What'’s in Main

Tobias Nipkow

January 18, 2026

Abstract

This document lists the main types, functions and syntax provided
by theory Main. It is meant as a quick overview of what is available.
For infix operators and their precedences see the final section. The
sophisticated class structure is only hinted at. For details see https:
//isabelle.in.tum.de/library /HOL/HOL.

HOL

The basic logic: © = y, True, False, = P, PN Q, PV Q, P — Q, Vx. P,
dx. P, 3lz. P, THE z. P.

undefined :: 'a

default ::'a

Syntax

vy = s@=y ()
P+— Q = P=4qQ

if v then yelse z = Ifzyz

let T = e; in es Let e; (Az. e3)

Orderings

A collection of classes defining basic orderings: preorder, partial order, linear
order, dense linear order and wellorder.

https://isabelle.in.tum.de/library/HOL/HOL
https://isabelle.in.tum.de/library/HOL/HOL

(<) e = 'a = bool (<=)
(<) :'a = 'a = bool

Least :: (Ya = bool) = 'a

Greatest :: ('a = bool) = 'a

min cla="a="a

mazx cla="a="a

top = a

bot = a

Syntax

T >y = y<z (>=)
T >y = y<uzx

Vi<ly. P = Ve.z<y—P
Jz<y. P = de.a<yAP
Similarly for <, > and >

LEAST z. P Least (\z. P)

GREATEST x. P Greatest (Az. P)

Lattices

Classes semilattice, lattice, distributive lattice and complete lattice (the lat-
ter in theory HOL.Set).

inf e = "a="a

sup :'a = 'a="a

Inf ::'a set = a

Sup :: 'a set = a

Syntax

Available via unbundle lattice syntax.
rLy = 25y

rCy = <y

xMy = infzy

zrUy = supzy

[1A = InfA

[JA = Sup A

T = top

€ = bot

Set

{} : a set

insert ::'a = 'a set = 'a set

Collect :: ("a = bool) = 'a set

(€) i 'a = 'a set = bool (1)
(V) it 'a set = 'a set = 'a set (Un)
(N) i 'a set = 'a set = 'a set (Int)
U i 'a set set = 'a set

N i 'a set set = 'a set

Pow ::'a set = 'a set set

UNIV ::'a set

(9 : ('la = 'b) = 'a set = 'b set

Ball ::'a set = ('a = bool) = bool

Bex ::'a set = ('a = bool) = bool
Syntax

{a1,...,a,} = insert ay (... (insert a, {})..
a¢ A = —(ze i

ACB = A<B

ACB = A<B

ADB = B<A

ADB = B<A

{z. P} = Collect (\z. P)
{t|zy...2,. P} = {v.321...2,. v=1tANP}
Jzel. A = Uz A) 1)

Uz. A = U((Az. A) “UNIV)
Nzel. A = N((Az. A) 1)

Nz A = (N ((Az. A) UNIV)
VzeA. P = Ball A (\z. P)
JzeA. P = Bex A (A\z. P)

range f = [UNIV

)

(un)

(INT)

Fun

id e = a

(o) ‘a="0)=(c="a)="c="b

inj_on (‘a = 'b) = 'a set = bool

inj it ('a = 'b) = bool

surj i (Ya = 'b) = bool

bij it (Ya = 'b) = bool

bij _betw (‘a = 'b) = 'a set = 'b set = bool

monotone_on ::'a set = (‘a = 'a = bool) = (b = 'b = bool) = (‘a = 'b) = bool
monotone ('a = 'a = bool) = (b = "b = bool) = (‘a = 'b) = bool
mono__on it 'a set = (‘a = 'b) = bool

mono (‘a = 'b) = bool

strict_mono_on :: 'a set = (‘a = 'b) = bool

strict_mono 2 ('a = 'b) = bool

antimono : ('a = 'b) = bool

fun_upd (la=")="a="b="a="

Syntax

flo = y) = fu_wifoy
fzri=y1, . yxpi=yn) = [flzr=y1).. (Tn:=Yyn)

Hilbert Choice

Hilbert’s selection (g) operator: SOME z. P.
inv_into :: 'a set = ('a = 'b) = b = 'a

Syntax

mv = inv_into UNIV

Fixed Points

Theory: HOL.Inductive.

Least and greatest fixed points in a complete lattice ‘a:

Ifp = (la="a) = "a

afp = ('a = 'a) = a

Note that in particular sets (‘a = bool) are complete lattices.

4

Sum_ Type
Type constructor +.
Inl 2la="a+'b

Inr t'a="b+"a
(<+>) :: 'a set = 'b set = ('a + 'b) set

Product_ Type

Types unit and x.

() 2 unit

Pair cla="b="Tax"b

fst slax 'b="a

snd e x b ="b

case_prod :: ('a = 'b = 'c) = 'a x 'b = 'c
curry (laxb="c)="a="b="c
Sigma i 'a set = (‘a = b set) = (‘a x 'b) set
Syntax

(a, b) = Pairab

Mz, y). t = case_prod (A\z y. t)

AXx B = Sigma A (_. B)

Pairs may be nested. Nesting to the right is printed as a tuple, e.g. (a, b, ¢)
is really (a, (b, ¢)). Pattern matching with pairs and tuples extends to all

binders, e.g. ¥ (z, y)€A. P, {(z, y). P}, etc.

Relation

'b) set = ('b x 'a) set

'b) set = ('b x ‘c) set = (‘a x 'c) set
set = 'a set = b set

‘a) set = (b= "a) = ('b x 'b) set

converse ('a
(0) (‘e x 'b)
(u) - E/a /b)

ny_image

Id_on i 'a set = (a x 'a) set
Id = (a x 'a) set

Domain = (‘a x 'b) set = 'a set
Range (‘a x 'b) set = b set

Field :: ('a x 'a) set = 'a set

refl_on ::'a set = (‘a x 'a) set = bool
/

refl (‘a x 'a) set = bool

sym (‘e x 'a) set = bool

antisym :: (‘a X 'a) set = bool

trans (‘a x 'a) set = bool

irrefl (‘a x 'a) set = bool

total _on :: 'a set = ('a x 'a) set = bool
total (‘e x 'a) set = bool

Syntax

r~' = converser (°-1)

Type synonym ‘a rel = ('a X 'a) set

Equiv__Relations

equiv i 'a set = (‘a x 'a) set = bool

(//) 'a set = ('a X 'a) set = 'a set set

congruent :: (‘a x 'a) set = (‘a = 'b) = bool

congruent2 :: (‘a x 'a) set = ('b x 'b) set = (‘a = 'b = 'c) = bool

Syntax

congruent r f
congruent2 r r f

f respects r
f respects2 r

Transitive Closure

/ !/

rtrancl :: ('a x 'a) set = (‘a x 'a) set

trancl :: ('a x 'a) set = (‘a x 'a) set

reficl 2 ('a x 'a) set = (‘a x 'a) set
acyclic :: ('a x 'a) set = bool

(™) (a x 'a) set = nat = (‘a X 'a) set

Syntax

r* = rtranclr (%)
rt = tranclr (T+)
r= = vrefldlr (T=)

Algebra

Theories HOL. Groups, HOL.Rings, HOL. Euclidean__ Rings and HOL.Fields
define a large collection of classes describing common algebraic structures
from semigroups up to fields. Everything is done in terms of overloaded

operators:

0 = a

1 = a

(+) ‘a="a="a
(—) e =Ta="a
uminus :: 'a = 'a (-)
(%) ‘a ="a="a
inverse :: 'a = 'a

(div) ‘a="a="a
abs 'a = 'a

sgn 2a=a

(dvd) ::'a = "a = bool
(div) ='a="a="a
(mod) ::'a='a="a
Syntax

lz| = abscz

Nat

datatype nat = 0 | Suc nat

(+) (=) (») () (div) (mod) (dvd)

(<) (<) min maxr Min Maz

of nat :: nat = 'a
(7)) =(a='a)=>nat="a="a

Int

Type int

(+) (=) wminus (x) (7)) (div) (mod) (dvd)
(<) (<) min mazr Min Maz

abs sgn

nat ant = nat

of int :: int = a

V4 :a set (Ints)

Syntax

int = of nat

Finite Set

finite : 'a set = bool
card :'a set = nat
Finite_Set.fold :: ('a = 'b = 'b) = 'b = 'a set = 'b

Lattices_ Big

Min = a set = a

Max 'a set = 'a

arg_min (‘a = 'b) = ('a = bool) = 'a
is_arg_min :: ('a = 'b) = (‘a = bool) = 'a = bool
arg_maz (‘a = 'b) = ('a = bool) = 'a
is_arg_maz :: ('a = 'b) = (‘a = bool) = 'a = bool

Syntax

ARG _MIN fz. P
ARG _MAX fz. P

arg_min f (Az. P)
arg_maz f (Az. P)

Groups__ Big

sum :: ('a = 'b) = 'a set = b
prod :: ('a = 'b) = 'a set = b

Syntax

YA sum (Az. z) A (SUM)
doaxeA. t sum (Az. t) A
S x|P.t x| Pt

Similarly for [] instead of > (PROD)

Wellfounded

wf it ('a x 'a) set = bool
Wellfounded.acc :: ('a x 'a) set = 'a set
measure : ('a = nat) = ("a x 'a) set
(<xlexx>) 2 ('a x 'a) set = (b x 'b) set = (('a x 'b) x 'a x 'b) set
(<xmlexx>) (‘a = nat) = ('a x 'a) set = ('a x 'a) set
less__than (nat x nat) set
(

pred__nat nat x nat) set

Set Interval

lessThan 'a = 'a set
atMost 'a = 'a set
greaterThan 'a = 'a set
atLeast 2 'a = 'a set
greaterThanLessThan :: 'a = 'a = 'a set
atLeastLess Than 'a = 'a = 'a set
greaterThanAtMost ‘a = 'a = 'a set
atLeastAtMost 'a = 'a = 'a set

Syntax

{.<y} = lessThan y

{..y} = atMost y

{z<..} = greaterThan z

{z..} = atLeast

{z<..<y} = greaterThanLessThan x y
{z..<y} = atLeastLessThan z y
{z<..y} = greaterThanAtMost x y
{z..y} = atLeastAtMost © y
UJi<n. A = Jie{.n} A

Ui<n. A = Jie{.<n}. A
Similarly for () instead of |J

Srx=ua.b.t = sum (Ax.t){a.b}
dYr=a.<b.t = sum (A\z.t) {a..<b}
dSa<b. t = sum (Az. t) {..b}
doa<b. t = sum (Az. t) {..<b}

Similarly for [] instead of Z
Power

(7)) 'a = nat = 'a

Option

datatype ‘a option = None | Some 'a

the 2 'a option = a
map__option :: ('a = 'b) = 'a option = 'b option
set_option :: 'a option = 'a set

Option.bind :: 'a option = (‘a = b option) = 'b option

List
datatype ‘a list = [| | (#) 'a ('a list)

(Q) == ‘a list = 'a list = 'a list

10

butlast
concat
distinct
drop
drop While
filter
find
fold
foldr
foldl

hd

last
length
lenlex
lex

lexn
lexord
listrel
listrell
lists
listset
list_all2

list_update ::
(‘e = 'b) = 'a list = 'b list

i (Ya = nat) list = (‘a x 'a) set
2 fa list = nat = a

i 'a list = nat set = 'a list

map
measures
(1)

nths
prod__list
remdups
removeAll
removel
replicate
rev

rotate
rotatel

set
shuffles
sort
sorted

(
= (
(!
i (

(

= a list = a
:'a list = a list

2 a = 'a list = 'a list

2 a = 'a list = a list

o nat = 'a = a list

2 a list = 'a list

:nat = 'a list = 'a list

2 a list = a list

2 a list = 'a set

2 a list = 'a list = 'a list set
a list = 'a list

2 'a list = bool

2 a list = 'a list

a list list = 'a list

2 'a list = bool

o nat = 'a list = 'a list

i (Ya = bool) = 'a list = 'a list

‘a = bool) = 'a list = 'a list

‘a = bool) = 'a list = 'a option
a="b="b)= "alist="b="b
‘a="b="b)="alist="b="b
‘a="b="a) = "a= "blist = "a

e list = 'a
e list = 'a
= 'a list = nat

x 'a) set = ('a list x 'a list) set
x 'a) set = ('a list x 'a list) set
x 'a) set = nat = (‘a list x 'a list) set
x 'a) set = ('a list x 'a list) set
x 'b) set = ('a list x 'b list) set
x 'a) set = ('a list x 'a list) set

'a set = 'a list set
: 'a set list = 'a list set
: ('la = b = bool) = 'a list = 'b list = bool

'a list = nat = 'a = 'a list

!/

11

sorted_wrt :: ('a = 'a = bool) = 'a list = bool

splice = la list = a list = 'a list
sum_list ::'a list = 'a

take = nat = 'a list = 'a list
takeWhile :: ('a = bool) = 'a list = 'a list
tl =l list = a list

upt : nat = nat = nat list

upto int = int = int list

2ip = a list = b list = (‘a x 'b) list
Syntax

[T, xn] = 11 H# o H oz, #]
[m..<n] = uptmn

[7..7] = uptoij

zs[n == x| = list_update zs n x

> xus. e listsum (map (Az. €) xs)

Filter input syntax [pat < e. b], where pat is a tuple pattern, which stands
for filter (Apat. b) e.

List comprehension input syntax: [e. ¢1, ..., ¢,] where each qualifier ¢; is
either a generator pat < e or a guard, i.e. boolean expression.

Map

Maps model partial functions and are often used as finite tables. However,
the domain of a map may be infinite.

Map.empty :: 'a = 'b option

(++) i (Ya = 'b option) = ('a = 'b option) = 'a = b option
(om) i (Ya = 'b option) = ('c = 'a option) = 'c = 'b option
(19 i (la = 'b option) = 'a set = 'a = 'b option

dom 2 (a = 'b option) = 'a set

ran i (Ya = 'b option) = 'b set

(Cn) i (Ya = 'b option) = ('a = 'b option) = bool

map_of = (Ya x 'b) list = 'a = 'b option

map_upds :: (a = 'b option) = 'a list = 'b list = 'a = b option

12

Syntax

Ax. None

m(x — y)

m(T1—= Y150« T Yn)
[T Y1, T Yn)
m(zs [—] ys)

A . None
m(x:=Some y)
Map.empty(z1—y1,. . -, Tn>Yn)

map__upds m xs ys

Infix operators in Main

Operator precedence associativity
Meta-logic — 1 right
= 2
Logic A 35 right
Vv 30 right
—, — 25 right
=, # 50 left
Orderings <, < >,> 50
Sets C, C, 2,0 a0
€, ¢ 50
N 70 left
U 65 left
Functions and Relations o 55 left
‘ 90 right
0 75 right
o 90 right
l 80 right
Numbers +, — 65 left
*, 70 left
div, mod 70 left
- 80 right
dvd 50
Lists #, @ 65 right
! 100 left

13

