the result of applying tac0 to the goal
state. This tactical permits separate tactics for starting the search and
continuing the search.

Auxiliary tacticals for searching

COND: (thm -> bool) -> tactic -> tactic -> tactic
IF_UNSOLVED: tactic -> tactic
SOLVE: tactic -> tactic
DETERM: tactic -> tactic

COND sat tac1 tac2 applies tac1 to the goal state if it satisfies predicate sat,
and applies tac2. It is a conditional tactical in that only one of tac1

and tac2 is applied to a goal state. However, both tac1 and tac2 are
evaluated because ML uses eager evaluation.

IF_UNSOLVED tac applies tac to the goal state if it has any subgoals, and
simply returns the goal state otherwise. Many common tactics, such
as resolve_tac, fail if applied to a goal state that has no subgoals.

SOLVE tac applies tac to the goal state and then fails iff there are subgoals
left.

DETERM tac applies tac to the goal state and returns the head of the result-
ing sequence. DETERM limits the search space by making its argument
deterministic.
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Predicates and functions useful for searching

has_fewer_prems: int -> thm -> bool
Thm.eq_thm: thm * thm -> bool
Thm.eq_thm_prop: thm * thm -> bool
size_of_thm: thm -> int

has_fewer_prems n thm reports whether thm has fewer than n premises.

Thm.eq_thm (thm1, thm2) reports whether thm1 and thm2 are equal. Both
theorems must have the same conclusions, the same set of hypotheses,
and the same set of sort hypotheses. Names of bound variables are
ignored as usual.

Thm.eq_thm_prop (thm1, thm2) reports whether the propositions of thm1

and thm2 are equal. Names of bound variables are ignored.

size_of_thm thm computes the size of thm, namely the number of variables,
constants and abstractions in its conclusion. It may serve as a distance
function for BEST_FIRST.



Chapter 5

Equational reasoning

Equality is one of the most fundamental concepts of mathematics. The
Isabelle/Pure logic (chapter 2) provides a builtin relation ≡ :: α ⇒ α ⇒ prop
that expresses equality of arbitrary terms (or propositions) at the framework
level, as expressed by certain basic inference rules (§5.1).
Equational reasoning means to replace equals by equals, using reflexivity
and transitivity to form chains of replacement steps, and congruence rules to
access sub-structures. Conversions (§5.2) provide a convenient framework to
compose basic equational steps to build specific equational reasoning tools.
Higher-order matching is able to provide suitable instantiations for giving
equality rules, which leads to the versatile concept of λ-term rewriting (§5.3).
Internally this is based on the general-purpose Simplifier engine of Isabelle,
which is more specific and more efficient than plain conversions.
Object-logics usually introduce specific notions of equality or equivalence,
and relate it with the Pure equality. This enables to re-use the Pure tools
for equational reasoning for particular object-logic connectives as well.

5.1 Basic equality rules
Isabelle/Pure uses ≡ for equality of arbitrary terms, which includes equiva-
lence of propositions of the logical framework. The conceptual axiomatization
of the constant ≡ :: α ⇒ α ⇒ prop is given in figure 2.3. The inference kernel
presents slightly different equality rules, which may be understood as derived
rules from this minimal axiomatization. The Pure theory also provides some
theorems that express the same reasoning schemes as theorems that can be
composed like object-level rules as explained in §2.4.
For example, Thm.symmetric as Pure inference is an ML function that maps
a theorem th stating t ≡ u to one stating u ≡ t. In contrast, Pure.symmetric
as Pure theorem expresses the same reasoning in declarative form. If used
like th [THEN Pure.symmetric] in Isar source notation, it achieves a similar
effect as the ML inference function, although the rule attribute THEN or

122
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ML operator op RS involve the full machinery of higher-order unification
(modulo βη-conversion) and lifting of ∧

/=⇒ contexts.

ML Reference
Thm.reflexive: cterm -> thm
Thm.symmetric: thm -> thm
Thm.transitive: thm -> thm -> thm
Thm.abstract_rule: string -> cterm -> thm -> thm
Thm.combination: thm -> thm -> thm
Thm.equal_intr: thm -> thm -> thm
Thm.equal_elim: thm -> thm -> thm

See also ~~/src/Pure/thm.ML for further description of these inference rules,
and a few more for primitive β and η conversions. Note that α conversion is
implicit due to the representation of terms with de-Bruijn indices (§2.2).

5.2 Conversions
The classic article [13] introduces the concept of conversion for Cambridge
LCF. This was historically important to implement all kinds of “simplifiers”,
but the Isabelle Simplifier is done quite differently, see [19, §9.3].

ML Reference
structure Conv
type conv
Simplifier.asm_full_rewrite: Proof.context -> conv

Conv is a library of combinators to build conversions, over type conv (see also
~~/src/Pure/conv.ML). This is one of the few Isabelle/ML modules
that are usually used with open: finding examples works by searching
for “open Conv” instead of “Conv.”.

Simplifier.asm_full_rewrite invokes the Simplifier as a conversion.
There are a few related operations, corresponding to the various modes
of simplification.
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5.3 Rewriting
Rewriting normalizes a given term (theorem or goal) by replacing instances
of given equalities t ≡ u in subterms. Rewriting continues until no rewrites
are applicable to any subterm. This may be used to unfold simple definitions
of the form f x1 . . . xn ≡ u, but is slightly more general than that.

ML Reference
rewrite_rule: Proof.context -> thm list -> thm -> thm
rewrite_goals_rule: Proof.context -> thm list -> thm -> thm
rewrite_goal_tac: Proof.context -> thm list -> int -> tactic
rewrite_goals_tac: Proof.context -> thm list -> tactic
fold_goals_tac: Proof.context -> thm list -> tactic

rewrite_rule ctxt rules thm rewrites the whole theorem by the given rules.

rewrite_goals_rule ctxt rules thm rewrites the outer premises of the given
theorem. Interpreting the same as a goal state (§4.1) it means to rewrite
all subgoals (in the same manner as rewrite_goals_tac).

rewrite_goal_tac ctxt rules i rewrites subgoal i by the given rewrite rules.

rewrite_goals_tac ctxt rules rewrites all subgoals by the given rewrite
rules.

fold_goals_tac ctxt rules essentially uses rewrite_goals_tac with the
symmetric form of each member of rules, re-ordered to fold longer ex-
pression first. This supports to idea to fold primitive definitions that
appear in expended form in the proof state.
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Structured proofs

6.1 Variables
Any variable that is not explicitly bound by λ-abstraction is considered as
“free”. Logically, free variables act like outermost universal quantification at
the sequent level: A1(x), . . ., An(x) ` B(x) means that the result holds for
all values of x. Free variables for terms (not types) can be fully internalized
into the logic: ` B(x) and ` ∧x . B(x) are interchangeable, provided that
x does not occur elsewhere in the context. Inspecting ` ∧x . B(x) more
closely, we see that inside the quantifier, x is essentially “arbitrary, but fixed”,
while from outside it appears as a place-holder for instantiation (thanks to∧ elimination).
The Pure logic represents the idea of variables being either inside or outside
the current scope by providing separate syntactic categories for fixed variables
(e.g. x) vs. schematic variables (e.g. ?x). Incidently, a universal result ` ∧x .
B(x) has the HHF normal form ` B(?x), which represents its generality
without requiring an explicit quantifier. The same principle works for type
variables: ` B(?α) represents the idea of “` ∀α. B(α)” without demanding
a truly polymorphic framework.

Additional care is required to treat type variables in a way that facilitates
type-inference. In principle, term variables depend on type variables, which
means that type variables would have to be declared first. For example, a
raw type-theoretic framework would demand the context to be constructed
in stages as follows: Γ = α: type, x : α, a: A(xα).
We allow a slightly less formalistic mode of operation: term variables x are
fixed without specifying a type yet (essentially all potential occurrences of
some instance xτ are fixed); the first occurrence of x within a specific term
assigns its most general type, which is then maintained consistently in the
context. The above example becomes Γ = x : term, α: type, A(xα), where type
α is fixed after term x, and the constraint x :: α is an implicit consequence
of the occurrence of xα in the subsequent proposition.
This twist of dependencies is also accommodated by the reverse operation

125
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of exporting results from a context: a type variable α is considered fixed as
long as it occurs in some fixed term variable of the context. For example,
exporting x : term, α: type ` xα ≡ xα produces in the first step x : term ` xα

≡ xα for fixed α, and only in the second step ` ?x?α ≡ ?x?α for schematic
?x and ?α. The following Isar source text illustrates this scenario.
notepad
begin

{
fix x — all potential occurrences of some x::τ are fixed
{

have x:: ′a ≡ x — implicit type assignment by concrete occurrence
by (rule reflexive)

}
thm this — result still with fixed type ′a

}
thm this — fully general result for arbitrary ?x::? ′a

end

The Isabelle/Isar proof context manages the details of term vs. type variables,
with high-level principles for moving the frontier between fixed and schematic
variables.
The add_fixes operation explicitly declares fixed variables; the declare_term
operation absorbs a term into a context by fixing new type variables and
adding syntactic constraints.
The export operation is able to perform the main work of generalizing term
and type variables as sketched above, assuming that fixing variables and
terms have been declared properly.
There import operation makes a generalized fact a genuine part of the con-
text, by inventing fixed variables for the schematic ones. The effect can
be reversed by using export later, potentially with an extended context; the
result is equivalent to the original modulo renaming of schematic variables.
The focus operation provides a variant of import for nested propositions (with
explicit quantification): ∧x1 . . . xn. B(x1, . . ., xn) is decomposed by inventing
fixed variables x1, . . ., xn for the body.
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ML Reference
Variable.add_fixes:

string list -> Proof.context -> string list * Proof.context
Variable.variant_fixes:

string list -> Proof.context -> string list * Proof.context
Variable.declare_term: term -> Proof.context -> Proof.context
Variable.declare_constraints: term -> Proof.context -> Proof.context
Variable.export: Proof.context -> Proof.context -> thm list -> thm list
Variable.polymorphic: Proof.context -> term list -> term list
Variable.import: bool -> thm list -> Proof.context ->

((ctyp TVars.table * cterm Vars.table) * thm list)
* Proof.context

Variable.focus: binding list option -> term -> Proof.context ->
((string * (string * typ)) list * term) * Proof.context

Variable.add_fixes xs ctxt fixes term variables xs, returning the resulting
internal names. By default, the internal representation coincides with
the external one, which also means that the given variables must not
be fixed already. There is a different policy within a local proof body:
the given names are just hints for newly invented Skolem variables.

Variable.variant_fixes is similar to Variable.add_fixes, but always
produces fresh variants of the given names.

Variable.declare_term t ctxt declares term t to belong to the context.
This automatically fixes new type variables, but not term variables.
Syntactic constraints for type and term variables are declared uni-
formly, though.

Variable.declare_constraints t ctxt declares syntactic constraints from
term t, without making it part of the context yet.

Variable.export inner outer thms generalizes fixed type and term vari-
ables in thms according to the difference of the inner and outer context,
following the principles sketched above.

Variable.polymorphic ctxt ts generalizes type variables in ts as far as pos-
sible, even those occurring in fixed term variables. The default policy
of type-inference is to fix newly introduced type variables, which is es-
sentially reversed with Variable.polymorphic: here the given terms
are detached from the context as far as possible.

Variable.import open thms ctxt invents fixed type and term variables for
the schematic ones occurring in thms. The open flag indicates whether
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the fixed names should be accessible to the user, otherwise newly in-
troduced names are marked as “internal” (§1.2).

Variable.focus bindings B decomposes the outermost ∧ prefix of propo-
sition B, using the given name bindings.

ML Examples
The following example shows how to work with fixed term and type param-
eters and with type-inference.
ML_val ‹

(*static compile-time context -- for testing only*)
val ctxt0 = context ;

(*locally fixed parameters -- no type assignment yet*)
val ([x, y], ctxt1) = ctxt0 |> Variable.add_fixes ["x", "y"];

(*t1: most general fixed type; t1’: most general arbitrary type*)
val t1 = Syntax.read_term ctxt1 "x";
val t1’ = singleton (Variable.polymorphic ctxt1) t1;

(*term u enforces specific type assignment*)
val u = Syntax.read_term ctxt1 "(x::nat) ≡ y";

(*official declaration of u -- propagates constraints etc.*)
val ctxt2 = ctxt1 |> Variable.declare_term u;
val t2 = Syntax.read_term ctxt2 "x"; (*x::nat is enforced*)

›

In the above example, the starting context is derived from the toplevel theory,
which means that fixed variables are internalized literally: x is mapped again
to x, and attempting to fix it again in the subsequent context is an error.
Alternatively, fixed parameters can be renamed explicitly as follows:
ML_val ‹

val ctxt0 = context ;
val ([x1, x2, x3], ctxt1) =

ctxt0 |> Variable.variant_fixes ["x", "x", "x"];
›

The following ML code can now work with the invented names of x1, x2, x3,
without depending on the details on the system policy for introducing these
variants. Recall that within a proof body the system always invents fresh
“Skolem constants”, e.g. as follows:
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notepad
begin

ML_prf
‹val ctxt0 = context ;

val ([x1], ctxt1) = ctxt0 |> Variable.add_fixes ["x"];
val ([x2], ctxt2) = ctxt1 |> Variable.add_fixes ["x"];
val ([x3], ctxt3) = ctxt2 |> Variable.add_fixes ["x"];

val ([y1, y2], ctxt4) =
ctxt3 |> Variable.variant_fixes ["y", "y"];›

end

In this situation Variable.add_fixes and Variable.variant_fixes are
very similar, but identical name proposals given in a row are only accepted
by the second version.

6.2 Assumptions
An assumption is a proposition that it is postulated in the current context.
Local conclusions may use assumptions as additional facts, but this imposes
implicit hypotheses that weaken the overall statement.
Assumptions are restricted to fixed non-schematic statements, i.e. all gener-
ality needs to be expressed by explicit quantifiers. Nevertheless, the result
will be in HHF normal form with outermost quantifiers stripped. For exam-
ple, by assuming ∧x :: α. P x we get ∧x :: α. P x ` P ?x for schematic ?x of
fixed type α. Local derivations accumulate more and more explicit references
to hypotheses: A1, . . ., An ` B where A1, . . ., An needs to be covered by the
assumptions of the current context.

The add_assms operation augments the context by local assumptions, which
are parameterized by an arbitrary export rule (see below).
The export operation moves facts from a (larger) inner context into a
(smaller) outer context, by discharging the difference of the assumptions as
specified by the associated export rules. Note that the discharged portion is
determined by the difference of contexts, not the facts being exported! There
is a separate flag to indicate a goal context, where the result is meant to
refine an enclosing sub-goal of a structured proof state.

The most basic export rule discharges assumptions directly by means of the
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=⇒ introduction rule:
Γ ` B

Γ − A ` A =⇒ B (=⇒-intro)

The variant for goal refinements marks the newly introduced premises, which
causes the canonical Isar goal refinement scheme to enforce unification with
local premises within the goal:

Γ ` B
Γ − A ` #A =⇒ B (#=⇒-intro)

Alternative versions of assumptions may perform arbitrary transformations
on export, as long as the corresponding portion of hypotheses is removed
from the given facts. For example, a local definition works by fixing x and
assuming x ≡ t, with the following export rule to reverse the effect:

Γ ` B x
Γ − (x ≡ t) ` B t (≡-expand)

This works, because the assumption x ≡ t was introduced in a context with
x being fresh, so x does not occur in Γ here.

ML Reference
type Assumption.export
Assumption.assume: Proof.context -> cterm -> thm
Assumption.add_assms: Assumption.export ->

cterm list -> Proof.context -> thm list * Proof.context
Assumption.add_assumes:

cterm list -> Proof.context -> thm list * Proof.context
Assumption.export: Proof.context -> Proof.context -> thm -> thm
Assumption.export_goal: Proof.context -> Proof.context -> thm -> thm
Assumption.export_term: Proof.context -> Proof.context -> term -> term

Type Assumption.export represents export rules, as a pair of functions
bool -> cterm list -> (thm -> thm) * (term -> term). The
bool argument indicates goal mode, and the cterm list the collec-
tion of assumptions to be discharged simultaneously.

Assumption.assume ctxt A turns proposition A into a primitive assumption
A ` A ′, where the conclusion A ′ is in HHF normal form.

Assumption.add_assms r As augments the context by assumptions As with
export rule r. The resulting facts are hypothetical theorems as pro-
duced by the raw Assumption.assume.
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Assumption.add_assumes As is a special case of Assumption.add_assms
where the export rule performs =⇒-intro or #=⇒-intro, depending on
goal mode.

Assumption.export inner outer thm exports result thm from the inner
context back into the outer one; Assumption.export_goal does the
same in a goal context (fix/assume/show in Isabelle/Isar). The result
is always in HHF normal form. Note that Proof_Context.export
combines Variable.export and Assumption.export in the canonical
way.

Assumption.export_term inner outer t exports term t from the inner con-
text back into the outer one. This is analogous to Assumption.export,
but only takes syntactical aspects of the context into account (such as
locally specified variables as seen in define or obtain).

ML Examples
The following example demonstrates how rules can be derived by building
up a context of assumptions first, and exporting some local fact afterwards.
We refer to Pure equality here for testing purposes.
ML_val ‹

(*static compile-time context -- for testing only*)
val ctxt0 = context ;

val ([eq], ctxt1) =
ctxt0 |> Assumption.add_assumes [cprop ‹x ≡ y›];

val eq’ = Thm.symmetric eq;

(*back to original context -- discharges assumption*)
val r = Assumption.export ctxt1 ctxt0 eq’;

›

Note that the variables of the resulting rule are not generalized. This
would have required to fix them properly in the context beforehand, and
export wrt. variables afterwards (cf. Variable.export or the combined
Proof_Context.export).
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6.3 Structured goals and results
Local results are established by monotonic reasoning from facts within a con-
text. This allows common combinations of theorems, e.g. via ∧

/=⇒ elimina-
tion, resolution rules, or equational reasoning, see §2.3. Unaccounted context
manipulations should be avoided, notably raw ∧

/=⇒ introduction or ad-hoc
references to free variables or assumptions not present in the proof context.

The SUBPROOF combinator allows to structure a tactical proof recursively
by decomposing a selected sub-goal: (∧x . A(x) =⇒ B(x)) =⇒ . . . is turned
into B(x) =⇒ . . . after fixing x and assuming A(x). This means the tactic
needs to solve the conclusion, but may use the premise as a local fact, for
locally fixed variables.
The family of FOCUS combinators is similar to SUBPROOF, but allows to
retain schematic variables and pending subgoals in the resulting goal state.
The prove operation provides an interface for structured backwards reasoning
under program control, with some explicit sanity checks of the result. The
goal context can be augmented by additional fixed variables (cf. §6.1) and
assumptions (cf. §6.2), which will be available as local facts during the proof
and discharged into implications in the result. Type and term variables are
generalized as usual, according to the context.
The obtain operation produces results by eliminating existing facts by means
of a given tactic. This acts like a dual conclusion: the proof demonstrates
that the context may be augmented by parameters and assumptions, without
affecting any conclusions that do not mention these parameters. See also [19]
for the corresponding Isar proof command obtain. Final results, which may
not refer to the parameters in the conclusion, need to exported explicitly into
the original context.
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ML Reference
SUBPROOF: (Subgoal.focus -> tactic) ->

Proof.context -> int -> tactic
Subgoal.FOCUS: (Subgoal.focus -> tactic) ->

Proof.context -> int -> tactic
Subgoal.FOCUS_PREMS: (Subgoal.focus -> tactic) ->

Proof.context -> int -> tactic
Subgoal.FOCUS_PARAMS: (Subgoal.focus -> tactic) ->

Proof.context -> int -> tactic
Subgoal.focus: Proof.context -> int -> binding list option ->

thm -> Subgoal.focus * thm
Subgoal.focus_prems: Proof.context -> int -> binding list option ->

thm -> Subgoal.focus * thm
Subgoal.focus_params: Proof.context -> int -> binding list option ->

thm -> Subgoal.focus * thm

Goal.prove: Proof.context -> string list -> term list -> term ->
({prems: thm list, context: Proof.context} -> tactic) -> thm

Goal.prove_common: Proof.context -> int option ->
string list -> term list -> term list ->
({prems: thm list, context: Proof.context} -> tactic) -> thm list

Obtain.result: (Proof.context -> tactic) -> thm list ->
Proof.context -> ((string * cterm) list * thm list) * Proof.context

SUBPROOF tac ctxt i decomposes the structure of the specified sub-goal,
producing an extended context and a reduced goal, which needs to be
solved by the given tactic. All schematic parameters of the goal are
imported into the context as fixed ones, which may not be instantiated
in the sub-proof.

Subgoal.FOCUS, Subgoal.FOCUS_PREMS, and Subgoal.FOCUS_PARAMS are
similar to SUBPROOF, but are slightly more flexible: only the specified
parts of the subgoal are imported into the context, and the body tactic
may introduce new subgoals and schematic variables.

Subgoal.focus, Subgoal.focus_prems, Subgoal.focus_params extract
the focus information from a goal state in the same way as the cor-
responding tacticals above. This is occasionally useful to experiment
without writing actual tactics yet.

Goal.prove ctxt xs As C tac states goal C in the context augmented by
fixed variables xs and assumptions As, and applies tactic tac to solve
it. The latter may depend on the local assumptions being presented as
facts. The result is in HHF normal form.
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Goal.prove_common ctxt fork_pri is the common form to state and prove a
simultaneous goal statement, where Goal.prove is a convenient short-
hand that is most frequently used in applications.
The given list of simultaneous conclusions is encoded in the goal state
by means of Pure conjunction: Goal.conjunction_tac will turn this
into a collection of individual subgoals, but note that the original multi-
goal state is usually required for advanced induction.
It is possible to provide an optional priority for a forked proof, typically
SOME ~1, while NONE means the proof is immediate (sequential) as for
Goal.prove. Note that a forked proof does not exhibit any failures in
the usual way via exceptions in ML, but accumulates error situations
under the execution id of the running transaction. Thus the system is
able to expose error messages ultimately to the end-user, even though
the subsequent ML code misses them.

Obtain.result tac thms ctxt eliminates the given facts using a tactic, which
results in additional fixed variables and assumptions in the context.
Final results need to be exported explicitly.

ML Examples
The following minimal example illustrates how to access the focus informa-
tion of a structured goal state.
notepad
begin

fix A B C :: ′a ⇒ bool

have
∧

x. A x =⇒ B x =⇒ C x
ML_val

‹val {goal, context = goal_ctxt, ...} = @{Isar.goal};
val (focus as {params, asms, concl, ...}, goal’) =

Subgoal.focus goal_ctxt 1 (SOME [binding ‹x›]) goal;
val [A, B] = #prems focus;
val [(_, x)] = #params focus;›

sorry
end

The next example demonstrates forward-elimination in a local context, using
Obtain.result.
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notepad
begin

assume ex: ∃ x. B x

ML_prf
‹val ctxt0 = context ;
val (([(_, x)], [B]), ctxt1) = ctxt0

|> Obtain.result (fn _ => eresolve_tac ctxt0 @{thms exE} 1)
[@{thm ex}];›

ML_prf
‹singleton (Proof_Context.export ctxt1 ctxt0) @{thm refl};›

ML_prf
‹Proof_Context.export ctxt1 ctxt0 [Thm.reflexive x]

handle ERROR msg => (warning msg; []);›
end



Chapter 7

Isar language elements

The Isar proof language (see also [19, §2]) consists of three main categories
of language elements:

1. Proof commands define the primary language of transactions of the
underlying Isar/VM interpreter. Typical examples are fix, assume,
show, proof , and qed.
Composing proof commands according to the rules of the Isar/VM leads
to expressions of structured proof text, such that both the machine and
the human reader can give it a meaning as formal reasoning.

2. Proof methods define a secondary language of mixed forward-backward
refinement steps involving facts and goals. Typical examples are rule,
unfold, and simp.
Methods can occur in certain well-defined parts of the Isar proof lan-
guage, say as arguments to proof , qed, or by.

3. Attributes define a tertiary language of small annotations to theorems
being defined or referenced. Attributes can modify both the context
and the theorem.
Typical examples are intro (which affects the context), and symmetric
(which affects the theorem).

7.1 Proof commands
A proof command is state transition of the Isar/VM proof interpreter.
In principle, Isar proof commands could be defined in user-space as well.
The system is built like that in the first place: one part of the commands
are primitive, the other part is defined as derived elements. Adding to the
genuine structured proof language requires profound understanding of the
Isar/VM machinery, though, so this is beyond the scope of this manual.

136
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What can be done realistically is to define some diagnostic commands that
inspect the general state of the Isar/VM, and report some feedback to the
user. Typically this involves checking of the linguistic mode of a proof state,
or peeking at the pending goals (if available).
Another common application is to define a toplevel command that poses a
problem to the user as Isar proof state and processes the final result relatively
to the context. Thus a proof can be incorporated into the context of some
user-space tool, without modifying the Isar proof language itself.

ML Reference
type Proof.state
Proof.assert_forward: Proof.state -> Proof.state
Proof.assert_chain: Proof.state -> Proof.state
Proof.assert_backward: Proof.state -> Proof.state
Proof.simple_goal: Proof.state -> {context: Proof.context, goal: thm}
Proof.goal: Proof.state ->

{context: Proof.context, facts: thm list, goal: thm}
Proof.raw_goal: Proof.state ->

{context: Proof.context, facts: thm list, goal: thm}
Proof.theorem: Method.text option ->

(thm list list -> Proof.context -> Proof.context) ->
(term * term list) list list -> Proof.context -> Proof.state

Type Proof.state represents Isar proof states. This is a block-structured
configuration with proof context, linguistic mode, and optional goal.
The latter consists of goal context, goal facts (“using”), and tactical
goal state (see §4.1).
The general idea is that the facts shall contribute to the refinement of
some parts of the tactical goal — how exactly is defined by the proof
method that is applied in that situation.

Proof.assert_forward, Proof.assert_chain, Proof.assert_backward
are partial identity functions that fail unless a certain linguistic mode is
active, namely “proof (state)”, “proof (chain)”, “proof (prove)”, respec-
tively (using the terminology of [19]).
It is advisable study the implementations of existing proof commands
for suitable modes to be asserted.

Proof.simple_goal state returns the structured Isar goal (if available) in
the form seen by “simple” methods (like simp or blast). The Isar goal
facts are already inserted as premises into the subgoals, which are pre-
sented individually as in Proof.goal.
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Proof.goal state returns the structured Isar goal (if available) in the form
seen by regular methods (like rule). The auxiliary internal encoding of
Pure conjunctions is split into individual subgoals as usual.

Proof.raw_goal state returns the structured Isar goal (if available) in
the raw internal form seen by “raw” methods (like induct). This
form is rarely appropriate for diagnostic tools; Proof.simple_goal or
Proof.goal should be used in most situations.

Proof.theorem before_qed after_qed statement ctxt initializes a toplevel
Isar proof state within a given context.
The optional before_qed method is applied at the end of the proof, just
before extracting the result (this feature is rarely used).
The after_qed continuation receives the extracted result in order to
apply it to the final context in a suitable way (e.g. storing named
facts). Note that at this generic level the target context is specified
as Proof.context, but the usual wrapping of toplevel proofs into com-
mand transactions will provide a local_theory here (chapter 8). This
affects the way how results are stored.
The statement is given as a nested list of terms, each associated with
optional is patterns as usual in the Isar source language. The original
nested list structure over terms is turned into one over theorems when
after_qed is invoked.

ML Antiquotations
Isar .goal : ML_antiquotation

@{Isar .goal} refers to the regular goal state (if available) of the current
proof state managed by the Isar toplevel — as abstract value.
This only works for diagnostic ML commands, such as ML_val or
ML_command.

ML Examples
The following example peeks at a certain goal configuration.
notepad
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begin
have A and B and C

ML_val
‹val n = Thm.nprems_of (#goal @{Isar.goal});
assert (n = 3);›

sorry
end

Here we see 3 individual subgoals in the same way as regular proof methods
would do.

7.2 Proof methods
A method is a function thm∗ → context ∗ goal → (context × goal)∗∗ that
operates on the full Isar goal configuration with context, goal facts, and
tactical goal state and enumerates possible follow-up goal states. Under
normal circumstances, the goal context remains unchanged, but it is also
possible to declare named extensions of the proof context (cases).
This means a proof method is like a structurally enhanced tactic (cf. §4.2).
The well-formedness conditions for tactics need to hold for methods accord-
ingly, with the following additions.

• Goal addressing is further limited either to operate uniformly on all
subgoals, or specifically on the first subgoal.
Exception: old-style tactic emulations that are embedded into the
method space, e.g. rule_tac.

• A non-trivial method always needs to make progress: an identical
follow-up goal state has to be avoided.1

Exception: trivial stuttering steps, such as “−” or succeed.

• Goal facts passed to the method must not be ignored. If there is no
sensible use of facts outside the goal state, facts should be inserted into
the subgoals that are addressed by the method.

Syntactically, the language of proof methods appears as arguments to Isar
commands like by or apply. User-space additions are reasonably easy by

1This enables the user to write method expressions like meth+ without looping, while
the trivial do-nothing case can be recovered via meth?.
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plugging suitable method-valued parser functions into the framework, using
the method_setup command, for example.
To get a better idea about the range of possibilities, consider the following
Isar proof schemes. This is the general form of structured proof text:
from facts1 have props using facts2
proof (initial_method)

body
qed (terminal_method)

The goal configuration consists of facts1 and facts2 appended in that order,
and various props being claimed. The initial_method is invoked with facts
and goals together and refines the problem to something that is handled
recursively in the proof body. The terminal_method has another chance to
finish any remaining subgoals, but it does not see the facts of the initial step.

This pattern illustrates unstructured proof scripts:
have props

using facts1 apply method1

apply method2

using facts3 apply method3

done

The method1 operates on the original claim while using facts1. Since the
apply command structurally resets the facts, the method2 will operate on the
remaining goal state without facts. The method3 will see again a collection
of facts3 that has been inserted into the script explicitly.

Empirically, any Isar proof method can be categorized as follows.

1. Special method with cases with named context additions associated with
the follow-up goal state.
Example: induct, which is also a “raw” method since it operates on
the internal representation of simultaneous claims as Pure conjunction
(§2.3.2), instead of separate subgoals (§4.1).

2. Structured method with strong emphasis on facts outside the goal state.
Example: rule, which captures the key ideas behind structured reason-
ing in Isar in its purest form.

3. Simple method with weaker emphasis on facts, which are inserted into
subgoals to emulate old-style tactical “premises”.
Examples: simp, blast, auto.
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4. Old-style tactic emulation with detailed numeric goal addressing and
explicit references to entities of the internal goal state (which are oth-
erwise invisible from proper Isar proof text). The naming convention
foo_tac makes this special non-standard status clear.
Example: rule_tac.

When implementing proof methods, it is advisable to study existing im-
plementations carefully and imitate the typical “boiler plate” for context-
sensitive parsing and further combinators to wrap-up tactic expressions as
methods.2

ML Reference
type Proof.method
CONTEXT_METHOD: (thm list -> context_tactic) -> Proof.method
METHOD: (thm list -> tactic) -> Proof.method
SIMPLE_METHOD: tactic -> Proof.method
SIMPLE_METHOD’: (int -> tactic) -> Proof.method
Method.insert_tac: Proof.context -> thm list -> int -> tactic
Method.setup: binding -> (Proof.context -> Proof.method) context_parser ->

string -> theory -> theory

Type Proof.method represents proof methods as abstract type.

CONTEXT_METHOD (fn facts => context_tactic) wraps context_tactic
depending on goal facts as a general proof method that may
change the proof context dynamically. A typical operation is
Proof_Context.update_cases, which is wrapped up as combinator
CONTEXT_CASES for convenience.

METHOD (fn facts => tactic) wraps tactic depending on goal facts as regular
proof method; the goal context is passed via method syntax.

SIMPLE_METHOD tactic wraps a tactic that addresses all subgoals uniformly
as simple proof method. Goal facts are already inserted into all subgoals
before tactic is applied.

SIMPLE_METHOD’ tactic wraps a tactic that addresses a specific subgoal as
simple proof method that operates on subgoal 1. Goal facts are inserted
into the subgoal then the tactic is applied.

2Aliases or abbreviations of the standard method combinators should be avoided.
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Method.insert_tac ctxt facts i inserts facts into subgoal i. This is con-
venient to reproduce part of the SIMPLE_METHOD or SIMPLE_METHOD’
wrapping within regular METHOD, for example.

Method.setup name parser description provides the functionality of the
Isar command method_setup as ML function.

ML Examples
See also method_setup in [19] which includes some abstract examples.

The following toy examples illustrate how the goal facts and state are passed
to proof methods. The predefined proof method called “tactic” wraps ML
source of type tactic (abstracted over facts). This allows immediate ex-
perimentation without parsing of concrete syntax.
notepad
begin

fix A B :: bool
assume a: A and b: B

have A ∧ B
apply (tactic ‹resolve_tac context @{thms conjI} 1›)
using a apply (tactic ‹resolve_tac context facts 1›)
using b apply (tactic ‹resolve_tac context facts 1›)
done

have A ∧ B
using a and b
ML_val ‹@{Isar.goal}›
apply (tactic ‹Method.insert_tac context facts 1›)
apply (tactic ‹(resolve_tac context @{thms conjI} THEN_ALL_NEW as-

sume_tac context ) 1›)
done

end

The next example implements a method that simplifies the first subgoal by
rewrite rules that are given as arguments.
method_setup my_simp =

‹Attrib.thms >> (fn thms => fn ctxt =>
SIMPLE_METHOD’ (fn i =>

CHANGED (asm_full_simp_tac
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(put_simpset HOL_basic_ss ctxt addsimps thms) i)))›
"rewrite subgoal by given rules"

The concrete syntax wrapping of method_setup always passes-through the
proof context at the end of parsing, but it is not used in this example.
The Attrib.thms parser produces a list of theorems from the usual Isar
syntax involving attribute expressions etc. (syntax category thms) [19]. The
resulting thms are added to HOL_basic_ss which already contains the basic
Simplifier setup for HOL.
The tactic asm_full_simp_tac is the one that is also used in method simp
by default. The extra wrapping by the CHANGED tactical ensures progress of
simplification: identical goal states are filtered out explicitly to make the raw
tactic conform to standard Isar method behaviour.

Method my_simp can be used in Isar proofs like this:
notepad
begin

fix a b c :: ′a
assume a: a = b
assume b: b = c
have a = c by (my_simp a b)

end

Here is a similar method that operates on all subgoals, instead of just the
first one.
method_setup my_simp_all =

‹Attrib.thms >> (fn thms => fn ctxt =>
SIMPLE_METHOD

(CHANGED
(ALLGOALS (asm_full_simp_tac

(put_simpset HOL_basic_ss ctxt addsimps thms)))))›
"rewrite all subgoals by given rules"

notepad
begin

fix a b c :: ′a
assume a: a = b
assume b: b = c
have a = c and c = b by (my_simp_all a b)

end

Apart from explicit arguments, common proof methods typically work with
a default configuration provided by the context. As a shortcut to rule man-
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agement we use a cheap solution via the named_theorems command to
declare a dynamic fact in the context.
named_theorems my_simp

The proof method is now defined as before, but we append the explicit ar-
guments and the rules from the context.
method_setup my_simp’ =

‹Attrib.thms >> (fn thms => fn ctxt =>
let

val my_simps = Named_Theorems.get ctxt named_theorems ‹my_simp›
in

SIMPLE_METHOD’ (fn i =>
CHANGED (asm_full_simp_tac

(put_simpset HOL_basic_ss ctxt
addsimps (thms @ my_simps)) i))

end)›
"rewrite subgoal by given rules and my_simp rules from the context"

Method my_simp ′ can be used in Isar proofs like this:
notepad
begin

fix a b c :: ′a
assume [my_simp]: a ≡ b
assume [my_simp]: b ≡ c
have a ≡ c by my_simp ′

end

The my_simp variants defined above are “simple” methods, i.e. the goal
facts are merely inserted as goal premises by the SIMPLE_METHOD’ or
SIMPLE_METHOD wrapper. For proof methods that are similar to the stan-
dard collection of simp, blast, fast, auto there is little more that can be done.
Note that using the primary goal facts in the same manner as the method
arguments obtained via concrete syntax or the context does not meet the
requirement of “strong emphasis on facts” of regular proof methods, be-
cause rewrite rules as used above can be easily ignored. A proof text
“using foo by my_simp” where foo is not used would deceive the reader.

The technical treatment of rules from the context requires further attention.
Above we rebuild a fresh simpset from the arguments and all rules retrieved
from the context on every invocation of the method. This does not scale to
really large collections of rules, which easily emerges in the context of a big
theory library, for example.
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This is an inherent limitation of the simplistic rule management via
named_theorems, because it lacks tool-specific storage and retrieval. More
realistic applications require efficient index-structures that organize theorems
in a customized manner, such as a discrimination net that is indexed by the
left-hand sides of rewrite rules. For variations on the Simplifier, re-use of
the existing type simpset is adequate, but scalability would require it be
maintained statically within the context data, not dynamically on each tool
invocation.

7.3 Attributes
An attribute is a function context × thm → context × thm, which means
both a (generic) context and a theorem can be modified simultaneously. In
practice this mixed form is very rare, instead attributes are presented either
as declaration attribute: thm → context → context or rule attribute: context
→ thm → thm.
Attributes can have additional arguments via concrete syntax. There is a
collection of context-sensitive parsers for various logical entities (types, terms,
theorems). These already take care of applying morphisms to the arguments
when attribute expressions are moved into a different context (see also §8.2).
When implementing declaration attributes, it is important to operate exactly
on the variant of the generic context that is provided by the system, which
is either global theory context or local proof context. In particular, the
background theory of a local context must not be modified in this situation!

ML Reference
type attribute
Thm.rule_attribute: thm list ->

(Context.generic -> thm -> thm) -> attribute
Thm.declaration_attribute:

(thm -> Context.generic -> Context.generic) -> attribute
Attrib.setup: binding -> attribute context_parser ->

string -> theory -> theory

Type attribute represents attributes as concrete type alias.

Thm.rule_attribute thms (fn context => rule) wraps a context-dependent
rule (mapping on thm) as attribute.
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The thms are additional parameters: when forming an abstract closure,
the system may provide dummy facts that are propagated according to
strict evaluation discipline. In that case, rule is bypassed.

Thm.declaration_attribute (fn thm => decl) wraps a theorem-
dependent declaration (mapping on Context.generic) as attribute.
When forming an abstract closure, the system may provide a dummy
fact as thm. In that case, decl is bypassed.

Attrib.setup name parser description provides the functionality of the
Isar command attribute_setup as ML function.

ML Antiquotations
attributes : ML_antiquotation

attributes
�� ��attributes

@{attributes [. . .]} embeds attribute source representation into the ML text,
which is particularly useful with declarations like Local_Theory.note.
Attribute names are internalized at compile time, but the source is
unevaluated. This means attributes with formal arguments (types,
terms, theorems) may be subject to odd effects of dynamic scoping!

ML Examples
See also attribute_setup in [19] which includes some abstract examples.
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Local theory specifications

A local theory combines aspects of both theory and proof context (cf. §1.1),
such that definitional specifications may be given relatively to parameters
and assumptions. A local theory is represented as a regular proof context,
augmented by administrative data about the target context.
The target is usually derived from the background theory by adding local
fix and assume elements, plus suitable modifications of non-logical context
data (e.g. a special type-checking discipline). Once initialized, the target
is ready to absorb definitional primitives: define for terms and note for
theorems. Such definitions may get transformed in a target-specific way, but
the programming interface hides such details.
Isabelle/Pure provides target mechanisms for locales, type-classes, type-class
instantiations, and general overloading. In principle, users can implement
new targets as well, but this rather arcane discipline is beyond the scope
of this manual. In contrast, implementing derived definitional packages to
be used within a local theory context is quite easy: the interfaces are even
simpler and more abstract than the underlying primitives for raw theories.
Many definitional packages for local theories are available in Isabelle. Al-
though a few old packages only work for global theories, the standard way
of implementing definitional packages in Isabelle is via the local theory in-
terface.

8.1 Definitional elements
There are separate elements define c ≡ t for terms, and note b = thm for
theorems. Types are treated implicitly, according to Hindley-Milner disci-
pline (cf. §6.1). These definitional primitives essentially act like let-bindings
within a local context that may already contain earlier let-bindings and some
initial λ-bindings. Thus we gain dependent definitions that are relative to
an initial axiomatic context. The following diagram illustrates this idea of
axiomatic elements versus definitional elements:

147
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λ-binding let-binding
types fixed α arbitrary β
terms fix x :: τ define c ≡ t
theorems assume a: A note b = ‘B‘

A user package merely needs to produce suitable define and note elements
according to the application. For example, a package for inductive defini-
tions might first define a certain predicate as some fixed-point construction,
then note a proven result about monotonicity of the functor involved here,
and then produce further derived concepts via additional define and note
elements.
The cumulative sequence of define and note produced at package runtime is
managed by the local theory infrastructure by means of an auxiliary context.
Thus the system holds up the impression of working within a fully abstract
situation with hypothetical entities: define c ≡ t always results in a literal
fact ‘c ≡ t‘, where c is a fixed variable c. The details about global constants,
name spaces etc. are handled internally.
So the general structure of a local theory is a sandwich of three layers:

auxiliary context target context background theory

When a definitional package is finished, the auxiliary context is reset to the
target context. The target now holds definitions for terms and theorems that
stem from the hypothetical define and note elements, transformed by the
particular target policy (see [9, §4–5] for details).

ML Reference
type local_theory = Proof.context
Named_Target.init: Bundle.name list -> string -> theory -> local_theory

Local_Theory.define: (binding * mixfix) * (Attrib.binding * term) ->
local_theory -> (term * (string * thm)) * local_theory

Local_Theory.note: Attrib.binding * thm list ->
local_theory -> (string * thm list) * local_theory

Type local_theory represents local theories. Although this is merely an
alias for Proof.context, it is semantically a subtype of the same: a
local_theory holds target information as special context data. Sub-
typing means that any value lthy: local_theory can be also used with
operations on expecting a regular ctxt: Proof.context.
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Named_Target.init includes name thy initializes a local theory derived
from the given background theory. An empty name refers to a global
theory context, and a non-empty name refers to a locale or class con-
text (a fully-qualified internal name is expected here). This is useful
for experimentation — normally the Isar toplevel already takes care to
initialize the local theory context.

Local_Theory.define ((b, mx), (a, rhs)) lthy defines a local entity ac-
cording to the specification that is given relatively to the current lthy
context. In particular the term of the RHS may refer to earlier local
entities from the auxiliary context, or hypothetical parameters from
the target context. The result is the newly defined term (which is al-
ways a fixed variable with exactly the same name as specified for the
LHS), together with an equational theorem that states the definition
as a hypothetical fact.
Unless an explicit name binding is given for the RHS, the resulting fact
will be called b_def. Any given attributes are applied to that same fact
— immediately in the auxiliary context and in any transformed ver-
sions stemming from target-specific policies or any later interpretations
of results from the target context (think of locale and interpretation,
for example). This means that attributes should be usually plain dec-
larations such as simp, while non-trivial rules like simplified are better
avoided.

Local_Theory.note (a, ths) lthy is analogous to Local_Theory.define,
but defines facts instead of terms. There is also a slightly more general
variant Local_Theory.notes that defines several facts (with attribute
expressions) simultaneously.
This is essentially the internal version of the lemmas command, or
declare if an empty name binding is given.

8.2 Morphisms and declarations
See also [3].



Chapter 9

System integration

9.1 Isar toplevel
The Isar toplevel state represents the outermost configuration that is trans-
formed by a sequence of transitions (commands) within a theory body. This
is a pure value with pure functions acting on it in a timeless and state-
less manner. Historically, the sequence of transitions was wrapped up as
sequential command loop, such that commands are applied one-by-one. In
contemporary Isabelle/Isar, processing toplevel commands usually works in
parallel in multi-threaded Isabelle/ML [21, 22].

9.1.1 Toplevel state
The toplevel state is a disjoint sum of empty toplevel, or theory, or proof.
The initial toplevel is empty; a theory is commenced by a theory header;
within a theory we may use theory commands such as definition, or state a
theorem to be proven. A proof state accepts a rich collection of Isar proof
commands for structured proof composition, or unstructured proof scripts.
When the proof is concluded we get back to the (local) theory, which is
then updated by defining the resulting fact. Further theory declarations or
theorem statements with proofs may follow, until we eventually conclude the
theory development by issuing end to get back to the empty toplevel.

ML Reference
type Toplevel.state
exception Toplevel.UNDEF
Toplevel.is_toplevel: Toplevel.state -> bool
Toplevel.theory_of: Toplevel.state -> theory
Toplevel.proof_of: Toplevel.state -> Proof.state

Type Toplevel.state represents Isar toplevel states, which are normally
manipulated through the concept of toplevel transitions only (§9.1.2).
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Toplevel.UNDEF is raised for undefined toplevel operations. Many opera-
tions work only partially for certain cases, since Toplevel.state is a
sum type.

Toplevel.is_toplevel state checks for an empty toplevel state.

Toplevel.theory_of state selects the background theory of state, it raises
Toplevel.UNDEF for an empty toplevel state.

Toplevel.proof_of state selects the Isar proof state if available, otherwise
it raises an error.

ML Antiquotations
Isar .state : ML_antiquotation

@{Isar .state} refers to Isar toplevel state at that point — as abstract value.
This only works for diagnostic ML commands, such as ML_val or
ML_command.

9.1.2 Toplevel transitions
An Isar toplevel transition consists of a partial function on the toplevel state,
with additional information for diagnostics and error reporting: there are
fields for command name, source position, and other meta-data.
The operational part is represented as the sequential union of a list of partial
functions, which are tried in turn until the first one succeeds. This acts
like an outer case-expression for various alternative state transitions. For
example, qed works differently for a local proofs vs. the global ending of an
outermost proof.
Transitions are composed via transition transformers. Internally, Isar com-
mands are put together from an empty transition extended by name and
source position. It is then left to the individual command parser to turn
the given concrete syntax into a suitable transition transformer that adjoins
actual operations on a theory or proof state.
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ML Reference
Toplevel.keep: (Toplevel.state -> unit) ->

Toplevel.transition -> Toplevel.transition
Toplevel.theory: (theory -> theory) ->

Toplevel.transition -> Toplevel.transition
Toplevel.theory_to_proof: (theory -> Proof.state) ->

Toplevel.transition -> Toplevel.transition
Toplevel.proof: (Proof.state -> Proof.state) ->

Toplevel.transition -> Toplevel.transition
Toplevel.proofs: (Proof.state -> Proof.state Seq.result Seq.seq) ->

Toplevel.transition -> Toplevel.transition
Toplevel.end_proof: (bool -> Proof.state -> Proof.context) ->

Toplevel.transition -> Toplevel.transition

Toplevel.keep tr adjoins a diagnostic function.

Toplevel.theory tr adjoins a theory transformer.

Toplevel.theory_to_proof tr adjoins a global goal function, which turns
a theory into a proof state. The theory may be changed before entering
the proof; the generic Isar goal setup includes an after_qed argument
that specifies how to apply the proven result to the enclosing context,
when the proof is finished.

Toplevel.proof tr adjoins a deterministic proof command, with a singleton
result.

Toplevel.proofs tr adjoins a general proof command, with zero or more
result states (represented as a lazy list).

Toplevel.end_proof tr adjoins a concluding proof command, that returns
the resulting theory, after applying the resulting facts to the target
context.

ML Examples
The file ~~/src/HOL/Examples/Commands.thy shows some example Isar
command definitions, with the all-important theory header declarations for
outer syntax keywords.
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9.2 Theory loader database
In batch mode and within dumped logic images, the theory database main-
tains a collection of theories as a directed acyclic graph. A theory may refer
to other theories as imports, or to auxiliary files via special load commands
(e.g. ML_file). For each theory, the base directory of its own theory file is
called master directory: this is used as the relative location to refer to other
files from that theory.

ML Reference
Thy_Info.get_theory: string -> theory
Thy_Info.remove_thy: string -> unit

Thy_Info.get_theory A retrieves the theory value presently associated
with name A. Note that the result might be outdated wrt. the file-
system content.

Thy_Info.remove_thy A deletes theory A and all descendants from the
theory database.
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