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Introduction

Isabelle is a generic system for implementing logical formalisms, and Isa-
belle/HOL is the specialization of Isabelle for HOL, which abbreviates Higher-
Order Logic. We introduce HOL step by step following the equation

HOL = Functional Programming + Logic.

We assume that the reader is used to logical and set-theoretic notation and
is familiar with the basic concepts of functional programming.

Chapter 2 introduces HOL as a functional programming language and ex-
plains how to write simple inductive proofs of mostly equational properties
of recursive functions. Chapter 3 introduces the rest of HOL: the language of
formulas beyond equality, automatic proof tools, single-step proofs, and in-
ductive definitions, an essential specification construct. Chapter 4 introduces
Isar, Isabelle’s language for writing structured proofs.

This introduction to the core of Isabelle is intentionally concrete and
example-based: we concentrate on examples that illustrate the typical cases
without explaining the general case if it can be inferred from the examples.
We cover the essentials (from a functional programming point of view) as
quickly and compactly as possible.

For a comprehensive treatment of all things Isabelle we recommend the
Isabelle/Isar Reference Manual [7], which comes with the Isabelle distribu-
tion. The tutorial by Nipkow, Paulson and Wenzel [6] (in its updated version
that comes with the Isabelle distribution) is still recommended for the wealth
of examples and material, but its proof style is outdated. In particular it does
not cover the structured proof language Isar.

If you want to apply what you have learned about Isabelle we recommend
you download and read the book Concrete Semantics [5], a guided tour of the
wonderful world of programming language semantics formalized in Isabelle.
In fact, Programming and Proving in Isabelle/HOL constitutes part I of

http://www.concrete-semantics.org
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Concrete Semantics. The web pages for Concrete Semantics also provide a set
of LATEX-based slides and Isabelle demo files for teaching Programming and
Proving in Isabelle/HOL.
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Programming and Proving

This chapter introduces HOL as a functional programming language and
shows how to prove properties of functional programs by induction.

2.1 Basics

2.1.1 Types, Terms and Formulas

HOL is a typed logic whose type system resembles that of functional pro-
gramming languages. Thus there are

base types, in particular bool, the type of truth values, nat, the type of
natural numbers (N), and int , the type of mathematical integers (Z).

type constructors, in particular list, the type of lists, and set, the type of
sets. Type constructors are written postfix, i.e., after their arguments. For
example, nat list is the type of lists whose elements are natural numbers.

function types, denoted by ⇒.
type variables, denoted by ′a, ′b, etc., like in ML.

Note that ′a ⇒ ′b list means ′a ⇒ ( ′b list), not ( ′a ⇒ ′b) list : postfix type
constructors have precedence over ⇒.

Terms are formed as in functional programming by applying functions to
arguments. If f is a function of type τ1 ⇒ τ2 and t is a term of type τ1 then
f t is a term of type τ2. We write t :: τ to mean that term t has type τ.

There are many predefined infix symbols like + and 6. The name of the cor-
responding binary function is (+), not just +. That is, x + y is nice surface

syntax (“syntactic sugar”) for (+) x y.

HOL also supports some basic constructs from functional programming:
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(if b then t1 else t2)
(let x = t in u)
(case t of pat1 ⇒ t1 | . . . | patn ⇒ tn)

The above three constructs must always be enclosed in parentheses if they occur
inside other constructs.

Terms may also contain λ-abstractions. For example, λx . x is the identity
function.

Formulas are terms of type bool. There are the basic constants True and
False and the usual logical connectives (in decreasing order of precedence):
¬, ∧, ∨, −→.

Equality is available in the form of the infix function = of type ′a ⇒ ′a
⇒ bool. It also works for formulas, where it means “if and only if”.

Quantifiers are written ∀ x . P and ∃ x . P.
Isabelle automatically computes the type of each variable in a term. This

is called type inference. Despite type inference, it is sometimes necessary
to attach an explicit type constraint (or type annotation) to a variable
or term. The syntax is t :: τ as in m + (n ::nat). Type constraints may be
needed to disambiguate terms involving overloaded functions such as +.

Finally there are the universal quantifier
∧

and the implication =⇒. They
are part of the Isabelle framework, not the logic HOL. Logically, they agree
with their HOL counterparts ∀ and −→, but operationally they behave dif-
ferently. This will become clearer as we go along.

Right-arrows of all kinds always associate to the right. In particular, the formula
A1 =⇒ A2 =⇒ A3 means A1 =⇒ (A2 =⇒ A3). The (Isabelle-specific1) notation

[[ A1; . . .; An ]] =⇒ A is short for the iterated implication A1 =⇒ . . . =⇒ An =⇒ A.

Sometimes we also employ inference rule notation:
A1 . . . An

A

2.1.2 Theories

Roughly speaking, a theory is a named collection of types, functions, and
theorems, much like a module in a programming language. All Isabelle text
needs to go into a theory. The general format of a theory T is

theory T
imports T1 . . . Tn

begin
definitions, theorems and proofs
end

1 To display implications in this style in Isabelle/jEdit you need to set Plugins >

Plugin Options > Isabelle/General > Print Mode to “brackets” and restart.
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where T1 . . . Tn are the names of existing theories that T is based on. The
T i are the direct parent theories of T. Everything defined in the parent
theories (and their parents, recursively) is automatically visible. Each theory
T must reside in a theory file named T .thy.

HOL contains a theory Main , the union of all the basic predefined theories like
arithmetic, lists, sets, etc. Unless you know what you are doing, always include

Main as a direct or indirect parent of all your theories.

In addition to the theories that come with the Isabelle/HOL distribution
(see https://isabelle.in.tum.de/library/HOL) there is also the Archive
of Formal Proofs at https://isa-afp.org, a growing collection of Isabelle
theories that everybody can contribute to.

2.1.3 Quotation Marks

The textual definition of a theory follows a fixed syntax with keywords like
begin and datatype. Embedded in this syntax are the types and formulas of
HOL. To distinguish the two levels, everything HOL-specific (terms and types)
must be enclosed in quotation marks: ". . . ". Quotation marks around a single
identifier can be dropped. When Isabelle prints a syntax error message, it
refers to the HOL syntax as the inner syntax and the enclosing theory
language as the outer syntax.

2.1.4 Proof State

By default Isabelle/jEdit does not show the proof state but this tutorial refers
to it frequently. You should tick the “Proof state” box to see the proof state in

the output window.

2.2 Types bool, nat and list

These are the most important predefined types. We go through them one by
one. Based on examples we learn how to define (possibly recursive) functions
and prove theorems about them by induction and simplification.

2.2.1 Type bool

The type of boolean values is a predefined datatype

datatype bool = True | False

https://isabelle.in.tum.de/library/HOL
https://isa-afp.org
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with the two values True and False and with many predefined functions: ¬,
∧, ∨, −→, etc. Here is how conjunction could be defined by pattern matching:

fun conj :: "bool ⇒ bool ⇒ bool" where
"conj True True = True" |

"conj _ _= False"

Both the datatype and function definitions roughly follow the syntax of func-
tional programming languages.

2.2.2 Type nat

Natural numbers are another predefined datatype:

datatype nat = 0 | Suc nat

All values of type nat are generated by the constructors 0 and Suc. Thus the
values of type nat are 0, Suc 0, Suc (Suc 0), etc. There are many predefined
functions: +, ∗, 6, etc. Here is how you could define your own addition:

fun add :: "nat ⇒ nat ⇒ nat" where
"add 0 n = n" |

"add (Suc m) n = Suc(add m n)"

And here is a proof of the fact that add m 0 = m :

lemma add_02: "add m 0 = m"
apply(induction m)

apply(auto)
done

The lemma command starts the proof and gives the lemma a name, add_02.
Properties of recursively defined functions need to be established by induction
in most cases. Command apply(induction m) instructs Isabelle to start a proof
by induction on m. In response, it will show the following proof state:

1. add 0 0 = 0

2.
∧

m . add m 0 = m =⇒ add (Suc m) 0 = Suc m

The numbered lines are known as subgoals. The first subgoal is the base case,
the second one the induction step. The prefix

∧
m . is Isabelle’s way of say-

ing “for an arbitrary but fixed m”. The =⇒ separates assumptions from the
conclusion. The command apply(auto) instructs Isabelle to try and prove all
subgoals automatically, essentially by simplifying them. Because both sub-
goals are easy, Isabelle can do it. The base case add 0 0 = 0 holds by def-
inition of add, and the induction step is almost as simple: add (Suc m) 0

= Suc(add m 0) = Suc m using first the definition of add and then the
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induction hypothesis. In summary, both subproofs rely on simplification with
function definitions and the induction hypothesis. As a result of that final
done, Isabelle associates the lemma just proved with its name. You can now
inspect the lemma with the command

thm add_02

which displays

add ?m 0 = ?m

The free variable m has been replaced by the unknown ?m. There is no
logical difference between the two but there is an operational one: unknowns
can be instantiated, which is what you want after some lemma has been
proved.

Note that there is also a proof method induct, which behaves almost like
induction ; the difference is explained in Chapter 4.

Terminology: We use lemma, theorem and rule interchangeably for proposi-
tions that have been proved.

Numerals (0, 1, 2, . . . ) and most of the standard arithmetic operations (+, −,
∗, 6, <, etc.) are overloaded: they are available not just for natural numbers

but for other types as well. For example, given the goal x + 0 = x, there is nothing
to indicate that you are talking about natural numbers. Hence Isabelle can only
infer that x is of some arbitrary type where 0 and + exist. As a consequence, you
will be unable to prove the goal. In this particular example, you need to include an
explicit type constraint, for example x+0 = (x ::nat). If there is enough contextual
information this may not be necessary: Suc x = x automatically implies x ::nat
because Suc is not overloaded.

An Informal Proof

Above we gave some terse informal explanation of the proof of add m 0 = m.
A more detailed informal exposition of the lemma might look like this:

Lemma add m 0 = m
Proof by induction on m.

• Case 0 (the base case): add 0 0 = 0 holds by definition of add.
• Case Suc m (the induction step): We assume add m 0 = m, the induction

hypothesis (IH), and we need to show add (Suc m) 0 = Suc m. The proof
is as follows:
add (Suc m) 0 = Suc (add m 0) by definition of add

= Suc m by IH
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Throughout this book, IH will stand for “induction hypothesis”.
We have now seen three proofs of add m 0 = 0: the Isabelle one, the terse

four lines explaining the base case and the induction step, and just now a
model of a traditional inductive proof. The three proofs differ in the level of
detail given and the intended reader: the Isabelle proof is for the machine, the
informal proofs are for humans. Although this book concentrates on Isabelle
proofs, it is important to be able to rephrase those proofs as informal text com-
prehensible to a reader familiar with traditional mathematical proofs. Later
on we will introduce an Isabelle proof language that is closer to traditional
informal mathematical language and is often directly readable.

2.2.3 Type list

Although lists are already predefined, we define our own copy for demonstra-
tion purposes:

datatype ′a list = Nil | Cons ′a " ′a list"

• Type ′a list is the type of lists over elements of type ′a. Because ′a is a
type variable, lists are in fact polymorphic: the elements of a list can be
of arbitrary type (but must all be of the same type).

• Lists have two constructors: Nil, the empty list, and Cons, which puts an
element (of type ′a) in front of a list (of type ′a list). Hence all lists are
of the form Nil, or Cons x Nil, or Cons x (Cons y Nil), etc.

• datatype requires no quotation marks on the left-hand side, but on the
right-hand side each of the argument types of a constructor needs to be
enclosed in quotation marks, unless it is just an identifier (e.g., nat or ′a).

We also define two standard functions, append and reverse:

fun app :: " ′a list ⇒ ′a list ⇒ ′a list" where
"app Nil ys = ys" |

"app (Cons x xs) ys = Cons x (app xs ys)"

fun rev :: " ′a list ⇒ ′a list" where
"rev Nil = Nil" |

"rev (Cons x xs) = app (rev xs) (Cons x Nil)"

By default, variables xs, ys and zs are of list type.
Command value evaluates a term. For example,

value "rev(Cons True (Cons False Nil))"

yields the result Cons False (Cons True Nil). This works symbolically, too:

value "rev(Cons a (Cons b Nil))"
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yields Cons b (Cons a Nil).

Figure 2.1 shows the theory created so far. Because list, Nil, Cons, etc.
are already predefined, Isabelle prints qualified (long) names when executing
this theory, for example, MyList .Nil instead of Nil. To suppress the qualified
names you can insert the command declare [[names_short]]. This is not
recommended in general but is convenient for this unusual example.

theory MyList
imports Main
begin

datatype ’a list = Nil | Cons ’a "’a list"

fun app :: "’a list => ’a list => ’a list" where
"app Nil ys = ys" |
"app (Cons x xs) ys = Cons x (app xs ys)"

fun rev :: "’a list => ’a list" where
"rev Nil = Nil" |
"rev (Cons x xs) = app (rev xs) (Cons x Nil)"

value "rev(Cons True (Cons False Nil))"

(* a comment *)

end

Fig. 2.1. A theory of lists

Structural Induction for Lists

Just as for natural numbers, there is a proof principle of induction for lists.
Induction over a list is essentially induction over the length of the list, al-
though the length remains implicit. To prove that some property P holds for
all lists xs, i.e., P xs , you need to prove

1. the base case P Nil and
2. the inductive case P (Cons x xs) under the assumption P xs, for some

arbitrary but fixed x and xs.

This is often called structural induction for lists.
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2.2.4 The Proof Process

We will now demonstrate the typical proof process, which involves the for-
mulation and proof of auxiliary lemmas. Our goal is to show that reversing a
list twice produces the original list.

theorem rev_rev [simp]: "rev(rev xs) = xs"

Commands theorem and lemma are interchangeable and merely indicate the
importance we attach to a proposition. Via the bracketed attribute simp we
also tell Isabelle to make the eventual theorem a simplification rule: future
proofs involving simplification will replace occurrences of rev (rev xs) by xs.
The proof is by induction:

apply(induction xs)

As explained above, we obtain two subgoals, namely the base case (Nil) and
the induction step (Cons):

1. rev (rev Nil) = Nil
2.

∧
x1 xs .
rev (rev xs) = xs =⇒ rev (rev (Cons x1 xs)) = Cons x1 xs

Let us try to solve both goals automatically:

apply(auto)

Subgoal 1 is proved, and disappears; the simplified version of subgoal 2 be-
comes the new subgoal 1:

1.
∧

x1 xs .
rev (rev xs) = xs =⇒
rev (app (rev xs) (Cons x1 Nil)) = Cons x1 xs

In order to simplify this subgoal further, a lemma suggests itself.

A First Lemma

We insert the following lemma in front of the main theorem:

lemma rev_app [simp]: "rev(app xs ys) = app (rev ys) (rev xs)"

There are two variables that we could induct on: xs and ys. Because app is
defined by recursion on the first argument, xs is the correct one:

apply(induction xs)

This time not even the base case is solved automatically:

apply(auto)
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1. rev ys = app (rev ys) Nil
A total of 2 subgoals ...

Again, we need to abandon this proof attempt and prove another simple
lemma first.

A Second Lemma

We again try the canonical proof procedure:

lemma app_Nil2 [simp]: "app xs Nil = xs"
apply(induction xs)
apply(auto)
done

Thankfully, this worked. Now we can continue with our stuck proof attempt
of the first lemma:

lemma rev_app [simp]: "rev(app xs ys) = app (rev ys) (rev xs)"
apply(induction xs)
apply(auto)

We find that this time auto solves the base case, but the induction step merely
simplifies to

1.
∧

x1 xs .
rev (app xs ys) = app (rev ys) (rev xs) =⇒
app (app (rev ys) (rev xs)) (Cons x1 Nil) =

app (rev ys) (app (rev xs) (Cons x1 Nil))

The missing lemma is associativity of app, which we insert in front of the
failed lemma rev_app.

Associativity of app

The canonical proof procedure succeeds without further ado:

lemma app_assoc [simp]: "app (app xs ys) zs = app xs (app ys zs)"
apply(induction xs)
apply(auto)
done

Finally the proofs of rev_app and rev_rev succeed, too.
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Another Informal Proof

Here is the informal proof of associativity of app corresponding to the Isabelle
proof above.

Lemma app (app xs ys) zs = app xs (app ys zs)
Proof by induction on xs.

• Case Nil : app (app Nil ys) zs = app ys zs = app Nil (app ys zs) holds
by definition of app.

• Case Cons x xs : We assume

app (app xs ys) zs = app xs (app ys zs) (IH)

and we need to show

app (app (Cons x xs) ys) zs = app (Cons x xs) (app ys zs).

The proof is as follows:
app (app (Cons x xs) ys) zs
= app (Cons x (app xs ys)) zs by definition of app
= Cons x (app (app xs ys) zs) by definition of app
= Cons x (app xs (app ys zs)) by IH
= app (Cons x xs) (app ys zs) by definition of app

Didn’t we say earlier that all proofs are by simplification? But in both cases,
going from left to right, the last equality step is not a simplification at all!
In the base case it is app ys zs = app Nil (app ys zs). It appears almost
mysterious because we suddenly complicate the term by appending Nil on
the left. What is really going on is this: when proving some equality s = t ,
both s and t are simplified until they “meet in the middle”. This heuristic
for equality proofs works well for a functional programming context like ours.
In the base case both app (app Nil ys) zs and app Nil (app ys zs) are
simplified to app ys zs, the term in the middle.

2.2.5 Predefined Lists

Isabelle’s predefined lists are the same as the ones above, but with more
syntactic sugar:

• [] is Nil ,
• x # xs is Cons x xs ,
• [x1, . . ., xn] is x1 # . . . # xn # [], and
• xs @ ys is app xs ys.
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There is also a large library of predefined functions. The most important ones
are the length function length :: ′a list ⇒ nat (with the obvious definition),
and the map function that applies a function to all elements of a list:

fun map :: "( ′a ⇒ ′b) ⇒ ′a list ⇒ ′b list" where
"map f Nil = Nil" |

"map f (Cons x xs) = Cons (f x ) (map f xs)"

From now on lists are always the predefined lists.

2.2.6 Types int and real

In addition to nat there are also the types int and real, the mathematical
integers and real numbers. As mentioned above, numerals and most of the
standard arithmetic operations are overloaded. In particular they are defined
on int and real.

There are two infix exponentiation operators: (^) for nat and int (with exponent
of type nat in both cases) and (powr) for real.

Type int is already part of theory Main, but in order to use real as well, you
have to import theory Complex_Main instead of Main.

There are three coercion functions that are inclusions and do not lose
information:

int :: nat ⇒ int
real :: nat ⇒ real

real_of_int :: int ⇒ real

Isabelle inserts these inclusions automatically once you import Com-
plex_Main. If there are multiple type-correct completions, Isabelle chooses
an arbitrary one. For example, the input (i ::int) + (n ::nat) has the unique
type-correct completion i + int n. In contrast, ((n ::nat) + n) :: real has two
type-correct completions, real(n+n) and real n + real n.

There are also the coercion functions in the other direction:

nat :: int ⇒ nat
floor :: real ⇒ int

ceiling :: real ⇒ int

Exercises

Exercise 2.1. Use the value command to evaluate the following expressions:
"1 + (2::nat)", "1 + (2::int)", "1 − (2::nat)" and "1 − (2::int)".
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Exercise 2.2. Start from the definition of add given above. Prove that add
is associative and commutative. Define a recursive function double :: nat ⇒
nat and prove double m = add m m.

Exercise 2.3. Define a function count :: ′a ⇒ ′a list ⇒ nat that counts the
number of occurrences of an element in a list. Prove count x xs 6 length xs.

Exercise 2.4. Define a recursive function snoc :: ′a list ⇒ ′a ⇒ ′a list
that appends an element to the end of a list. With the help of snoc define
a recursive function reverse :: ′a list ⇒ ′a list that reverses a list. Prove
reverse (reverse xs) = xs.

Exercise 2.5. Define a recursive function sum_upto :: nat ⇒ nat such that
sum_upto n = 0 + ... + n and prove sum_upto n = n ∗ (n + 1) div 2.

2.3 Type and Function Definitions

Type synonyms are abbreviations for existing types, for example

type_synonym string = "char list"

Type synonyms are expanded after parsing and are not present in internal
representation and output. They are mere conveniences for the reader.

2.3.1 Datatypes

The general form of a datatype definition looks like this:

datatype ( ′a1,. . .,
′an)t = C1 "τ1,1" . . . "τ1,n1

"
| . . .
| Ck "τk,1" . . . "τk,nk

"

It introduces the constructors Ci :: τi,1 ⇒ · · · ⇒ τi,ni
⇒ ( ′a1,. . .,

′an)t
and expresses that any value of this type is built from these constructors in
a unique manner. Uniqueness is implied by the following properties of the
constructors:

• Distinctness: Ci . . . 6= Cj . . . if i 6= j

• Injectivity: (Ci x1 . . . xni
= Ci y1 . . . yni

) =

(x1 = y1 ∧ . . .∧ xni
= yni

)

The fact that any value of the datatype is built from the constructors implies
the structural induction rule: to show P x for all x of type ( ′a1,. . .,

′an)t,
one needs to show P(Ci x1 . . . xni

) (for each i) assuming P(xj) for all j where
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τi,j = ( ′a1,. . .,
′an)t. Distinctness and injectivity are applied automatically

by auto and other proof methods. Induction must be applied explicitly.
Like in functional programming languages, datatype values can be taken

apart with case expressions, for example

(case xs of [] ⇒ 0 | x # _⇒ Suc x )

Case expressions must be enclosed in parentheses.
As an example of a datatype beyond nat and list, consider binary trees:

datatype ′a tree = Tip | Node " ′a tree" ′a " ′a tree"

with a mirror function:

fun mirror :: " ′a tree ⇒ ′a tree" where
"mirror Tip = Tip" |

"mirror (Node l a r) = Node (mirror r) a (mirror l)"

The following lemma illustrates induction:

lemma "mirror(mirror t) = t"
apply(induction t)

yields

1. mirror (mirror Tip) = Tip
2.

∧
t1 x2 t2.
[[mirror (mirror t1) = t1; mirror (mirror t2) = t2]]
=⇒ mirror (mirror (Node t1 x2 t2)) = Node t1 x2 t2

The induction step contains two induction hypotheses, one for each subtree.
An application of auto finishes the proof.

A very simple but also very useful datatype is the predefined

datatype ′a option = None | Some ′a

Its sole purpose is to add a new element None to an existing type ′a. To
make sure that None is distinct from all the elements of ′a, you wrap them
up in Some and call the new type ′a option. A typical application is a lookup
function on a list of key-value pairs, often called an association list:

fun lookup :: "( ′a ∗ ′b) list ⇒ ′a ⇒ ′b option" where
"lookup [] x = None" |

"lookup ((a ,b) # ps) x = (if a = x then Some b else lookup ps x )"

Note that τ1 ∗ τ2 is the type of pairs, also written τ1 × τ2. Pairs can be taken
apart either by pattern matching (as above) or with the projection functions
fst and snd : fst (x , y) = x and snd (x , y) = y. Tuples are simulated by
pairs nested to the right: (a , b, c) is short for (a , (b, c)) and τ1 × τ2 × τ3
is short for τ1 × (τ2 × τ3).
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2.3.2 Definitions

Non-recursive functions can be defined as in the following example:

definition sq :: "nat ⇒ nat" where
"sq n = n ∗ n"

Such definitions do not allow pattern matching but only f x1 . . . xn = t,
where f does not occur in t.

2.3.3 Abbreviations

Abbreviations are similar to definitions:

abbreviation sq ′ :: "nat ⇒ nat" where
"sq ′ n ≡ n ∗ n"

The key difference is that sq ′ is only syntactic sugar: after parsing, sq ′ t is
replaced by t ∗ t ; before printing, every occurrence of u ∗ u is replaced by
sq ′ u . Internally, sq ′ does not exist. This is the advantage of abbreviations
over definitions: definitions need to be expanded explicitly (Section 2.5.5)
whereas abbreviations are already expanded upon parsing. However, abbrevi-
ations should be introduced sparingly: if abused, they can lead to a confusing
discrepancy between the internal and external view of a term.

The ASCII representation of ≡ is == or \<equiv>.

2.3.4 Recursive Functions

Recursive functions are defined with fun by pattern matching over datatype
constructors. The order of equations matters, as in functional programming
languages. However, all HOL functions must be total. This simplifies the logic
— terms are always defined — but means that recursive functions must ter-
minate. Otherwise one could define a function f n = f n + 1 and conclude
0 = 1 by subtracting f n on both sides.

Isabelle’s automatic termination checker requires that the arguments of
recursive calls on the right-hand side must be strictly smaller than the ar-
guments on the left-hand side. In the simplest case, this means that one
fixed argument position decreases in size with each recursive call. The size is
measured as the number of constructors (excluding 0-ary ones, e.g., Nil). Lex-
icographic combinations are also recognized. In more complicated situations,
the user may have to prove termination by hand. For details see [3].

Functions defined with fun come with their own induction schema that
mirrors the recursion schema and is derived from the termination order. For
example,
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fun div2 :: "nat ⇒ nat" where
"div2 0 = 0" |

"div2 (Suc 0) = 0" |

"div2 (Suc(Suc n)) = Suc(div2 n)"

does not just define div2 but also proves a customized induction rule:

P 0 P (Suc 0)
∧

n . P n =⇒ P (Suc (Suc n))

P m

This customized induction rule can simplify inductive proofs. For example,

lemma "div2 n = n div 2"
apply(induction n rule : div2.induct)

(where the infix div is the predefined division operation) yields the subgoals

1. div2 0 = 0 div 2

2. div2 (Suc 0) = Suc 0 div 2

3.
∧

n . div2 n = n div 2 =⇒
div2 (Suc (Suc n)) = Suc (Suc n) div 2

An application of auto finishes the proof. Had we used ordinary structural
induction on n, the proof would have needed an additional case analysis in
the induction step.

This example leads to the following induction heuristic:

Let f be a recursive function. If the definition of f is more com-
plicated than having one equation for each constructor of some
datatype, then properties of f are best proved via f .induct.

The general case is often called computation induction, because the
induction follows the (terminating!) computation. For every defining equation

f (e) = . . . f (r1) . . . f (rk) . . .

where f (r i), i=1. . .k, are all the recursive calls, the induction rule f .induct
contains one premise of the form

P(r1) =⇒ . . . =⇒ P(rk) =⇒ P(e)

If f :: τ1 ⇒ . . . ⇒ τn ⇒ τ then f .induct is applied like this:

apply(induction x1 . . . xn rule : f .induct)

where typically there is a call f x1 . . . xn in the goal. But note that the
induction rule does not mention f at all, except in its name, and is applicable
independently of f.
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Exercises

Exercise 2.6. Starting from the type ′a tree defined in the text, define a
function contents :: ′a tree ⇒ ′a list that collects all values in a tree in a list,
in any order, without removing duplicates. Then define a function sum_tree
:: nat tree ⇒ nat that sums up all values in a tree of natural numbers and
prove sum_tree t = sum_list (contents t) where sum_list is predefined by
the equations sum_list [] = 0 and sum_list (x # xs) = x + sum_list xs.

Exercise 2.7. Define the two functions pre_order and post_order of type
′a tree ⇒ ′a list that traverse a tree and collect all stored values in the
respective order in a list. Prove pre_order (mirror t) = rev (post_order t).

Exercise 2.8. Define a function intersperse :: ′a ⇒ ′a list ⇒ ′a list such
that intersperse a [x1, ..., xn] = [x1, a , x2, a , ..., a , xn]. Now prove that
map f (intersperse a xs) = intersperse (f a) (map f xs).

2.4 Induction Heuristics

We have already noted that theorems about recursive functions are proved by
induction. In case the function has more than one argument, we have followed
the following heuristic in the proofs about the append function:

Perform induction on argument number i

if the function is defined by recursion on argument number i.

The key heuristic, and the main point of this section, is to generalize the
goal before induction. The reason is simple: if the goal is too specific, the
induction hypothesis is too weak to allow the induction step to go through.
Let us illustrate the idea with an example.

Function rev has quadratic worst-case running time because it calls ap-
pend for each element of the list and append is linear in its first argument.
A linear time version of rev requires an extra argument where the result is
accumulated gradually, using only #:

fun itrev :: " ′a list ⇒ ′a list ⇒ ′a list" where
"itrev [] ys = ys" |

"itrev (x#xs) ys = itrev xs (x#ys)"

The behaviour of itrev is simple: it reverses its first argument by stacking
its elements onto the second argument, and it returns that second argument
when the first one becomes empty. Note that itrev is tail-recursive: it can be
compiled into a loop; no stack is necessary for executing it.

Naturally, we would like to show that itrev reverses its first argument:
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lemma "itrev xs [] = rev xs"

There is no choice as to the induction variable:

apply(induction xs)
apply(auto)

Unfortunately, this attempt does not prove the induction step:

1.
∧

a xs . itrev xs [] = rev xs =⇒ itrev xs [a ] = rev xs @ [a ]

The induction hypothesis is too weak. The fixed argument, [], prevents it from
rewriting the conclusion. This example suggests a heuristic:

Generalize goals for induction by replacing constants by variables.

Of course one cannot do this naively: itrev xs ys = rev xs is just not true.
The correct generalization is

lemma "itrev xs ys = rev xs @ ys"

If ys is replaced by [], the right-hand side simplifies to rev xs, as required. In
this instance it was easy to guess the right generalization. Other situations
can require a good deal of creativity.

Although we now have two variables, only xs is suitable for induction, and
we repeat our proof attempt. Unfortunately, we are still not there:

1.
∧

a xs .
itrev xs ys = rev xs @ ys =⇒
itrev xs (a # ys) = rev xs @ a # ys

The induction hypothesis is still too weak, but this time it takes no intuition
to generalize: the problem is that the ys in the induction hypothesis is fixed,
but the induction hypothesis needs to be applied with a # ys instead of ys.
Hence we prove the theorem for all ys instead of a fixed one. We can instruct
induction to perform this generalization for us by adding arbitrary : ys .

apply(induction xs arbitrary : ys)

The induction hypothesis in the induction step is now universally quantified
over ys :

1.
∧

ys . itrev [] ys = rev [] @ ys
2.

∧
a xs ys .
(
∧

ys . itrev xs ys = rev xs @ ys) =⇒
itrev (a # xs) ys = rev (a # xs) @ ys

Thus the proof succeeds:

apply(auto)
done

This leads to another heuristic for generalization:
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Generalize induction by generalizing all free variables
(except the induction variable itself).

Generalization is best performed with arbitrary : y1 . . . yk. This heuristic
prevents trivial failures like the one above. However, it should not be applied
blindly. It is not always required, and the additional quantifiers can complicate
matters in some cases. The variables that need to be quantified are typically
those that change in recursive calls.

Exercises

Exercise 2.9. Write a tail-recursive variant of the add function on nat :
itadd. Tail-recursive means that in the recursive case, itadd needs to call
itself directly: itadd (Suc m) n = itadd . . .. Prove itadd m n = add m n.

2.5 Simplification

So far we have talked a lot about simplifying terms without explaining the
concept. Simplification means

• using equations l = r from left to right (only),
• as long as possible.

To emphasize the directionality, equations that have been given the simp
attribute are called simplification rules. Logically, they are still symmetric,
but proofs by simplification use them only in the left-to-right direction. The
proof tool that performs simplifications is called the simplifier. It is the basis
of auto and other related proof methods.

The idea of simplification is best explained by an example. Given the
simplification rules

0 + n = n (1)

Suc m + n = Suc (m + n) (2)

(Suc m 6 Suc n) = (m 6 n) (3)

(0 6 m) = True (4)

the formula 0 + Suc 0 6 Suc 0 + x is simplified to True as follows:

(0 + Suc 0 6 Suc 0 + x )
(1)
=

(Suc 0 6 Suc 0 + x )
(2)
=

(Suc 0 6 Suc (0 + x ))
(3)
=

(0 6 0 + x )
(4)
=

True
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Simplification is often also called rewriting and simplification rules rewrite
rules.

2.5.1 Simplification Rules

The attribute simp declares theorems to be simplification rules, which the
simplifier will use automatically. In addition, datatype and fun commands im-
plicitly declare some simplification rules: datatype the distinctness and injec-
tivity rules, fun the defining equations. Definitions are not declared as simpli-
fication rules automatically! Nearly any theorem can become a simplification
rule. The simplifier will try to transform it into an equation. For example, the
theorem ¬ P is turned into P = False.

Only equations that really simplify, like rev (rev xs) = xs and xs @
[] = xs, should be declared as simplification rules. Equations that may be
counterproductive as simplification rules should only be used in specific proof
steps (see Section 2.5.4 below). Distributivity laws, for example, alter the
structure of terms and can produce an exponential blow-up.

2.5.2 Conditional Simplification Rules

Simplification rules can be conditional. Before applying such a rule, the sim-
plifier will first try to prove the preconditions, again by simplification. For
example, given the simplification rules

p 0 = True
p x =⇒ f x = g x,

the term f 0 simplifies to g 0 but f 1 does not simplify because p 1 is not
provable.

2.5.3 Termination

Simplification can run forever, for example if both f x = g x and g x = f x are
simplification rules. It is the user’s responsibility not to include simplification
rules that can lead to nontermination, either on their own or in combination
with other simplification rules. The right-hand side of a simplification rule
should always be “simpler” than the left-hand side — in some sense. But since
termination is undecidable, such a check cannot be automated completely and
Isabelle makes little attempt to detect nontermination.

When conditional simplification rules are applied, their preconditions are
proved first. Hence all preconditions need to be simpler than the left-hand
side of the conclusion. For example
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n < m =⇒ (n < Suc m) = True

is suitable as a simplification rule: both n < m and True are simpler than
n < Suc m . But

Suc n < m =⇒ (n < m) = True

leads to nontermination: when trying to rewrite n < m to True one first has
to prove Suc n < m , which can be rewritten to True provided Suc (Suc n)
< m, ad infinitum.

2.5.4 The simp Proof Method

So far we have only used the proof method auto. Method simp is the key
component of auto, but auto can do much more. In some cases, auto is
overeager and modifies the proof state too much. In such cases the more
predictable simp method should be used. Given a goal

1. [[ P1; . . .; Pm ]] =⇒ C

the command

apply(simp add : th1 . . . thn)

simplifies the assumptions P i and the conclusion C using

• all simplification rules, including the ones coming from datatype and fun,
• the additional lemmas th1 . . . thn, and
• the assumptions.

In addition to or instead of add there is also del for removing simplification
rules temporarily. Both are optional. Method auto can be modified similarly:

apply(auto simp add : . . . simp del : . . .)

Here the modifiers are simp add and simp del instead of just add and del
because auto does not just perform simplification.

Note that simp acts only on subgoal 1, auto acts on all subgoals. There
is also simp_all, which applies simp to all subgoals.

2.5.5 Rewriting with Definitions

Definitions introduced by the command definition can also be used as sim-
plification rules, but by default they are not: the simplifier does not expand
them automatically. Definitions are intended for introducing abstract con-
cepts and not merely as abbreviations. Of course, we need to expand the
definition initially, but once we have proved enough abstract properties of the
new constant, we can forget its original definition. This style makes proofs
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more robust: if the definition has to be changed, only the proofs of the ab-
stract properties will be affected.

The definition of a function f is a theorem named f_def and can be added
to a call of simp like any other theorem:

apply(simp add : f_def )

In particular, let-expressions can be unfolded by making Let_def a simplifi-
cation rule.

2.5.6 Case Splitting With simp

Goals containing if-expressions are automatically split into two cases by simp
using the rule

P (if A then s else t) = ((A −→ P s) ∧ (¬ A −→ P t))

For example, simp can prove

(A ∧ B) = (if A then B else False)

because both A −→ (A ∧ B) = B and ¬ A −→ (A ∧ B) = False simplify
to True.

We can split case-expressions similarly. For nat the rule looks like this:

P (case e of 0 ⇒ a | Suc n ⇒ b n) =

((e = 0 −→ P a) ∧ (∀n . e = Suc n −→ P (b n)))

Case expressions are not split automatically by simp, but simp can be in-
structed to do so:

apply(simp split : nat .split)

splits all case-expressions over natural numbers. For an arbitrary datatype t
it is t .split instead of nat .split. Method auto can be modified in exactly the
same way. The modifier split : can be followed by multiple names. Splitting
if or case-expressions in the assumptions requires split : if_splits or split :
t .splits.

2.5.7 Rewriting let and Numerals

Let-expressions (let x = s in t) can be expanded explicitly with the sim-
plification rule Let_def. The simplifier will not expand lets automatically in
many cases.

Numerals of type nat can be converted to Suc terms with the simplifi-
cation rule numeral_eq_Suc. This is required, for example, when a function
that is defined by pattern matching with Suc is applied to a numeral: if f is
defined by f 0 = ... and f (Suc n) = ..., the simplifier cannot simplify f 2

unless 2 is converted to Suc (Suc 0) (via numeral_eq_Suc).
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Exercises

Exercise 2.10. Define a datatype tree0 of binary tree skeletons which do not
store any information, neither in the inner nodes nor in the leaves. Define a
function nodes :: tree0 ⇒ nat that counts the number of all nodes (inner
nodes and leaves) in such a tree. Consider the following recursive function:

fun explode :: "nat ⇒ tree0 ⇒ tree0" where
"explode 0 t = t" |

"explode (Suc n) t = explode n (Node t t)"

Find an equation expressing the size of a tree after exploding it (nodes
(explode n t)) as a function of nodes t and n. Prove your equation. You
may use the usual arithmetic operators, including the exponentiation opera-
tor “^”. For example, 2 ^ 2 = 4.

Hint: simplifying with the list of theorems algebra_simps takes care of
common algebraic properties of the arithmetic operators.

Exercise 2.11. Define arithmetic expressions in one variable over integers
(type int) as a data type:

datatype exp = Var | Const int | Add exp exp | Mult exp exp

Define a function eval :: exp ⇒ int ⇒ int such that eval e x evaluates e at
the value x.

A polynomial can be represented as a list of coefficients, starting with the
constant. For example, [4, 2, − 1, 3] represents the polynomial 4+2x−x2+3x3.
Define a function evalp :: int list ⇒ int ⇒ int that evaluates a polynomial at
the given value. Define a function coeffs :: exp ⇒ int list that transforms an
expression into a polynomial. This may require auxiliary functions. Prove that
coeffs preserves the value of the expression: evalp (coeffs e) x = eval e x.
Hint: consider the hint in Exercise 2.10.
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Logic and Proof Beyond Equality

3.1 Formulas

The core syntax of formulas (form below) provides the standard logical con-
structs, in decreasing order of precedence:

form ::= (form) | True | False | term = term
| ¬ form | form ∧ form | form ∨ form | form −→ form
| ∀ x . form | ∃ x . form

Terms are the ones we have seen all along, built from constants, variables,
function application and λ-abstraction, including all the syntactic sugar like
infix symbols, if, case, etc.

Remember that formulas are simply terms of type bool. Hence = also works for
formulas. Beware that = has a higher precedence than the other logical operators.

Hence s = t ∧ A means (s = t) ∧ A, and A ∧ B = B ∧ A means A ∧ (B = B)

∧ A. Logical equivalence can also be written with ←→ instead of =, where ←→ has
the same low precedence as −→. Hence A ∧ B ←→ B ∧ A really means (A ∧ B)

←→ (B ∧ A).

Quantifiers need to be enclosed in parentheses if they are nested within other
constructs (just like if, case and let).

The most frequent logical symbols and their ASCII representations are shown
in Fig. 3.1. The first column shows the symbols, the other columns ASCII
representations. The \<...> form is always converted into the symbolic form
by the Isabelle interfaces, the treatment of the other ASCII forms depends on
the interface. The ASCII forms /\ and \/ are special in that they are merely
keyboard shortcuts for the interface and not logical symbols by themselves.
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∀ \<forall> ALL
∃ \<exists> EX
λ \<lambda> %
−→ -->
←→ <->
∧ /\ &
∨ \/ |
¬ \<not> ~
6= \<noteq> ~=

Fig. 3.1. Logical symbols and their ASCII forms

The implication =⇒ is part of the Isabelle framework. It structures theorems
and proof states, separating assumptions from conclusions. The implication −→

is part of the logic HOL and can occur inside the formulas that make up the as-
sumptions and conclusion. Theorems should be of the form [[ A1; . . .; An ]] =⇒ A,
not A1 ∧ . . . ∧ An −→ A. Both are logically equivalent but the first one works
better when using the theorem in further proofs.

The ASCII representation of [[ and ]] is [| and |].

3.2 Sets

Sets of elements of type ′a have type ′a set . They can be finite or infinite.
Sets come with the usual notation:

• {}, {e1,. . .,en}

• e ∈ A, A ⊆ B
• A ∪ B , A ∩ B , A − B, − A

(where A − B and −A are set difference and complement) and much more.
UNIV is the set of all elements of some type. Set comprehension is written
{x . P } rather than {x | P }.

In {x . P } the x must be a variable. Set comprehension involving a proper term
t must be written {t | x y . P }, where x y are those free variables in t that occur

in P. This is just a shorthand for {v . ∃ x y . v = t ∧ P }, where v is a new variable.
For example, {x + y |x . x ∈ A} is short for {v . ∃ x . v = x+y ∧ x ∈ A}.

Here are the ASCII representations of the mathematical symbols:

∈ \<in> :
⊆ \<subseteq> <=
∪ \<union> Un
∩ \<inter> Int

Sets also allow bounded quantifications ∀ x∈A. P and ∃ x∈A. P.
For the more ambitious, there are also

⋃
and

⋂
:
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A = {x . ∃B∈A. x ∈ B }

⋂
A = {x . ∀B∈A. x ∈ B }

The ASCII forms of
⋃

are \<Union> and Union, those of
⋂

are \<Inter>
and Inter. There are also indexed unions and intersections:

(
⋃

x∈A B x ) = {y . ∃ x∈A. y ∈ B x }
(
⋂

x∈A B x ) = {y . ∀ x∈A. y ∈ B x }

The ASCII forms are UN x:A. B and INT x:A. B where x may occur in B.
If A is UNIV you can write UN x. B and INT x. B.

Some other frequently useful functions on sets are the following:

set :: ′a list ⇒ ′a set converts a list to the set of its elements
finite :: ′a set ⇒ bool is true iff its argument is finite
card :: ′a set ⇒ nat is the cardinality of a finite set

and is 0 for all infinite sets
f ‘ A = {y . ∃ x∈A. y = f x } is the image of a function over a set

See [4] for the wealth of further predefined functions in theory Main.

Exercises

Exercise 3.1. Start from the data type of binary trees defined earlier:

datatype ′a tree = Tip | Node " ′a tree" ′a " ′a tree"

Define a function set :: ′a tree ⇒ ′a set that returns the elements in a tree
and a function ord :: int tree ⇒ bool that tests if an int tree is ordered.

Define a function ins that inserts an element into an ordered int tree
while maintaining the order of the tree. If the element is already in the tree,
the same tree should be returned. Prove correctness of ins : set (ins x t) =

{x } ∪ set t and ord t =⇒ ord (ins i t).

3.3 Proof Automation

So far we have only seen simp and auto: Both perform rewriting, both can
also prove linear arithmetic facts (no multiplication), and auto is also able to
prove simple logical or set-theoretic goals:

lemma "∀ x . ∃ y . x = y"
by auto

lemma "A ⊆ B ∩ C =⇒ A ⊆ B ∪ C"
by auto

where



28 3 Logic and Proof Beyond Equality

by proof-method

is short for

apply proof-method
done

The key characteristics of both simp and auto are

• They show you where they got stuck, giving you an idea how to continue.
• They perform the obvious steps but are highly incomplete.

A proof method is complete if it can prove all true formulas. There is no
complete proof method for HOL, not even in theory. Hence all our proof
methods only differ in how incomplete they are.

A proof method that is still incomplete but tries harder than auto is
fastforce . It either succeeds or fails, it acts on the first subgoal only, and it
can be modified like auto, e.g., with simp add. Here is a typical example of
what fastforce can do:

lemma "[[ ∀ xs ∈ A. ∃ ys . xs = ys @ ys ; us ∈ A ]]

=⇒ ∃n . length us = n+n"
by fastforce

This lemma is out of reach for auto because of the quantifiers. Even fastforce
fails when the quantifier structure becomes more complicated. In a few cases,
its slow version force succeeds where fastforce fails.

The method of choice for complex logical goals is blast . In the following
example, T and A are two binary predicates. It is shown that if T is total,
A is antisymmetric and T is a subset of A, then A is a subset of T :

lemma
"[[ ∀ x y . T x y ∨ T y x ;
∀ x y . A x y ∧ A y x −→ x = y ;
∀ x y . T x y −→ A x y ]]

=⇒ ∀ x y . A x y −→ T x y"
by blast

We leave it to the reader to figure out why this lemma is true. Method blast

• is (in principle) a complete proof procedure for first-order formulas, a
fragment of HOL. In practice there is a search bound.

• does no rewriting and knows very little about equality.
• covers logic, sets and relations.
• either succeeds or fails.

Because of its strength in logic and sets and its weakness in equality reasoning,
it complements the earlier proof methods.
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3.3.1 Sledgehammer

Command sledgehammer calls a number of external automatic theorem provers
(ATPs) that run for up to 30 seconds searching for a proof. Some of these ATPs
are part of the Isabelle installation, others are queried over the internet. If
successful, a proof command is generated and can be inserted into your proof.
The biggest win of sledgehammer is that it will take into account the whole
lemma library and you do not need to feed in any lemma explicitly. For
example,

lemma "[[ xs @ ys = ys @ xs ; length xs = length ys ]] =⇒ xs = ys"

cannot be solved by any of the standard proof methods, but sledgehammer
finds the following proof:

by (metis append_eq_conv_conj )

We do not explain how the proof was found but what this command means.
For a start, Isabelle does not trust external tools (and in particular not the
translations from Isabelle’s logic to those tools!) and insists on a proof that it
can check. This is what metis does. It is given a list of lemmas and tries to find
a proof using just those lemmas (and pure logic). In contrast to using simp and
friends who know a lot of lemmas already, using metis manually is tedious
because one has to find all the relevant lemmas first. But that is precisely
what sledgehammer does for us. In this case lemma append_eq_conv_conj
alone suffices:

(xs @ ys = zs) = (xs = take (length xs) zs ∧ ys = drop (length xs) zs)

We leave it to the reader to figure out why this lemma suffices to prove the
above lemma, even without any knowledge of what the functions take and
drop do. Keep in mind that the variables in the two lemmas are independent
of each other, despite the same names, and that you can substitute arbitrary
values for the free variables in a lemma.

Just as for the other proof methods we have seen, there is no guarantee
that sledgehammer will find a proof if it exists. Nor is sledgehammer superior to
the other proof methods. They are incomparable. Therefore it is recommended
to apply simp or auto before invoking sledgehammer on what is left.

3.3.2 Arithmetic

By arithmetic formulas we mean formulas involving variables, numbers, +,
−, =, <, 6 and the usual logical connectives ¬, ∧, ∨, −→, ←→. Strictly
speaking, this is known as linear arithmetic because it does not involve
multiplication, although multiplication with numbers, e.g., 2∗n, is allowed.
Such formulas can be proved by arith :
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lemma "[[ (a ::nat) 6 x + b; 2∗x < c ]] =⇒ 2∗a + 1 6 2∗b + c"
by arith

In fact, auto and simp can prove many linear arithmetic formulas already,
like the one above, by calling a weak but fast version of arith. Hence it is
usually not necessary to invoke arith explicitly.

The above example involves natural numbers, but integers (type int) and
real numbers (type real) are supported as well. As are a number of further
operators like min and max. On nat and int, arith can even prove theorems
with quantifiers in them, but we will not enlarge on that here.

3.3.3 Trying Them All

If you want to try all of the above automatic proof methods you simply type

try

There is also a lightweight variant try0 that does not call sledgehammer. If
desired, specific simplification and introduction rules can be added:

try0 simp: . . . intro: . . .

3.4 Single Step Proofs

Although automation is nice, it often fails, at least initially, and you need
to find out why. When fastforce or blast simply fail, you have no clue why.
At this point, the stepwise application of proof rules may be necessary. For
example, if blast fails on A ∧ B, you want to attack the two conjuncts A and
B separately. This can be achieved by applying conjunction introduction

?P ?Q

?P ∧ ?Q
conjI

to the proof state. We will now examine the details of this process.

3.4.1 Instantiating Unknowns

We had briefly mentioned earlier that after proving some theorem, Isabelle re-
places all free variables x by so called unknowns ?x. We can see this clearly in
rule conjI. These unknowns can later be instantiated explicitly or implicitly:

• By hand, using of . The expression conjI [of "a=b" "False"] instantiates
the unknowns in conjI from left to right with the two formulas a=b and
False, yielding the rule
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a = b False

a = b ∧ False

In general, th [of string1 . . . stringn] instantiates the unknowns in the
theorem th from left to right with the terms string1 to stringn.

• By unification. Unification is the process of making two terms syntacti-
cally equal by suitable instantiations of unknowns. For example, unifying
?P ∧ ?Q with a = b ∧ False instantiates ?P with a = b and ?Q with
False.

We need not instantiate all unknowns. If we want to skip a particular one we
can write _ instead, for example conjI [of _ "False"]. Unknowns can also be
instantiated by name using where , for example conjI [where ?P = "a=b"
and ?Q = "False"].

3.4.2 Rule Application

Rule application means applying a rule backwards to a proof state. For
example, applying rule conjI to a proof state

1. . . . =⇒ A ∧ B

results in two subgoals, one for each premise of conjI :

1. . . . =⇒ A
2. . . . =⇒ B

In general, the application of a rule [[ A1; . . .; An ]] =⇒ A to a subgoal
. . . =⇒ C proceeds in two steps:

1. Unify A and C, thus instantiating the unknowns in the rule.
2. Replace the subgoal C with n new subgoals A1 to An.

This is the command to apply rule xyz :

apply(rule xyz )

This is also called backchaining with rule xyz.

3.4.3 Introduction Rules

Conjunction introduction (conjI ) is one example of a whole class of rules
known as introduction rules. They explain under which premises some
logical construct can be introduced. Here are some further useful introduction
rules:

?P =⇒ ?Q

?P −→ ?Q
impI

∧
x . ?P x

∀ x . ?P x
allI
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?P =⇒ ?Q ?Q =⇒ ?P

?P = ?Q
iffI

These rules are part of the logical system of natural deduction (e.g., [2]).
Although we intentionally de-emphasize the basic rules of logic in favour of
automatic proof methods that allow you to take bigger steps, these rules are
helpful in locating where and why automation fails. When applied backwards,
these rules decompose the goal:

• conjI and iffI split the goal into two subgoals,
• impI moves the left-hand side of a HOL implication into the list of as-

sumptions,
• and allI removes a ∀ by turning the quantified variable into a fixed local

variable of the subgoal.

Isabelle knows about these and a number of other introduction rules. The
command

apply rule

automatically selects the appropriate rule for the current subgoal.
You can also turn your own theorems into introduction rules by giving

them the intro attribute, analogous to the simp attribute. In that case blast,
fastforce and (to a limited extent) auto will automatically backchain with
those theorems. The intro attribute should be used with care because it in-
creases the search space and can lead to nontermination. Sometimes it is better
to use it only in specific calls of blast and friends. For example, le_trans, tran-
sitivity of 6 on type nat, is not an introduction rule by default because of the
disastrous effect on the search space, but can be useful in specific situations:

lemma "[[ (a ::nat) 6 b; b 6 c; c 6 d ; d 6 e ]] =⇒ a 6 e"
by(blast intro: le_trans)

Of course this is just an example and could be proved by arith, too.

3.4.4 Forward Proof

Forward proof means deriving new theorems from old theorems. We have
already seen a very simple form of forward proof: the of operator for instan-
tiating unknowns in a theorem. The big brother of of is OF for applying
one theorem to others. Given a theorem A =⇒ B called r and a theorem
A ′ called r ′, the theorem r [OF r ′] is the result of applying r to r ′, where
r should be viewed as a function taking a theorem A and returning B. More
precisely, A and A ′ are unified, thus instantiating the unknowns in B, and
the result is the instantiated B. Of course, unification may also fail.
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Application of rules to other rules operates in the forward direction: from the
premises to the conclusion of the rule; application of rules to proof states operates

in the backward direction, from the conclusion to the premises.

In general r can be of the form [[ A1; . . .; An ]] =⇒ A and there can be
multiple argument theorems r1 to rm (with m 6 n), in which case r [OF r1

. . . rm] is obtained by unifying and thus proving Ai with r i, i = 1. . .m. Here
is an example, where refl is the theorem ?t = ?t :

thm conjI [OF refl [of "a"] refl [of "b"]]

yields the theorem a = a ∧ b = b. The command thm merely displays the
result.

Forward reasoning also makes sense in connection with proof states.
Therefore blast, fastforce and auto support a modifier dest which instructs
the proof method to use certain rules in a forward fashion. If r is of the
form A =⇒ B , the modifier dest : r allows proof search to reason forward
with r, i.e., to replace an assumption A ′, where A ′ unifies with A, with
the correspondingly instantiated B. For example, Suc_leD is the theorem
Suc m 6 n =⇒ m 6 n , which works well for forward reasoning:

lemma "Suc(Suc(Suc a)) 6 b =⇒ a 6 b"
by(blast dest : Suc_leD)

In this particular example we could have backchained with Suc_leD, too, but
because the premise is more complicated than the conclusion this can easily
lead to nontermination.

To ease readability we will drop the question marks in front of unknowns from
now on.

3.5 Inductive Definitions

Inductive definitions are the third important definition facility, after datatypes
and recursive function.

3.5.1 An Example: Even Numbers

Here is a simple example of an inductively defined predicate:

• 0 is even
• If n is even, so is n+ 2.

The operative word “inductive” means that these are the only even numbers.
In Isabelle we give the two rules the names ev0 and evSS and write
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inductive ev :: "nat ⇒ bool" where
ev0: "ev 0" |

evSS : "ev n =⇒ ev (n + 2)"

To get used to inductive definitions, we will first prove a few properties of ev
informally before we descend to the Isabelle level.

How do we prove that some number is even, e.g., ev 4? Simply by com-
bining the defining rules for ev :

ev 0 =⇒ ev (0 + 2) =⇒ ev((0 + 2) + 2) = ev 4

Rule Induction

Showing that all even numbers have some property is more complicated. For
example, let us prove that the inductive definition of even numbers agrees
with the following recursive one:

fun evn :: "nat ⇒ bool" where
"evn 0 = True" |

"evn (Suc 0) = False" |

"evn (Suc(Suc n)) = evn n"

We prove ev m =⇒ evn m. That is, we assume ev m and by induction on
the form of its derivation prove evn m. There are two cases corresponding to
the two rules for ev :

Case ev0: ev m was derived by rule ev 0:
=⇒ m = 0 =⇒ evn m = evn 0 = True

Case evSS : ev m was derived by rule ev n =⇒ ev (n + 2):
=⇒ m = n + 2 and by induction hypothesis evn n
=⇒ evn m = evn(n + 2) = evn n = True

What we have just seen is a special case of rule induction. Rule induction
applies to propositions of this form

ev n =⇒ P n

That is, we want to prove a property P n for all even n. But if we assume
ev n, then there must be some derivation of this assumption using the two
defining rules for ev. That is, we must prove

Case ev0: P 0

Case evSS : [[ev n ; P n ]] =⇒ P (n + 2)

The corresponding rule is called ev .induct and looks like this:

ev n P 0
∧

n . [[ev n ; P n ]] =⇒ P (n + 2)

P n
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The first premise ev n enforces that this rule can only be applied in situations
where we know that n is even.

Note that in the induction step we may not just assume P n but also
ev n , which is simply the premise of rule evSS. Here is an example where the
local assumption ev n comes in handy: we prove ev m =⇒ ev (m − 2) by
induction on ev m. Case ev0 requires us to prove ev (0 − 2), which follows
from ev 0 because 0 − 2 = 0 on type nat. In case evSS we have m = n + 2

and may assume ev n, which implies ev (m − 2) because m − 2 = (n +

2) − 2 = n. We did not need the induction hypothesis at all for this proof
(it is just a case analysis of which rule was used) but having ev n at our
disposal in case evSS was essential. This case analysis of rules is also called
“rule inversion” and is discussed in more detail in Chapter 4.

In Isabelle

Let us now recast the above informal proofs in Isabelle. For a start, we use
Suc terms instead of numerals in rule evSS :

ev n =⇒ ev (Suc (Suc n))

This avoids the difficulty of unifying n+2 with some numeral, which is not
automatic.

The simplest way to prove ev (Suc (Suc (Suc (Suc 0)))) is in a forward
direction: evSS [OF evSS [OF ev0]] yields the theorem ev (Suc (Suc (Suc
(Suc 0)))). Alternatively, you can also prove it as a lemma in backwards
fashion. Although this is more verbose, it allows us to demonstrate how each
rule application changes the proof state:

lemma "ev(Suc(Suc(Suc(Suc 0))))"

1. ev (Suc (Suc (Suc (Suc 0))))

apply(rule evSS)

1. ev (Suc (Suc 0))

apply(rule evSS)

1. ev 0

apply(rule ev0)
done

Rule induction is applied by giving the induction rule explicitly via the
rule : modifier:
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lemma "ev m =⇒ evn m"
apply(induction rule : ev .induct)
by(simp_all)

Both cases are automatic. Note that if there are multiple assumptions of the
form ev t, method induction will induct on the leftmost one.

As a bonus, we also prove the remaining direction of the equivalence of ev
and evn :

lemma "evn n =⇒ ev n"
apply(induction n rule : evn .induct)

This is a proof by computation induction on n (see Section 2.3.4) that sets
up three subgoals corresponding to the three equations for evn :

1. evn 0 =⇒ ev 0

2. evn (Suc 0) =⇒ ev (Suc 0)

3.
∧

n . [[evn n =⇒ ev n ; evn (Suc (Suc n))]] =⇒ ev (Suc (Suc n))

The first and third subgoals follow with ev0 and evSS, and the second subgoal
is trivially true because evn (Suc 0) is False :

by (simp_all add : ev0 evSS)

The rules for ev make perfect simplification and introduction rules because
their premises are always smaller than the conclusion. It makes sense to turn
them into simplification and introduction rules permanently, to enhance proof
automation. They are named ev .intros by Isabelle:

declare ev .intros [simp,intro]

The rules of an inductive definition are not simplification rules by default be-
cause, in contrast to recursive functions, there is no termination requirement
for inductive definitions.

Inductive Versus Recursive

We have seen two definitions of the notion of evenness, an inductive and a
recursive one. Which one is better? Much of the time, the recursive one is more
convenient: it allows us to do rewriting in the middle of terms, and it expresses
both the positive information (which numbers are even) and the negative
information (which numbers are not even) directly. An inductive definition
only expresses the positive information directly. The negative information,
for example, that 1 is not even, has to be proved from it (by induction or
rule inversion). On the other hand, rule induction is tailor-made for proving
ev n =⇒ P n because it only asks you to prove the positive cases. In the
proof of evn n =⇒ P n by computation induction via evn .induct, we are also
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presented with the trivial negative cases. If you want the convenience of both
rewriting and rule induction, you can make two definitions and show their
equivalence (as above) or make one definition and prove additional properties
from it, for example rule induction from computation induction.

But many concepts do not admit a recursive definition at all because
there is no datatype for the recursion (for example, the transitive closure of
a relation), or the recursion would not terminate (for example, an interpreter
for a programming language). Even if there is a recursive definition, if we are
only interested in the positive information, the inductive definition may be
much simpler.

3.5.2 The Reflexive Transitive Closure

Evenness is really more conveniently expressed recursively than inductively.
As a second and very typical example of an inductive definition we define the
reflexive transitive closure.

The reflexive transitive closure, called star below, is a function that maps
a binary predicate to another binary predicate: if r is of type τ ⇒ τ ⇒ bool
then star r is again of type τ ⇒ τ ⇒ bool, and star r x y means that x and
y are in the relation star r. Think r∗ when you see star r, because star r
is meant to be the reflexive transitive closure. That is, star r x y is meant
to be true if from x we can reach y in finitely many r steps. This concept is
naturally defined inductively:

inductive star :: "( ′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ ′a ⇒ bool" for r where
refl : "star r x x" |

step: "r x y =⇒ star r y z =⇒ star r x z"

The base case refl is reflexivity: x = y. The step case step combines an r
step (from x to y) and a star r step (from y to z ) into a star r step (from
x to z ). The “for r ” in the header is merely a hint to Isabelle that r is a
fixed parameter of star, in contrast to the further parameters of star, which
change. As a result, Isabelle generates a simpler induction rule.

By definition star r is reflexive. It is also transitive, but we need rule
induction to prove that:

lemma star_trans : "star r x y =⇒ star r y z =⇒ star r x z"
apply(induction rule : star .induct)

The induction is over star r x y (the first matching assumption) and we try
to prove star r y z =⇒ star r x z , which we abbreviate by P x y. These are
our two subgoals:

1.
∧

x . star r x z =⇒ star r x z
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2.
∧

u x y .
[[r u x ; star r x y ; star r y z =⇒ star r x z ; star r y z ]]
=⇒ star r u z

The first one is P x x, the result of case refl, and it is trivial:

apply(assumption)

Let us examine subgoal 2, case step. Assumptions r u x and star r x y are
the premises of rule step. Assumption star r y z =⇒ star r x z is P x y , the
IH coming from star r x y. We have to prove P u y, which we do by assuming
star r y z and proving star r u z. The proof itself is straightforward: from
star r y z the IH leads to star r x z which, together with r u x, leads to
star r u z via rule step:

apply(metis step)
done

3.5.3 The General Case

Inductive definitions have approximately the following general form:

inductive I :: "τ ⇒ bool" where

followed by a sequence of (possibly named) rules of the form

[[ I a1; . . .; I an ]] =⇒ I a

separated by |. As usual, n can be 0. The corresponding rule induction prin-
ciple I .induct applies to propositions of the form

I x =⇒ P x

where P may itself be a chain of implications.

Rule induction is always on the leftmost premise of the goal. Hence I x must be
the first premise.

Proving I x =⇒ P x by rule induction means proving for every rule of I that
P is invariant:

[[ I a1; P a1; . . .; I an; P an ]] =⇒ P a

The above format for inductive definitions is simplified in a number of re-
spects. I can have any number of arguments and each rule can have additional
premises not involving I, so-called side conditions. In rule inductions, these
side conditions appear as additional assumptions. The for clause seen in the
definition of the reflexive transitive closure simplifies the induction rule.
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Exercises

Exercise 3.2. Formalize the following definition of palindromes

• The empty list and a singleton list are palindromes.
• If xs is a palindrome, so is a # xs @ [a ].

as an inductive predicate palindrome :: ′a list ⇒ bool and prove that rev xs
= xs if xs is a palindrome.

Exercise 3.3. We could also have defined star as follows:

inductive star ′ :: "( ′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ ′a ⇒ bool" for r where
refl ′: "star ′ r x x" |

step ′: "star ′ r x y =⇒ r y z =⇒ star ′ r x z"

The single r step is performed after rather than before the star ′ steps. Prove
star ′ r x y =⇒ star r x y and star r x y =⇒ star ′ r x y. You may need
lemmas. Note that rule induction fails if the assumption about the inductive
predicate is not the first assumption.

Exercise 3.4. Analogous to star, give an inductive definition of the n-fold
iteration of a relation r : iter r n x y should hold if there are x0, . . . , xn such
that x = x0, xn = y and r x i x i+1 for all i < n. Correct and prove the
following claim: star r x y =⇒ iter r n x y.

Exercise 3.5. A context-free grammar can be seen as an inductive definition
where each nonterminal A is an inductively defined predicate on lists of ter-
minal symbols: A(w) means that w is in the language generated by A. For
example, the production S→ aSb can be viewed as the implication S w =⇒
S (a # w @ [b]) where a and b are terminal symbols, i.e., elements of some
alphabet. The alphabet can be defined like this: datatype alpha = a | b | . . .

Define the two grammars (where ε is the empty word)

S → ε | aSb | SS

T → ε | TaTb

as two inductive predicates. If you think of a and b as “(” and “)”, the
grammars define balanced strings of parentheses. Prove T w =⇒ S w and
S w =⇒ T w separately and conclude S w = T w.
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Isar: A Language for Structured Proofs

Apply-scripts are unreadable and hard to maintain. The language of choice
for larger proofs is Isar. The two key features of Isar are:

• It is structured, not linear.
• It is readable without its being run because you need to state what you

are proving at any given point.

Whereas apply-scripts are like assembly language programs, Isar proofs are
like structured programs with comments. A typical Isar proof looks like this:

proof
assume "formula0"
have "formula1" by simp
...
have "formulan" by blast
show "formulan+1" by . . .

qed

It proves formula0 =⇒ formulan+1 (provided each proof step succeeds). The
intermediate have statements are merely stepping stones on the way towards
the show statement that proves the actual goal. In more detail, this is the Isar
core syntax:

proof = by method
| proof [method ] step∗ qed

step = fix variables
| assume proposition
| [from fact+] (have | show) proposition proof

proposition = [name :] "formula"

fact = name | . . .
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A proof can either be an atomic by with a single proof method which must
finish off the statement being proved, for example auto, or it can be a proof–qed
block of multiple steps. Such a block can optionally begin with a proof method
that indicates how to start off the proof, e.g., (induction xs).

A step either assumes a proposition or states a proposition together with
its proof. The optional from clause indicates which facts are to be used in the
proof. Intermediate propositions are stated with have, the overall goal is stated
with show. A step can also introduce new local variables with fix. Logically,
fix introduces

∧
-quantified variables, assume introduces the assumption of an

implication (=⇒) and have/show introduce the conclusion.
Propositions are optionally named formulas. These names can be referred

to in later from clauses. In the simplest case, a fact is such a name. But facts can
also be composed with OF and of as shown in Section 3.4.4 — hence the . . .
in the above grammar. Note that assumptions, intermediate have statements
and global lemmas all have the same status and are thus collectively referred
to as facts.

Fact names can stand for whole lists of facts. For example, if f is defined by
command fun, f .simps refers to the whole list of recursion equations defining
f. Individual facts can be selected by writing f .simps(2), whole sublists by
writing f .simps(2−4).

4.1 Isar by Example

We show a number of proofs of Cantor’s theorem that a function from a set
to its powerset cannot be surjective, illustrating various features of Isar. The
constant surj is predefined.

lemma "¬ surj (f :: ′a ⇒ ′a set)"
proof

assume 0: "surj f"
from 0 have 1: "∀A. ∃ a . A = f a" by(simp add : surj_def )
from 1 have 2: "∃ a . {x . x /∈ f x } = f a" by blast
from 2 show "False" by blast

qed

The proof command lacks an explicit method by which to perform the proof.
In such cases Isabelle tries to use some standard introduction rule, in the
above case for ¬:

P =⇒ False

¬ P

In order to prove ¬ P, assume P and show False. Thus we may assume
surj f. The proof shows that names of propositions may be (single!) digits —
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meaningful names are hard to invent and are often not necessary. Both have
steps are obvious. The second one introduces the diagonal set {x . x /∈ f x },
the key idea in the proof. If you wonder why 2 directly implies False : from 2

it follows that (a /∈ f a) = (a ∈ f a).

4.1.1 this, then, with, hence, thus, using

Labels should be avoided. They interrupt the flow of the reader who has to
scan the context for the point where the label was introduced. Ideally, the
proof is a linear flow, where the output of one step becomes the input of
the next step, piping the previously proved fact into the next proof, like in
a UNIX pipe. In such cases the predefined name this can be used to refer to
the proposition proved in the previous step. This allows us to eliminate all
labels from our proof (we suppress the lemma statement):

proof
assume "surj f"
from this have "∃ a . {x . x /∈ f x } = f a" by(auto simp: surj_def )
from this show "False" by blast

qed

We have also taken the opportunity to compress the two have steps into one.
To compact the text further, Isar has a few convenient abbreviations:

then = from this
thus = then show

hence = then have
With the help of these abbreviations the proof becomes

proof
assume "surj f"
hence "∃ a . {x . x /∈ f x } = f a" by(auto simp: surj_def )
thus "False" by blast

qed

There are two further linguistic variations:

(have|show) prop using facts = from facts (have|show) prop
with facts = from facts this

The using idiom de-emphasizes the used facts by moving them behind the
proposition.

4.1.2 Structured Lemma Statements: fixes, assumes, shows

Lemmas can also be stated in a more structured fashion. To demonstrate this
feature with Cantor’s theorem, we rephrase ¬ surj f a little:
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lemma
fixes f :: " ′a ⇒ ′a set"
assumes s : "surj f"
shows "False"

The optional fixes part allows you to state the types of variables up front
rather than by decorating one of their occurrences in the formula with a type
constraint. The key advantage of the structured format is the assumes part that
allows you to name each assumption; multiple assumptions can be separated
by and. The shows part gives the goal. The actual theorem that will come out
of the proof is surj f =⇒ False, but during the proof the assumption surj f
is available under the name s like any other fact.

proof −

have "∃ a . {x . x /∈ f x } = f a" using s by(auto simp: surj_def )
thus "False" by blast

qed

Note the hyphen after the proof command. It is the null method that does
nothing to the goal. Leaving it out would be asking Isabelle to try some suitable

introduction rule on the goal False — but there is no such rule and proof would fail.

In the have step the assumption surj f is now referenced by its name s. The
duplication of surj f in the above proofs (once in the statement of the lemma,
once in its proof) has been eliminated.

Stating a lemma with assumes-shows implicitly introduces the name assms
that stands for the list of all assumptions. You can refer to individual as-
sumptions by assms(1), assms(2), etc., thus obviating the need to name
them individually.

4.2 Proof Patterns

We show a number of important basic proof patterns. Many of them arise
from the rules of natural deduction that are applied by proof by default. The
patterns are phrased in terms of show but work for have and lemma, too.

4.2.1 Logic

We start with two forms of case analysis: starting from a formula P we have
the two cases P and ¬ P, and starting from a fact P ∨ Q we have the two
cases P and Q :
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show "R"
proof cases

assume "P"
...

show "R" 〈proof 〉
next

assume "¬ P"
...

show "R" 〈proof 〉
qed

have "P ∨ Q" 〈proof 〉
then show "R"
proof

assume "P"
...

show "R" 〈proof 〉
next

assume "Q"
...

show "R" 〈proof 〉
qed

How to prove a logical equivalence:

show "P ←→ Q"
proof

assume "P"
...

show "Q" 〈proof 〉
next

assume "Q"
...

show "P" 〈proof 〉
qed

Proofs by contradiction (ccontr stands for “classical contradiction”):

show "¬ P"
proof

assume "P"
...

show "False" 〈proof 〉
qed

show "P"
proof (rule ccontr)

assume "¬P"
...

show "False" 〈proof 〉
qed

How to prove quantified formulas:

show "∀ x . P(x )"
proof

fix x
...

show "P(x )" 〈proof 〉
qed

show "∃ x . P(x )"
proof

...
show "P(witness)" 〈proof 〉

qed

In the proof of ∀ x . P(x ), the step fix x introduces a locally fixed variable
x into the subproof, the proverbial “arbitrary but fixed value”. Instead of x
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we could have chosen any name in the subproof. In the proof of ∃ x . P(x ),
witness is some arbitrary term for which we can prove that it satisfies P.

How to reason forward from ∃ x . P(x ):

have "∃ x . P(x )" 〈proof 〉
then obtain x where p: "P(x )" by blast

After the obtain step, x (we could have chosen any name) is a fixed local
variable, and p is the name of the fact P(x ). This pattern works for one or
more x. As an example of the obtain command, here is the proof of Cantor’s
theorem in more detail:

lemma "¬ surj (f :: ′a ⇒ ′a set)"
proof

assume "surj f"
hence "∃ a . {x . x /∈ f x } = f a" by(auto simp: surj_def )
then obtain a where "{x . x /∈ f x } = f a" by blast
hence "a /∈ f a ←→ a ∈ f a" by blast
thus "False" by blast

qed

Finally, how to prove set equality and subset relationship:

show "A = B"
proof

show "A ⊆ B" 〈proof 〉
next

show "B ⊆ A" 〈proof 〉
qed

show "A ⊆ B"
proof

fix x
assume "x ∈ A"
...

show "x ∈ B" 〈proof 〉
qed

4.2.2 Chains of (In)Equations

In textbooks, chains of equations (and inequations) are often displayed like
this:

t1 = t2 〈justification〉
= t3 〈justification〉
...
= tn 〈justification〉
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The Isar equivalent is this:

have "t1 = t2" 〈proof 〉
also have "... = t3" 〈proof 〉
...
also have "... = tn" 〈proof 〉
finally show "t1 = tn" .

The “ ...” and “ .” deserve some explanation:

“ ...” is literally three dots. It is the name of an unknown that Isar automat-
ically instantiates with the right-hand side of the previous equation. In
general, if this is the theorem p t1 t2 then “ ...” stands for t2.

“ .” (a single dot) is a proof method that solves a goal by one of the assump-
tions. This works here because the result of finally is the theorem t1 = tn,
show "t1 = tn" states the theorem explicitly, and “ .” proves the theorem
with the result of finally.

The above proof template also works for arbitrary mixtures of =, 6 and <,
for example:

have "t1 < t2" 〈proof 〉
also have "... = t3" 〈proof 〉
...
also have "... 6 tn" 〈proof 〉
finally show "t1 < tn" .

The relation symbol in the finally step needs to be the most precise one pos-
sible. In the example above, you must not write t1 6 tn instead of t1 < tn.

Isabelle only supports =, 6 and < but not > and > in (in)equation chains (by
default).

If you want to go beyond merely using the above proof patterns and want
to understand what also and finally mean, read on. There is an Isar theorem
variable called calculation, similar to this. When the first also in a chain is
encountered, Isabelle sets calculation := this. In each subsequent also step,
Isabelle composes the theorems calculation and this (i.e. the two previous
(in)equalities) using some predefined set of rules including transitivity of =,
6 and < but also mixed rules like [[x 6 y ; y < z ]] =⇒ x < z. The result of
this composition is assigned to calculation. Consider

have "t1 6 t2" 〈proof 〉
also have "... < t3" 〈proof 〉
also have "... = t4" 〈proof 〉
finally show "t1 < t4" .
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After the first also, calculation is "t1 6 t2", and after the second also, cal-
culation is "t1 < t3". The command finally is short for also from calculation.
Therefore the also hidden in finally sets calculation to t1 < t4 and the final
“.” succeeds.

For more information on this style of proof see [1].

4.3 Streamlining Proofs

4.3.1 Pattern Matching and Quotations

In the proof patterns shown above, formulas are often duplicated. This can
make the text harder to read, write and maintain. Pattern matching is an
abbreviation mechanism to avoid such duplication. Writing

show formula (is pattern)

matches the pattern against the formula, thus instantiating the unknowns in
the pattern for later use. As an example, consider the proof pattern for ←→:

show "formula1 ←→ formula2" (is "?L ←→ ?R")
proof

assume "?L"
...

show "?R" 〈proof 〉
next

assume "?R"
...

show "?L" 〈proof 〉
qed

Instead of duplicating formulai in the text, we introduce the two abbrevia-
tions ?L and ?R by pattern matching. Pattern matching works wherever a
formula is stated, in particular with have and lemma.

The unknown ?thesis is implicitly matched against any goal stated by
lemma or show. Here is a typical example:

lemma "formula"
proof −

...
show ?thesis 〈proof 〉

qed

Unknowns can also be instantiated with let commands
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let ?t = "some-big-term"

Later proof steps can refer to ?t :

have ". . . ?t . . . "

Names of facts are introduced with name : and refer to proved theorems. Un-
knowns ?X refer to terms or formulas.

Although abbreviations shorten the text, the reader needs to remember
what they stand for. Similarly for names of facts. Names like 1, 2 and 3 are not
helpful and should only be used in short proofs. For longer proofs, descriptive
names are better. But look at this example:

have x_gr_0: "x > 0"
...
from x_gr_0 . . .

The name is longer than the fact it stands for! Short facts do not need names;
one can refer to them easily by quoting them:

have "x > 0"
...
from ‹x > 0› . . .

The outside quotes in ‹x > 0› are the standard renderings of the symbols
\<open> and \<close>. They refer to the fact not by name but “by value”.

4.3.2 moreover

Sometimes one needs a number of facts to enable some deduction. Of course
one can name these facts individually, as shown on the right, but one can also
combine them with moreover, as shown on the left:

have "P1" 〈proof 〉
moreover have "P2" 〈proof 〉
moreover
...
moreover have "Pn" 〈proof 〉
ultimately have "P" 〈proof 〉

have lab1: "P1" 〈proof 〉
have lab2: "P2" 〈proof 〉
...
have labn: "Pn" 〈proof 〉
from lab1 lab2 . . .

have "P" 〈proof 〉

The moreover version is no shorter but expresses the structure a bit more
clearly and avoids new names.
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4.3.3 Local Lemmas

Sometimes one would like to prove some lemma locally within a proof, a
lemma that shares the current context of assumptions but that has its own
assumptions and is generalized over its locally fixed variables at the end. This
is simply an extension of the basic have construct:

have B if name : A1 . . . Am for x1 . . . xn

〈proof 〉

proves [[ A1; . . . ; Am ]] =⇒ B where all x i have been replaced by unknowns
?x i. As an example we prove a simple fact about divisibility on integers. The
definition of dvd is (b dvd a) = (∃ k . a = b ∗ k).

lemma fixes a b :: int assumes "b dvd (a+b)" shows "b dvd a"
proof −

have "∃ k ′. a = b∗k ′" if asm : "a+b = b∗k" for k
proof

show "a = b∗(k − 1)" using asm by(simp add : algebra_simps)
qed
then show ?thesis using assms by(auto simp add : dvd_def )

qed

Exercises

Exercise 4.1. Give a readable, structured proof of the following lemma:

lemma assumes T : "∀ x y . T x y ∨ T y x"
and A: "∀ x y . A x y ∧ A y x −→ x = y"
and TA: "∀ x y . T x y −→ A x y" and "A x y"
shows "T x y"

Exercise 4.2. Give a readable, structured proof of the following lemma:

lemma "∃ ys zs . xs = ys @ zs ∧

(length ys = length zs ∨ length ys = length zs + 1)"

Hint: There are predefined functions take :: nat ⇒ ′a list ⇒ ′a list and drop
:: nat ⇒ ′a list ⇒ ′a list such that take k [x1,. . .] = [x1,. . .,xk] and drop
k [x1,. . .] = [xk+1,. . .]. Let sledgehammer find and apply the relevant take
and drop lemmas for you.
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4.4 Case Analysis and Induction

4.4.1 Datatype Case Analysis

We have seen case analysis on formulas. Now we want to distinguish which
form some term takes: is it 0 or of the form Suc n, is it [] or of the form x #
xs, etc. Here is a typical example proof by case analysis on the form of xs :

lemma "length(tl xs) = length xs − 1"
proof (cases xs)

assume "xs = []"
thus ?thesis by simp

next
fix y ys assume "xs = y#ys"
thus ?thesis by simp

qed

Function tl (”tail”) is defined by tl [] = [] and tl (x21.0 # x22.0) = x22.0.
Note that the result type of length is nat and 0 − 1 = 0.

This proof pattern works for any term t whose type is a datatype. The
goal has to be proved for each constructor C :

fix x1 . . . xn assume "t = C x1 . . . xn"

Each case can be written in a more compact form by means of the case com-
mand:

case (C x1 . . . xn)

This is equivalent to the explicit fix-assume line but also gives the assumption
"t = C x1 . . . xn" a name: C, like the constructor. Here is the case version
of the proof above:

proof (cases xs)
case Nil
thus ?thesis by simp

next
case (Cons y ys)
thus ?thesis by simp

qed

Remember that Nil and Cons are the alphanumeric names for [] and #. The
names of the assumptions are not used because they are directly piped (via
thus) into the proof of the claim.
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4.4.2 Structural Induction

We illustrate structural induction with an example based on natural num-
bers: the sum (

∑
) of the first n natural numbers ({0..n ::nat }) is equal to

n ∗ (n + 1) div 2. Never mind the details, just focus on the pattern:

lemma "
∑

{0..n ::nat } = n∗(n+1) div 2"
proof (induction n)

show "
∑

{0..0::nat } = 0∗(0+1) div 2" by simp
next

fix n assume "
∑

{0..n ::nat } = n∗(n+1) div 2"
thus "

∑
{0..Suc n} = Suc n∗(Suc n+1) div 2" by simp

qed

Except for the rewrite steps, everything is explicitly given. This makes the
proof easily readable, but the duplication means it is tedious to write and
maintain. Here is how pattern matching can completely avoid any duplication:

lemma "
∑

{0..n ::nat } = n∗(n+1) div 2" (is "?P n")
proof (induction n)

show "?P 0" by simp
next

fix n assume "?P n"
thus "?P(Suc n)" by simp

qed

The first line introduces an abbreviation ?P n for the goal. Pattern matching
?P n with the goal instantiates ?P to the function λn .

∑
{0..n} = n ∗ (n +

1) div 2. Now the proposition to be proved in the base case can be written as
?P 0, the induction hypothesis as ?P n, and the conclusion of the induction
step as ?P(Suc n).

Induction also provides the case idiom that abbreviates the fix-assume step.
The above proof becomes

proof (induction n)
case 0

show ?case by simp
next

case (Suc n)
thus ?case by simp

qed

The unknown ?case is set in each case to the required claim, i.e., ?P 0 and
?P(Suc n) in the above proof, without requiring the user to define a ?P. The
general pattern for induction over nat is shown on the left-hand side:
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show "P(n)"
proof (induction n)

case 0
...
show ?case 〈proof 〉

next
case (Suc n)
...
show ?case 〈proof 〉

qed

let ?case = "P(0)"

fix n assume Suc: "P(n)"
let ?case = "P(Suc n)"

On the right side you can see what the case command on the left stands for.
In case the goal is an implication, induction does one more thing: the

proposition to be proved in each case is not the whole implication but only
its conclusion; the premises of the implication are immediately made assump-
tions of that case. That is, if in the above proof we replace show "P(n)" by
show "A(n) =⇒ P(n)" then case 0 stands for

assume 0: "A(0)"
let ?case = "P(0)"

and case (Suc n) stands for

fix n
assume Suc: "A(n) =⇒ P(n)"

"A(Suc n)"
let ?case = "P(Suc n)"

The list of assumptions Suc is actually subdivided into Suc.IH, the induction
hypotheses (here A(n) =⇒ P(n)), and Suc.prems, the premises of the goal
being proved (here A(Suc n)).

Induction works for any datatype. Proving a goal [[ A1(x ); . . .; Ak(x ) ]]

=⇒ P(x ) by induction on x generates a proof obligation for each constructor
C of the datatype. The command case (C x1 . . . xn) performs the following
steps:

1. fix x1 . . . xn

2. assume the induction hypotheses (calling them C .IH ) and the premises
Ai(C x1 . . . xn) (calling them C .prems) and calling the whole list C

3. let ?case = "P(C x1 . . . xn)"

4.4.3 Computation Induction

In Section 2.3.4 we introduced computation induction and its realization in
Isabelle: the definition of a recursive function f via fun proves the correspond-
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ing computation induction rule called f .induct. Induction with this rule looks
like in Section 2.3.4, but now with proof instead of apply:

proof (induction x1 . . . xk rule : f .induct)

Just as for structural induction, this creates several cases, one for each defining
equation for f. By default (if the equations have not been named by the user),
the cases are numbered. That is, they are started by

case (i x y ...)

where i = 1,...,n, n is the number of equations defining f, and x y ... are the
variables in equation i. Note the following:

• Although i is an Isar name, i .IH (or similar) is not. You need double
quotes: "i .IH". When indexing the name, write "i .IH"(1), not "i .IH (1)".

• If defining equations for f overlap, fun instantiates them to make them
nonoverlapping. This means that one user-provided equation may lead to
several equations and thus to several cases in the induction rule. These
have names of the form "i_j ", where i is the number of the original equa-
tion and the system-generated j indicates the subcase.

In Isabelle/jEdit, the induction proof method displays a proof skeleton with
all cases. This is particularly useful for computation induction and the follow-
ing rule induction.

4.4.4 Rule Induction

Recall the inductive and recursive definitions of even numbers in Section 3.5:

inductive ev :: "nat ⇒ bool" where
ev0: "ev 0" |

evSS : "ev n =⇒ ev(Suc(Suc n))"

fun evn :: "nat ⇒ bool" where
"evn 0 = True" |

"evn (Suc 0) = False" |

"evn (Suc(Suc n)) = evn n"

We recast the proof of ev n =⇒ evn n in Isar. The left column shows the
actual proof text, the right column shows the implicit effect of the two case
commands:
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lemma "ev n =⇒ evn n"
proof(induction rule : ev .induct)

case ev0
show ?case by simp

next
case evSS

thus ?case by simp
qed

let ?case = "evn 0"

fix n
assume evSS : "ev n"

"evn n"
let ?case = "evn(Suc(Suc n))"

The proof resembles structural induction, but the induction rule is given
explicitly and the names of the cases are the names of the rules in the inductive
definition. Let us examine the two assumptions named evSS : ev n is the
premise of rule evSS, which we may assume because we are in the case where
that rule was used; evn n is the induction hypothesis.

Because each case command introduces a list of assumptions named like the case
name, which is the name of a rule of the inductive definition, those rules now

need to be accessed with a qualified name, here ev .ev0 and ev .evSS.

In the case evSS of the proof above we have pretended that the system
fixes a variable n. But unless the user provides the name n, the system will
just invent its own name that cannot be referred to. In the above proof, we
do not need to refer to it, hence we do not give it a specific name. In case one
needs to refer to it one writes

case (evSS m)

like case (Suc n) in earlier structural inductions. The name m is an arbi-
trary choice. As a result, case evSS is derived from a renamed version of rule
evSS : ev m =⇒ ev(Suc(Suc m)). Here is an example with a (contrived)
intermediate step that refers to m :

lemma "ev n =⇒ evn n"
proof(induction rule : ev .induct)

case ev0 show ?case by simp
next

case (evSS m)

have "evn(Suc(Suc m)) = evn m" by simp
thus ?case using ‘evn m‘ by blast

qed
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In general, let I be a (for simplicity unary) inductively defined predicate
and let the rules in the definition of I be called rule1, . . . , rulen. A proof by
rule induction follows this pattern:

show "I x =⇒ P x"
proof(induction rule : I .induct)

case rule1
...
show ?case 〈proof 〉

next
...
next

case rulen
...
show ?case 〈proof 〉

qed

One can provide explicit variable names by writing case (rulei x1 . . . xk),
thus renaming the first k free variables in rule i to x1 . . . xk, going through
rule i from left to right.

4.4.5 Assumption Naming

In any induction, case name sets up a list of assumptions also called name,
which is subdivided into three parts:

name .IH contains the induction hypotheses.
name .hyps contains all the other hypotheses of this case in the induction

rule. For rule inductions these are the hypotheses of rule name, for struc-
tural inductions these are empty.

name .prems contains the (suitably instantiated) premises of the statement
being proved, i.e., the Ai when proving [[ A1; . . .; An ]] =⇒ A.

Proof method induct differs from induction only in this naming policy: induct
does not distinguish IH from hyps but subsumes IH under hyps.

More complicated inductive proofs than the ones we have seen so far often
need to refer to specific assumptions — just name or even name .prems and
name .IH can be too unspecific. This is where the indexing of fact lists comes
in handy, e.g., name .IH (2) or name .prems(1−2).

4.4.6 Rule Inversion

Rule inversion is case analysis of which rule could have been used to de-
rive some fact. The name rule inversion emphasizes that we are reasoning
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backwards: by which rules could some given fact have been proved? For the
inductive definition of ev, rule inversion can be summarized like this:

ev n =⇒ n = 0 ∨ (∃ k . n = Suc (Suc k) ∧ ev k)

The realisation in Isabelle is a case analysis. A simple example is the proof
that ev n =⇒ ev (n − 2). We already went through the details informally
in Section 3.5.1. This is the Isar proof:

assume "ev n"
from this have "ev(n − 2)"
proof cases

case ev0 thus "ev(n − 2)" by (simp add : ev .ev0)
next

case (evSS k) thus "ev(n − 2)" by (simp add : ev .evSS)

qed

The key point here is that a case analysis over some inductively defined pred-
icate is triggered by piping the given fact (here: from this) into a proof by
cases. Let us examine the assumptions available in each case. In case ev0 we
have n = 0 and in case evSS we have n = Suc (Suc k) and ev k. In each
case the assumptions are available under the name of the case; there is no
fine-grained naming schema like there is for induction.

Sometimes some rules could not have been used to derive the given fact
because constructors clash. As an extreme example consider rule inversion
applied to ev (Suc 0): neither rule ev0 nor rule evSS can yield ev (Suc 0)

because Suc 0 unifies neither with 0 nor with Suc (Suc n). Impossible cases
do not have to be proved. Hence we can prove anything from ev (Suc 0):

assume "ev(Suc 0)" then have P by cases

That is, ev (Suc 0) is simply not provable:

lemma "¬ ev(Suc 0)"
proof

assume "ev(Suc 0)" then show False by cases
qed

Normally not all cases will be impossible. As a simple exercise, prove that
¬ ev (Suc (Suc (Suc 0))).

4.4.7 Advanced Rule Induction

So far, rule induction was always applied to goals of the form I x y z =⇒
. . . where I is some inductively defined predicate and x, y, z are variables.
In some rare situations one needs to deal with an assumption where not all
arguments r, s, t are variables:
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lemma "I r s t =⇒ . . ."

Applying the standard form of rule induction in such a situation will lead to
strange and typically unprovable goals. We can easily reduce this situation to
the standard one by introducing new variables x, y, z and reformulating the
goal like this:

lemma "I x y z =⇒ x = r =⇒ y = s =⇒ z = t =⇒ . . ."

Standard rule induction will work fine now, provided the free variables in r,
s, t are generalized via arbitrary.

However, induction can do the above transformation for us, behind the
curtains, so we never need to see the expanded version of the lemma. This is
what we need to write:

lemma "I r s t =⇒ . . ."
proof(induction "r" "s" "t" arbitrary : . . . rule : I .induct)

Like for rule inversion, cases that are impossible because of constructor clashes
will not show up at all. Here is a concrete example:

lemma "ev (Suc m) =⇒ ¬ ev m"
proof(induction "Suc m" arbitrary : m rule : ev .induct)

fix n assume IH : "
∧

m . n = Suc m =⇒ ¬ ev m"
show "¬ ev (Suc n)"
proof — contradiction

assume "ev(Suc n)"
thus False
proof cases — rule inversion

fix k assume "n = Suc k" "ev k"
thus False using IH by auto

qed
qed

qed

Remarks:

• Instead of the case and ?case magic we have spelled all formulas out. This
is merely for greater clarity.

• We only need to deal with one case because the ev0 case is impossible.
• The form of the IH shows us that internally the lemma was expanded as

explained above: ev x =⇒ x = Suc m =⇒ ¬ ev m.
• The goal ¬ ev (Suc n) may surprise. The expanded version of the lemma

would suggest that we have a fix m assume Suc (Suc n) = Suc m and need
to show ¬ ev m. What happened is that Isabelle immediately simplified
Suc (Suc n) = Suc m to Suc n = m and could then eliminate m. Beware
of such nice surprises with this advanced form of induction.
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This advanced form of induction does not support the IH naming schema ex-
plained in Section 4.4.5: the induction hypotheses are instead found under the

name hyps, as they are for the simpler induct method.

Exercises

Exercise 4.3. Give a structured proof by rule inversion:

lemma assumes a : "ev(Suc(Suc n))" shows "ev n"

Exercise 4.4. Give a structured proof of ¬ ev (Suc (Suc (Suc 0))) by rule
inversions. If there are no cases to be proved you can close a proof immediately
with qed.

Exercise 4.5. Recall predicate star from Section 3.5.2 and iter from Exer-
cise 3.4. Prove iter r n x y =⇒ star r x y in a structured style; do not just
sledgehammer each case of the required induction.

Exercise 4.6. Define a recursive function elems :: ′a list ⇒ ′a set and prove
x ∈ elems xs =⇒ ∃ ys zs . xs = ys @ x # zs ∧ x /∈ elems ys.

Exercise 4.7. Extend Exercise 3.5 with a function that checks if some
alpha list is a balanced string of parentheses. More precisely, define a recursive
function balanced :: nat ⇒ alpha list ⇒ bool such that balanced n w is
true iff (informally) S (an @ w). Formally, prove that balanced n w = S
(replicate n a @ w) where replicate :: nat ⇒ ′a ⇒ ′a list is predefined and
replicate n x yields the list [x , . . ., x ] of length n.





References

1. Gertrud Bauer and Markus Wenzel. Calculational reasoning revisited — an
Isabelle/Isar experience. In R. Boulton and P. Jackson, editors, Theorem Proving
in Higher Order Logics, TPHOLs 2001, volume 2152 of Lect. Notes in Comp.
Sci., pages 75–90. Springer, 2001.

2. Michael Huth and Mark Ryan. Logic in Computer Science. Cambridge Univer-
sity Press, 2004.

3. Alexander Krauss. Defining Recursive Functions in Isabelle/HOL. https:
//isabelle.in.tum.de/doc/functions.pdf.

4. Tobias Nipkow. What’s in Main. https://isabelle.in.tum.de/doc/main.pdf.
5. Tobias Nipkow and Gerwin Klein. Concrete Semantics with Isabelle/HOL.

Springer, 2014. 298 pp. http://concrete-semantics.org.
6. Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL — A

Proof Assistant for Higher-Order Logic, volume 2283 of Lect. Notes in Comp.
Sci. Springer, 2002.

7. Makarius Wenzel. The Isabelle/Isar Reference Manual. https://isabelle.in.
tum.de/doc/isar-ref.pdf.

https://isabelle.in.tum.de/doc/functions.pdf
https://isabelle.in.tum.de/doc/functions.pdf
https://isabelle.in.tum.de/doc/main.pdf
http://concrete-semantics.org
https://isabelle.in.tum.de/doc/isar-ref.pdf
https://isabelle.in.tum.de/doc/isar-ref.pdf

	Introduction
	Programming and Proving
	Basics
	Types bool, nat and list
	Type and Function Definitions
	Induction Heuristics
	Simplification

	Logic and Proof Beyond Equality
	Formulas
	Sets
	Proof Automation
	Single Step Proofs
	Inductive Definitions

	Isar: A Language for Structured Proofs
	Isar by Example
	Proof Patterns
	Streamlining Proofs
	Case Analysis and Induction

	References

