Theory If
theory If imports FOL begin
definition "if" :: "[o,o,o]=>o" where
  "if(P,Q,R) == P&Q | ~P&R"
lemma ifI:
    "[| P ==> Q; ~P ==> R |] ==> if(P,Q,R)"
  
apply (simp add: if_def)
  
apply blast
done
lemma ifE:
   "[| if(P,Q,R);  [| P; Q |] ==> S; [| ~P; R |] ==> S |] ==> S"
  
apply (simp add: if_def)
  
apply blast
done
lemma if_commute: "if(P, if(Q,A,B), if(Q,C,D)) <-> if(Q, if(P,A,C), if(P,B,D))"
  
apply (rule iffI)
  
apply (erule ifE)
  
apply (erule ifE)
  
apply (rule ifI)
  
apply (rule ifI)
  
oops
text‹Trying again from the beginning in order to use ‹blast››
declare ifI [intro!]
declare ifE [elim!]
lemma if_commute: "if(P, if(Q,A,B), if(Q,C,D)) <-> if(Q, if(P,A,C), if(P,B,D))"
by blast
lemma "if(if(P,Q,R), A, B) <-> if(P, if(Q,A,B), if(R,A,B))"
  
by blast
text‹Trying again from the beginning in order to prove from the definitions›
lemma "if(if(P,Q,R), A, B) <-> if(P, if(Q,A,B), if(R,A,B))"
  
apply (simp add: if_def)
  
apply blast
done
text‹An invalid formula.  High-level rules permit a simpler diagnosis›
lemma "if(if(P,Q,R), A, B) <-> if(P, if(Q,A,B), if(R,B,A))"
  
apply auto
  
apply (tactic all_tac)
oops
text‹Trying again from the beginning in order to prove from the definitions›
lemma "if(if(P,Q,R), A, B) <-> if(P, if(Q,A,B), if(R,B,A))"
  
apply (simp add: if_def)
  
apply (auto) 
  
apply (tactic all_tac)
oops
end