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Abstract

This document lists the main types, functions and syntax provided
by theory Main. It is meant as a quick overview of what is available.
For infix operators and their precedences see the final section. The
sophisticated class structure is only hinted at. For details see https:
//isabelle.in.tum.de/library/HOL/HOL.

HOL
The basic logic: x = y, True, False, ¬ P, P ∧ Q, P ∨ Q, P −→ Q, ∀ x . P,
∃ x . P, ∃ !x . P, THE x . P.
undefined :: ′a
default :: ′a

Syntax

x 6= y ≡ ¬ (x = y) (~=)
P ←→ Q ≡ P = Q
if x then y else z ≡ If x y z
let x = e1 in e2 ≡ Let e1 (λx . e2)

Orderings
A collection of classes defining basic orderings: preorder, partial order, linear
order, dense linear order and wellorder.
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(≤) :: ′a ⇒ ′a ⇒ bool (<=)
(<) :: ′a ⇒ ′a ⇒ bool
Least :: ( ′a ⇒ bool) ⇒ ′a
Greatest :: ( ′a ⇒ bool) ⇒ ′a
min :: ′a ⇒ ′a ⇒ ′a
max :: ′a ⇒ ′a ⇒ ′a
top :: ′a
bot :: ′a

Syntax

x ≥ y ≡ y ≤ x (>=)
x > y ≡ y < x
∀ x≤y. P ≡ ∀ x . x ≤ y −→ P
∃ x≤y. P ≡ ∃ x . x ≤ y ∧ P
Similarly for <, ≥ and >
LEAST x . P ≡ Least (λx . P)
GREATEST x . P ≡ Greatest (λx . P)

Lattices
Classes semilattice, lattice, distributive lattice and complete lattice (the lat-
ter in theory HOL.Set).
inf :: ′a ⇒ ′a ⇒ ′a
sup :: ′a ⇒ ′a ⇒ ′a
Inf :: ′a set ⇒ ′a
Sup :: ′a set ⇒ ′a

Syntax

Available via unbundle lattice_syntax.
x v y ≡ x ≤ y
x @ y ≡ x < y
x u y ≡ inf x y
x t y ≡ sup x yd

A ≡ Inf A⊔
A ≡ Sup A
> ≡ top
⊥ ≡ bot
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Set
{} :: ′a set
insert :: ′a ⇒ ′a set ⇒ ′a set
Collect :: ( ′a ⇒ bool) ⇒ ′a set
(∈) :: ′a ⇒ ′a set ⇒ bool (:)
(∪) :: ′a set ⇒ ′a set ⇒ ′a set (Un)
(∩) :: ′a set ⇒ ′a set ⇒ ′a set (Int)⋃

:: ′a set set ⇒ ′a set⋂
:: ′a set set ⇒ ′a set

Pow :: ′a set ⇒ ′a set set
UNIV :: ′a set
(‘) :: ( ′a ⇒ ′b) ⇒ ′a set ⇒ ′b set
Ball :: ′a set ⇒ ( ′a ⇒ bool) ⇒ bool
Bex :: ′a set ⇒ ( ′a ⇒ bool) ⇒ bool

Syntax

{a1,. . .,an} ≡ insert a1 (. . . (insert an {}). . .)
a /∈ A ≡ ¬(x ∈ A)
A ⊆ B ≡ A ≤ B
A ⊂ B ≡ A < B
A ⊇ B ≡ B ≤ A
A ⊃ B ≡ B < A
{x . P} ≡ Collect (λx . P)
{t | x1 . . . xn. P} ≡ {v. ∃ x1 . . . xn. v = t ∧ P}⋃

x∈I . A ≡
⋃

((λx . A) ‘ I ) (UN)⋃
x . A ≡

⋃
((λx . A) ‘ UNIV )⋂

x∈I . A ≡
⋂

((λx . A) ‘ I ) (INT)⋂
x . A ≡

⋂
((λx . A) ‘ UNIV )

∀ x∈A. P ≡ Ball A (λx . P)
∃ x∈A. P ≡ Bex A (λx . P)
range f ≡ f ‘ UNIV
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Fun
id :: ′a ⇒ ′a
(◦) :: ( ′a ⇒ ′b) ⇒ ( ′c ⇒ ′a) ⇒ ′c ⇒ ′b (o)
inj_on :: ( ′a ⇒ ′b) ⇒ ′a set ⇒ bool
inj :: ( ′a ⇒ ′b) ⇒ bool
surj :: ( ′a ⇒ ′b) ⇒ bool
bij :: ( ′a ⇒ ′b) ⇒ bool
bij_betw :: ( ′a ⇒ ′b) ⇒ ′a set ⇒ ′b set ⇒ bool
monotone_on :: ′a set ⇒ ( ′a ⇒ ′a ⇒ bool) ⇒ ( ′b ⇒ ′b ⇒ bool) ⇒ ( ′a ⇒ ′b) ⇒ bool
monotone :: ( ′a ⇒ ′a ⇒ bool) ⇒ ( ′b ⇒ ′b ⇒ bool) ⇒ ( ′a ⇒ ′b) ⇒ bool
mono_on :: ′a set ⇒ ( ′a ⇒ ′b) ⇒ bool
mono :: ( ′a ⇒ ′b) ⇒ bool
strict_mono_on :: ′a set ⇒ ( ′a ⇒ ′b) ⇒ bool
strict_mono :: ( ′a ⇒ ′b) ⇒ bool
antimono :: ( ′a ⇒ ′b) ⇒ bool
fun_upd :: ( ′a ⇒ ′b) ⇒ ′a ⇒ ′b ⇒ ′a ⇒ ′b

Syntax

f (x := y) ≡ fun_upd f x y
f (x1:=y1,. . .,xn:=yn) ≡ f (x1:=y1). . .(xn:=yn)

Hilbert_Choice
Hilbert’s selection (ε) operator: SOME x . P.
inv_into :: ′a set ⇒ ( ′a ⇒ ′b) ⇒ ′b ⇒ ′a

Syntax

inv ≡ inv_into UNIV

Fixed Points
Theory: HOL.Inductive.
Least and greatest fixed points in a complete lattice ′a:
lfp :: ( ′a ⇒ ′a) ⇒ ′a
gfp :: ( ′a ⇒ ′a) ⇒ ′a
Note that in particular sets ( ′a ⇒ bool) are complete lattices.
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Sum_Type
Type constructor +.
Inl :: ′a ⇒ ′a + ′b
Inr :: ′a ⇒ ′b + ′a
(<+>) :: ′a set ⇒ ′b set ⇒ ( ′a + ′b) set

Product_Type
Types unit and ×.
() :: unit
Pair :: ′a ⇒ ′b ⇒ ′a × ′b
fst :: ′a × ′b ⇒ ′a
snd :: ′a × ′b ⇒ ′b
case_prod :: ( ′a ⇒ ′b ⇒ ′c) ⇒ ′a × ′b ⇒ ′c
curry :: ( ′a × ′b ⇒ ′c) ⇒ ′a ⇒ ′b ⇒ ′c
Sigma :: ′a set ⇒ ( ′a ⇒ ′b set) ⇒ ( ′a × ′b) set

Syntax

(a, b) ≡ Pair a b
λ(x , y). t ≡ case_prod (λx y. t)
A × B ≡ Sigma A (λ_. B)

Pairs may be nested. Nesting to the right is printed as a tuple, e.g. (a, b, c)
is really (a, (b, c)). Pattern matching with pairs and tuples extends to all
binders, e.g. ∀ (x , y)∈A. P, {(x , y). P}, etc.

Relation
converse :: ( ′a × ′b) set ⇒ ( ′b × ′a) set
(O) :: ( ′a × ′b) set ⇒ ( ′b × ′c) set ⇒ ( ′a × ′c) set
(‘‘) :: ( ′a × ′b) set ⇒ ′a set ⇒ ′b set
inv_image :: ( ′a × ′a) set ⇒ ( ′b ⇒ ′a) ⇒ ( ′b × ′b) set
Id_on :: ′a set ⇒ ( ′a × ′a) set
Id :: ( ′a × ′a) set
Domain :: ( ′a × ′b) set ⇒ ′a set
Range :: ( ′a × ′b) set ⇒ ′b set
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Field :: ( ′a × ′a) set ⇒ ′a set
refl_on :: ′a set ⇒ ( ′a × ′a) set ⇒ bool
refl :: ( ′a × ′a) set ⇒ bool
sym :: ( ′a × ′a) set ⇒ bool
antisym :: ( ′a × ′a) set ⇒ bool
trans :: ( ′a × ′a) set ⇒ bool
irrefl :: ( ′a × ′a) set ⇒ bool
total_on :: ′a set ⇒ ( ′a × ′a) set ⇒ bool
total :: ( ′a × ′a) set ⇒ bool

Syntax

r−1 ≡ converse r (^-1)

Type synonym ′a rel = ( ′a × ′a) set

Equiv_Relations
equiv :: ′a set ⇒ ( ′a × ′a) set ⇒ bool
(//) :: ′a set ⇒ ( ′a × ′a) set ⇒ ′a set set
congruent :: ( ′a × ′a) set ⇒ ( ′a ⇒ ′b) ⇒ bool
congruent2 :: ( ′a × ′a) set ⇒ ( ′b × ′b) set ⇒ ( ′a ⇒ ′b ⇒ ′c) ⇒ bool

Syntax

f respects r ≡ congruent r f
f respects2 r ≡ congruent2 r r f

Transitive_Closure
rtrancl :: ( ′a × ′a) set ⇒ ( ′a × ′a) set
trancl :: ( ′a × ′a) set ⇒ ( ′a × ′a) set
reflcl :: ( ′a × ′a) set ⇒ ( ′a × ′a) set
acyclic :: ( ′a × ′a) set ⇒ bool
(^^) :: ( ′a × ′a) set ⇒ nat ⇒ ( ′a × ′a) set
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Syntax

r∗ ≡ rtrancl r (^*)
r+ ≡ trancl r (^+)
r= ≡ reflcl r (^=)

Algebra
Theories HOL.Groups, HOL.Rings, HOL.Euclidean_Rings and HOL.Fields
define a large collection of classes describing common algebraic structures
from semigroups up to fields. Everything is done in terms of overloaded
operators:
0 :: ′a
1 :: ′a
(+) :: ′a ⇒ ′a ⇒ ′a
(−) :: ′a ⇒ ′a ⇒ ′a
uminus :: ′a ⇒ ′a (-)
(∗) :: ′a ⇒ ′a ⇒ ′a
inverse :: ′a ⇒ ′a
(div) :: ′a ⇒ ′a ⇒ ′a
abs :: ′a ⇒ ′a
sgn :: ′a ⇒ ′a
(dvd) :: ′a ⇒ ′a ⇒ bool
(div) :: ′a ⇒ ′a ⇒ ′a
(mod) :: ′a ⇒ ′a ⇒ ′a

Syntax

|x| ≡ abs x

Nat
datatype nat = 0 | Suc nat

(+) (−) (∗) (^) (div) (mod) (dvd)
(≤) (<) min max Min Max
of_nat :: nat ⇒ ′a
(^^) :: ( ′a ⇒ ′a) ⇒ nat ⇒ ′a ⇒ ′a
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Int
Type int

(+) (−) uminus (∗) (^) (div) (mod) (dvd)
(≤) (<) min max Min Max
abs sgn
nat :: int ⇒ nat
of_int :: int ⇒ ′a
� :: ′a set (Ints)

Syntax

int ≡ of_nat

Finite_Set
finite :: ′a set ⇒ bool
card :: ′a set ⇒ nat
Finite_Set.fold :: ( ′a ⇒ ′b ⇒ ′b) ⇒ ′b ⇒ ′a set ⇒ ′b

Lattices_Big
Min :: ′a set ⇒ ′a
Max :: ′a set ⇒ ′a
arg_min :: ( ′a ⇒ ′b) ⇒ ( ′a ⇒ bool) ⇒ ′a
is_arg_min :: ( ′a ⇒ ′b) ⇒ ( ′a ⇒ bool) ⇒ ′a ⇒ bool
arg_max :: ( ′a ⇒ ′b) ⇒ ( ′a ⇒ bool) ⇒ ′a
is_arg_max :: ( ′a ⇒ ′b) ⇒ ( ′a ⇒ bool) ⇒ ′a ⇒ bool

Syntax

ARG_MIN f x . P ≡ arg_min f (λx . P)
ARG_MAX f x . P ≡ arg_max f (λx . P)

Groups_Big
sum :: ( ′a ⇒ ′b) ⇒ ′a set ⇒ ′b
prod :: ( ′a ⇒ ′b) ⇒ ′a set ⇒ ′b
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Syntax∑
A ≡ sum (λx . x) A (SUM)∑

x∈A. t ≡ sum (λx . t) A∑
x|P. t ≡

∑
x | P. t

Similarly for
∏

instead of
∑

(PROD)

Wellfounded
wf :: ( ′a × ′a) set ⇒ bool
Wellfounded.acc :: ( ′a × ′a) set ⇒ ′a set
measure :: ( ′a ⇒ nat) ⇒ ( ′a × ′a) set
(<∗lex∗>) :: ( ′a × ′a) set ⇒ ( ′b × ′b) set ⇒ (( ′a × ′b) × ′a × ′b) set
(<∗mlex∗>) :: ( ′a ⇒ nat) ⇒ ( ′a × ′a) set ⇒ ( ′a × ′a) set
less_than :: (nat × nat) set
pred_nat :: (nat × nat) set

Set_Interval
lessThan :: ′a ⇒ ′a set
atMost :: ′a ⇒ ′a set
greaterThan :: ′a ⇒ ′a set
atLeast :: ′a ⇒ ′a set
greaterThanLessThan :: ′a ⇒ ′a ⇒ ′a set
atLeastLessThan :: ′a ⇒ ′a ⇒ ′a set
greaterThanAtMost :: ′a ⇒ ′a ⇒ ′a set
atLeastAtMost :: ′a ⇒ ′a ⇒ ′a set
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Syntax

{..<y} ≡ lessThan y
{..y} ≡ atMost y
{x<..} ≡ greaterThan x
{x ..} ≡ atLeast x
{x<..<y} ≡ greaterThanLessThan x y
{x ..<y} ≡ atLeastLessThan x y
{x<..y} ≡ greaterThanAtMost x y
{x ..y} ≡ atLeastAtMost x y⋃

i≤n. A ≡
⋃

i ∈ {..n}. A⋃
i<n. A ≡

⋃
i ∈ {..<n}. A

Similarly for
⋂

instead of
⋃∑

x = a..b. t ≡ sum (λx . t) {a..b}∑
x = a..<b. t ≡ sum (λx . t) {a..<b}∑
x≤b. t ≡ sum (λx . t) {..b}∑
x<b. t ≡ sum (λx . t) {..<b}

Similarly for
∏

instead of
∑

Power
(^) :: ′a ⇒ nat ⇒ ′a

Option
datatype ′a option = None | Some ′a

the :: ′a option ⇒ ′a
map_option :: ( ′a ⇒ ′b) ⇒ ′a option ⇒ ′b option
set_option :: ′a option ⇒ ′a set
Option.bind :: ′a option ⇒ ( ′a ⇒ ′b option) ⇒ ′b option

List
datatype ′a list = [] | (#) ′a ( ′a list)

(@) :: ′a list ⇒ ′a list ⇒ ′a list
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butlast :: ′a list ⇒ ′a list
concat :: ′a list list ⇒ ′a list
distinct :: ′a list ⇒ bool
drop :: nat ⇒ ′a list ⇒ ′a list
dropWhile :: ( ′a ⇒ bool) ⇒ ′a list ⇒ ′a list
filter :: ( ′a ⇒ bool) ⇒ ′a list ⇒ ′a list
find :: ( ′a ⇒ bool) ⇒ ′a list ⇒ ′a option
fold :: ( ′a ⇒ ′b ⇒ ′b) ⇒ ′a list ⇒ ′b ⇒ ′b
foldr :: ( ′a ⇒ ′b ⇒ ′b) ⇒ ′a list ⇒ ′b ⇒ ′b
foldl :: ( ′a ⇒ ′b ⇒ ′a) ⇒ ′a ⇒ ′b list ⇒ ′a
hd :: ′a list ⇒ ′a
last :: ′a list ⇒ ′a
length :: ′a list ⇒ nat
lenlex :: ( ′a × ′a) set ⇒ ( ′a list × ′a list) set
lex :: ( ′a × ′a) set ⇒ ( ′a list × ′a list) set
lexn :: ( ′a × ′a) set ⇒ nat ⇒ ( ′a list × ′a list) set
lexord :: ( ′a × ′a) set ⇒ ( ′a list × ′a list) set
listrel :: ( ′a × ′b) set ⇒ ( ′a list × ′b list) set
listrel1 :: ( ′a × ′a) set ⇒ ( ′a list × ′a list) set
lists :: ′a set ⇒ ′a list set
listset :: ′a set list ⇒ ′a list set
list_all2 :: ( ′a ⇒ ′b ⇒ bool) ⇒ ′a list ⇒ ′b list ⇒ bool
list_update :: ′a list ⇒ nat ⇒ ′a ⇒ ′a list
map :: ( ′a ⇒ ′b) ⇒ ′a list ⇒ ′b list
measures :: ( ′a ⇒ nat) list ⇒ ( ′a × ′a) set
(!) :: ′a list ⇒ nat ⇒ ′a
nths :: ′a list ⇒ nat set ⇒ ′a list
prod_list :: ′a list ⇒ ′a
remdups :: ′a list ⇒ ′a list
removeAll :: ′a ⇒ ′a list ⇒ ′a list
remove1 :: ′a ⇒ ′a list ⇒ ′a list
replicate :: nat ⇒ ′a ⇒ ′a list
rev :: ′a list ⇒ ′a list
rotate :: nat ⇒ ′a list ⇒ ′a list
rotate1 :: ′a list ⇒ ′a list
set :: ′a list ⇒ ′a set
shuffles :: ′a list ⇒ ′a list ⇒ ′a list set
sort :: ′a list ⇒ ′a list
sorted :: ′a list ⇒ bool
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sorted_wrt :: ( ′a ⇒ ′a ⇒ bool) ⇒ ′a list ⇒ bool
splice :: ′a list ⇒ ′a list ⇒ ′a list
sum_list :: ′a list ⇒ ′a
take :: nat ⇒ ′a list ⇒ ′a list
takeWhile :: ( ′a ⇒ bool) ⇒ ′a list ⇒ ′a list
tl :: ′a list ⇒ ′a list
upt :: nat ⇒ nat ⇒ nat list
upto :: int ⇒ int ⇒ int list
zip :: ′a list ⇒ ′b list ⇒ ( ′a × ′b) list

Syntax

[x1,. . .,xn] ≡ x1 # . . . # xn # []
[m..<n] ≡ upt m n
[i..j] ≡ upto i j
xs[n := x ] ≡ list_update xs n x∑

x←xs. e ≡ listsum (map (λx . e) xs)

Filter input syntax [pat ← e. b], where pat is a tuple pattern, which stands
for filter (λpat. b) e.
List comprehension input syntax: [e. q1, . . ., qn] where each qualifier qi is
either a generator pat ← e or a guard, i.e. boolean expression.

Map
Maps model partial functions and are often used as finite tables. However,
the domain of a map may be infinite.
Map.empty :: ′a ⇒ ′b option
(++) :: ( ′a ⇒ ′b option) ⇒ ( ′a ⇒ ′b option) ⇒ ′a ⇒ ′b option
(◦m) :: ( ′a ⇒ ′b option) ⇒ ( ′c ⇒ ′a option) ⇒ ′c ⇒ ′b option
(|‘) :: ( ′a ⇒ ′b option) ⇒ ′a set ⇒ ′a ⇒ ′b option
dom :: ( ′a ⇒ ′b option) ⇒ ′a set
ran :: ( ′a ⇒ ′b option) ⇒ ′b set
(⊆m) :: ( ′a ⇒ ′b option) ⇒ ( ′a ⇒ ′b option) ⇒ bool
map_of :: ( ′a × ′b) list ⇒ ′a ⇒ ′b option
map_upds :: ( ′a ⇒ ′b option) ⇒ ′a list ⇒ ′b list ⇒ ′a ⇒ ′b option
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Syntax

λx . None ≡ λ_. None
m(x 7→ y) ≡ m(x :=Some y)
m(x1 7→y1,. . .,xn 7→yn) ≡ m(x1 7→y1). . .(xn 7→yn)
[x1 7→y1,. . .,xn 7→yn] ≡ Map.empty(x1 7→y1,. . .,xn 7→yn)
m(xs [ 7→] ys) ≡ map_upds m xs ys

Infix operators in Main
Operator precedence associativity

Meta-logic =⇒ 1 right
≡ 2

Logic ∧ 35 right
∨ 30 right
−→, ←→ 25 right
=, 6= 50 left

Orderings ≤, <, ≥, > 50
Sets ⊆, ⊂, ⊇, ⊃ 50

∈, /∈ 50
∩ 70 left
∪ 65 left

Functions and Relations ◦ 55 left
‘ 90 right
O 75 right
‘‘ 90 right
^^ 80 right

Numbers +, − 65 left
∗, / 70 left
div, mod 70 left
^ 80 right
dvd 50

Lists #, @ 65 right
! 100 left
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