IXTEX Sugar for Isabelle Documents

Florian Haftmann, Gerwin Klein, Tobias Nipkow, Norbert Schirmer

January 18, 2026

Abstract

This document shows how to typset mathematics in Isabelle-based
documents in a style close to that in ordinary computer science papers.

1 Introduction

This document is for those Isabelle users who have mastered the art of
mixing ITEX text and Isabelle theories and never want to typeset a the-
orem by hand anymore because they have experienced the bliss of writing
@{thm[display,mode=latex_sum] sum_Suc_diff [no_vars]} and seeing
Isabelle typeset it for them:

m< Suen= (37—, f(Suci)— fi)=f (Sucn)—fm

No typos, no omissions, no sweat. If you have not experienced that joy, read
Chapter 4, Presenting Theories, [1] first.

If you have mastered the art of Isabelle’s antiquotations, i.e. things like
the above @{thm. ..}, beware: in your vanity you may be tempted to think
that all readers of the stunning documents you can now produce at the drop
of a hat will be struck with awe at the beauty unfolding in front of their
eyes. Until one day you come across that very critical of readers known as
the “common referee”. He has the nasty habit of refusing to understand
unfamiliar notation like Isabelle’s infamous [| = no matter how many
times you explain it in your paper. Even worse, he thinks that using [] for
anything other than denotational semantics is a cardinal sin that must be
punished by instant rejection.

This document shows you how to make Isabelle and IXTEX cooperate
to produce ordinary looking mathematics that hides the fact that it was
typeset by a machine. You merely need to load the right files:

o Import theory LaTeXsugar in the header of your own theory. You
may also want bits of OptionalSugar, which you can copy selectively
into your own theory or import as a whole. Both theories live in
HOL/Library.

o Should you need additional IXTEX packages (the text will tell you so),
you include them at the beginning of your IXTEX document, typically
in root.tex. For a start, you should \usepackage{amssymb} — oth-
erwise typesetting (3 z. P z) will fail because the AMS symbol # is
missing.

2 HOL syntax

2.1 Logic

The formula =(3z. P z) is typeset as Az. P .
The predefined constructs if, let and case are set in sans serif font to
distinguish them from other functions. This improves readability:

e if b then ey else ey instead of if b then ey else es.
e let x = e1 in ey instead of let z = ey in es.

o case x of True = e | False = es instead of
case x of True = ey | False = eo.

2.2 Sets

Although set syntax in HOL is already close to standard, we provide a few
further improvements:

o {z | P} instead of {z. P}.
o () instead of {}, where) is also input syntax.
o {a, b, ¢} U M instead of insert a (insert b (insert ¢ M)).

o |A| instead of card A.

2.3 Lists

If lists are used heavily, the following notations increase readability:
e 1z - xsinstead of x # xs, where x - s is also input syntax.
o |zs| instead of length wxs.
* 1S, instead of nth xs n, the nth element of ws.

e Human readers are good at converting automatically from lists to sets.
Hence OptionalSugar contains syntax for suppressing the conversion
function set: for example, x € set xs becomes = € zs.

e The @ operation associates implicitly to the right, which leads to un-
pleasant line breaks if the term is too long for one line. To avoid this,
OptionalSugar contains syntax to group @-terms to the left before
printing, which leads to better line breaking behaviour:

termg Q term; Q termo @ terms @ termy Q terms Q termg Q term; @
termg Q termg Q termyg

2.4 Numbers

Coercions between numeric types are alien to mathematicians who consider,
for example, nat as a subset of int. OptionalSugar contains syntax for
suppressing numeric coercions such as int :: nat = int. For example, int 5
is printed as 5. Embeddings of types nat, int, real are covered; non-injective
coercions such as nat :: int = nat are not and should not be hidden.

3 Printing constants and their type

Instead of @{const myconst} @{text "::"} @{typeof myconst}, you can
write @{const_typ myconst} using the new antiquotation const_typ de-
fined in LaTeXsugar. For example, @{const_typ length} produces length
: ?'a list = nat (see below for how to suppress the question mark). This
works both for genuine constants and for variables fixed in some context,
especially in a locale.

4 Printing theorems

The [P; @] = R syntax is a bit idiosyncratic. If you would like to avoid
it, you can easily print the premises as a conjunction: P A = R. See
OptionalSugar for the required “code”.

4.1 Question marks

If you print anything, especially theorems, containing schematic variables
they are prefixed with a question mark: @{thm conjI} results in [?P; ?Q)]
= ?P A ?Q). Most of the time you would rather not see the question marks.
There is an attribute no_vars that you can attach to the theorem that turns
its schematic into ordinary free variables:

@{thm conjI[no_vars]}
~ [PQ=PArQ

This no_vars business can become a bit tedious. If you would rather never
see question marks, simply put

options [show_question_marks = false]

into the relevant ROOT file, just before the theories for that session. The
rest of this document is produced with this flag set to false.

4.2 Qualified names

If there are multiple declarations of the same name, Isabelle prints the qual-
ified name, for example T.length, where T is the theory it is defined in, to
distinguish it from the predefined List.length. In case there is no danger
of confusion, you can insist on short names (no qualifiers) by setting the
names_short configuration option in the context.

4.3 Variable names

It sometimes happens that you want to change the name of a variable in
a theorem before printing it. This can easily be achieved with the help of
Isabelle’s instantiation attribute where:

@{thm conjI[where P = \<phi> and Q = \<psi>]}
~ el = oAy

“won

To support the “_"-notation for irrelevant variables the constant DUMMY has
been introduced:

@{thm fst_conv[of _ DUMMY]}
~ fst (1.0, _) = x1.0

As expected, the second argument has been replaced by “_”, but the first
argument is the ugly x1.0, a schematic variable with suppressed question
mark. Schematic variables that end in digits, e.g. x1, are still printed with a
trailing .0, e.g. x1.0, their internal index. This can be avoided by turning the
last digit into a subscript: write x\<"sub>1 and obtain the much nicer z;.
Alternatively, you can display trailing digits of schematic and free variables
as subscripts with the sub style:

@{thm (sub) fst_conv[of _ DUMMY]}
~ fst (z1,) = o1
The insertion of underscores can be automated with the dummy_pats style:

@{thm (dummy_pats,sub) fst_conv}
~ fst (z1,) = o1

The theorem must be an equation. Then every schematic variable that
occurs on the left-hand but not the right-hand side is replaced by DUMMY.
This is convenient for displaying functional programs.

Variables that are bound by quantifiers or lambdas can be renamed with
the help of the attribute rename_abs. It expects a list of names or under-
scores, similar to the of attribute:

@{thm split_paired_All[rename_abs _ 1 r]}
~ (Vo Pz)=VIlr. P(l, 1))

Sometimes Isabelle n-contracts terms, for example in the following defi-
nition:
fun eta where
eta (z - zs) = (Vy € set xs. © < y)

If you now print the defining equation, the result is not what you hoped for:

@{thm eta.simps}
~ eta (z - xs) = Ball zs ((<) x)

In such situations you can put the abstractions back by explicitly n-expanding
upon output:

@{thm (eta_expand z) eta.simps}
~ eta (z - xs) = (Vz€xs. © < 2)

Instead of a single variable z you can give a whole list x y z to perform
multiple n-expansions.

4.4 Breaks and boxes

Printing longer formulas can easily lead to line breaks in unwanted places.
This can be avoided by putting IATEX-like mboxes in formulas. There is a
function mboz :: ‘a = ’a that you can wrap around subterms and that is
pretty-printed as a IATEX \mbox{ }. If you are printing a term or formula,
you can just insert mbozr wherever you want. You can also insert it into
theorems by virtue of the fact that mbox is defined as an identity function.
Of course you need to adapt the proof accordingly.

Unless the argument of mboz is an identifier or an application (i.e. of the
highest precedence), it will be enclosed in parentheses. Thus x < mbox(f y)
results in z < fy but x < mbox(y+z) results in z < (y + 2). You can
switch off the parentheses by using the variant mbox0 instead of mbox:
x < mbox0(y+z) resultsin z < y + 2

4.5 Inference rules

To print theorems as inference rules you need to include Didier Rémy’s
mathpartir package [2] for typesetting inference rules in your IWTEX file.

Writing @{thm [mode=Rule] conjI} produces P/\QQ’ even in the mid-

dle of a sentence. If you prefer your inference rule on a separate line, maybe
with a name,

P
PAQ

CONJI

is produced by

\begin{center}
@{thm[mode=Rule] conjI} {\sc conjI}
\end{center}

It is not recommended to use the standard display option together with
Rule because centering does not work and because the line breaking mech-
anisms of display and mathpartir can clash.

Of course you can display multiple rules in this fashion:

\begin{center}

@{thm[mode=Rule] conjI} {\sc conjI} \\[1lex]
@{thm[mode=Rule] conjE} {\sc disjI$_1$} \qquad
@{thm[mode=Rule] disjE} {\sc disjI$_2%$}

\end{center}
yields
P
——— conNJI
PAQ
DISJI; @ DISJI,
PV Q PV Q

The mathpartir package copes well if there are too many premises for
one line:

A— B B— C C — D D— F F— F
F— G G — H H—1 I —J J — K

A— K

Limitations: 1. Premises and conclusion must each not be longer than
the line. 2. Premises that are =-implications are again displayed with a
horizontal line, which looks at least unusual.

In case you print theorems without premises no rule will be printed by
the Rule print mode. However, you can use Axiom instead:

\begin{center}
@{thm[mode=Axiom] refl} {\sc refl}
\end{center}

yields

—— REFL

4.6 Displays and font sizes

When displaying theorems with the display option, for example as in
@{thm[display] refl}

t=1

the theorem is set in small font. It uses the IXTEX-macro \isastyle, which
is also the style that regular theory text is set in, e.g.

lemma t = ¢

Otherwise \isastyleminor is used, which does not modify the font size
(assuming you stick to the default \isabellestyle{it} in root.tex). If
you prefer normal font size throughout your text, include

\renewcommand{\isastyle}{\isastyleminor}

in root.tex. On the other hand, if you like the small font, just put \isastyle
in front of the text in question, e.g. at the start of one of the center-
environments above.

The advantage of the display option is that you can display a whole
list of theorems in one go. For example, @{thm[display] append.simps}
generates

] @ys=ys
z-2s@Qys=2x-xs Q ys
4.7 If-then
If you prefer a fake “natural language” style you can produce the body of
Theorem 1 If i < j and j < k then i < k.
by typing
@{thm[mode=IfThen] le_trans}

In order to prevent odd line breaks, the premises are put into boxes. At
times this is too drastic:

Theorem 2 If longpremise and longerpremise and P (f (f (f (f (f (f (f (f (f2)))))))))
and longestpremise then conclusion.

In which case you should use IfThenNoBox instead of IfThen:

Theorem 3 If longpremise and longerpremise and P (f (f (f (f (f (f (f
(f (fx))))))))) and longestpremise then conclusion.

4.8 Doing it yourself

If for some reason you want or need to present theorems your own way, you
can extract the premises and the conclusion explicitly and combine them as
you like:

e @{thm (prem 1) thm} prints premise 1 of thm.
e @{thm (concl) thm} prints the conclusion of thm.
For example, “from () and P we conclude P A @7 is produced by

from @{thm (prem 2) conjI} and @{thm (prem 1) conjI}
we conclude @{thm (concl) conjI}

Thus you can rearrange or hide premises and typeset the theorem as you
like. Styles like (prem 1) are a general mechanism explained in §5.

4.9 Patterns

In §4.3 we shows how to create patterns containing “_”. You can drive this
game even further and extend the syntax of let bindings such that certain
functions like fst, hd, etc. are printed as patterns. OptionalSugar provides
the following:

let (z,) = pint produced by @{term "let x = fst p in t"}
let (., z) = pint produced by @{term "let x = snd p in t"}
letxz-_=2zsint produced by @{term "let x = hd xs in t"}
let -z =u2xsint produced by @{term "let x = tl xs in t"}
let Some © = y in t produced by @{term "let x = the y in t"}

5 Styles

The thm antiquotation works nicely for single theorems, but sets of equations
as used in definitions are more difficult to typeset nicely: people tend to
prefer aligned = signs.

To deal with such cases where it is desirable to dive into the structure
of terms and theorems, Isabelle offers antiquotations featuring “styles”:

e{thm (style) thm}

@{prop (style) thm}
@{term (style) term}
@{term_type (style) term}
@{typeof (style) term}

A “style” is a transformation of a term. There are predefined styles,
namely 1hs and rhs, prem with one argument, and concl. For example, the
output

] @uys ys
x-xs@Qys = - x5 Qys

is produced by the following code:

\begin{center}

\begin{tabular}{1@ {"~@{text "="}""1}1}

@{thm (1lhs) append_Nil} & @{thm (rhs) append_Nill}\\
@{thm (lhs) append_Cons} & @{thm (rhs) append_Cons}
\end{tabular}

\end{center}

Note the space between @ and { in the tabular argument. It prevents Isabelle
from interpreting @ {"~...~"} as an antiquotation. The styles 1hs and
rhs extract the left hand side (or right hand side respectively) from the
conclusion of propositions consisting of a binary operator (e. g. =, =, <).

Likewise, concl may be used as a style to show just the conclusion of a
proposition. For example, take hd_Cons_t1:

s # [= hd xs - tl xs = xs
To print just the conclusion,
hd xs - tl xs = xs
type

\begin{center}
@{thm (concl) hd_Cons_t1}
\end{center}

Beware that any options must be placed before the style, as in this example.
Further use cases can be found in §4.8. If you are not afraid of ML, you
may also define your own styles. Have a look at module Term_Style.

6 Proofs

Full proofs, even if written in beautiful Isar style, are likely to be too long
and detailed to be included in conference papers, but some key lemmas
might be of interest. It is usually easiest to put them in figures like the one
in Fig. 1. This was achieved with the text_raw command:

lemma True
proof —

show True by (rule Truel)
qed

Figure 1: Example proof in a figure.

text_raw \<open>
\begin{figure}
\begin{center}\begin{minipage}{0.6\textwidth}
\isastyleminor\isamarkuptrue

\<close>

lemma True

proof -
show True by (rule Truel)

qed

text_raw \<open>
\end{minipage}\end{center}
\caption{Example proof in a figure.l}\label{fig:proof}
\end{figure}

\<close>

Other theory text, e.g. definitions, can be put in figures, too.

7 Theory snippets

This section describes how to include snippets of a theory text in some other
IXTEX document. The typical scenario is that the description of your theory
is not part of the theory text but a separate document that antiquotes bits
of the theory. This works well for terms and theorems but there are no
antiquotations, for example, for function definitions or proofs. Even if there
are antiquotations, the output is usually a reformatted (by Isabelle) version
of the input and may not look like you wanted it to look. Here is how
to include a snippet of theory text (in IXTEX form) in some other IKTEX
document, in 4 easy steps. Beware that these snippets are not processed
by any antiquotation mechanism: the resulting IXTEX text is more or less
exactly what you wrote in the theory, without any added sugar.

7.1 Theory markup

Include some markers at the beginning and the end of the theory snippet
you want to cut out. You have to place the following lines before and after
the snippet, where snippets must always be consecutive lines of theory text:

\text_raw\<open>\snip{snippetname}{1}{2}{%\<close>

10

theory text
\text_raw\<open>’endsnip\<close>

where snippetname should be a unique name for the snippet. The numbers
1 and 2 are explained in a moment.

7.2 Generate the .tex file

Run your theory T with the isabelle build tool to generate the INTEX-file
T.tex which is needed for the next step, extraction of marked snippets. You
may also want to process T.tex to generate a pdf document. This requires
a definition of \snippet:

\newcommand{\repeatisanl}[1]
{\ifnum#1=0\else\isanewline\repeatisanl{\numexpr#1-1}\fi}
\newcommand{\snip} [4] {\repeatisanl#2#4\repeatisanl#3}

Parameter 2 and 3 of \snippet are numbers (the 1 and 2 above) and deter-
mine how many newlines are inserted before and after the snippet. Unfortu-
nately text_raw eats up all preceding and following newlines and they have
to be inserted again in this manner. Otherwise the document generated
from T.tex will look ugly around the snippets. It can take some iterations
to get the number of required newlines exactly right.

7.3 Extract marked snippets

Extract the marked bits of text with a shell-level script, e.g.
sed -n ’/\\snip{/,/endsnip/p’ T.tex > snippets.tex

File snippets.tex (the name is arbitrary) now contains a sequence of blocks
like this

\snip{snippetname}{13{2}3{%
theory text
}/endsnip

7.4 Including snippets

In the preamble of the document where the snippets are to be used you
define \snip and input snippets.tex:

\newcommand{\snip} [4]
{\expandafter\newcommand\csname #1\endcsname{#4}}
\input{snippets}

This definition of \snip simply has the effect of defining for each snippet
snippetname a INTEX command \snippetname that produces the correspond-
ing snippet text. In the body of your document you can display that text
like this:

11

\begin{isabelle}
\snippetname
\end{isabelle}

The isabelle environment is the one defined in the standard file isabelle.sty
which most likely you are loading anyway.

References

[1] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof As-
sistant for Higher-Order Logic, volume 2283. 2002. http://www.in.tum.
de/~nipkow/LNCS2283/.

[2] D. Rémy. mathpartir. http://cristal.inria.fr/~remy/latex/.

12

http://www.in.tum.de/~nipkow/LNCS2283/
http://www.in.tum.de/~nipkow/LNCS2283/
http://cristal.inria.fr/~remy/latex/

	Introduction
	HOL syntax
	Logic
	Sets
	Lists
	Numbers

	Printing constants and their type
	Printing theorems
	Question marks
	Qualified names
	Variable names
	Breaks and boxes
	Inference rules
	Displays and font sizes
	If-then
	Doing it yourself
	Patterns

	Styles
	Proofs
	Theory snippets
	Theory markup
	Generate the .tex file
	Extract marked snippets
	Including snippets

