Theory Fix
section ‹Tentative attempt at including fixed point induction; justified by Smith›
theory Fix
imports Type
begin
definition idgen :: "i ⇒ i"
  where "idgen(f) == lam t. case(t,true,false, λx y.<f`x, f`y>, λu. lam x. f ` u(x))"
axiomatization INCL :: "[i⇒o]⇒o" where
  INCL_def: "INCL(λx. P(x)) == (ALL f.(ALL n:Nat. P(f^n`bot)) ⟶ P(fix(f)))" and
  po_INCL: "INCL(λx. a(x) [= b(x))" and
  INCL_subst: "INCL(P) ⟹ INCL(λx. P((g::i⇒i)(x)))"
subsection ‹Fixed Point Induction›
lemma fix_ind:
  assumes base: "P(bot)"
    and step: "⋀x. P(x) ⟹ P(f(x))"
    and incl: "INCL(P)"
  shows "P(fix(f))"
  apply (rule incl [unfolded INCL_def, rule_format])
  apply (rule Nat_ind [THEN ballI], assumption)
   apply simp_all
   apply (rule base)
  apply (erule step)
  done
subsection ‹Inclusive Predicates›
lemma inclXH: "INCL(P) ⟷ (ALL f. (ALL n:Nat. P(f ^ n ` bot)) ⟶ P(fix(f)))"
  by (simp add: INCL_def)
lemma inclI: "⟦⋀f. ALL n:Nat. P(f^n`bot) ⟹ P(fix(f))⟧ ⟹ INCL(λx. P(x))"
  unfolding inclXH by blast
lemma inclD: "⟦INCL(P); ⋀n. n:Nat ⟹ P(f^n`bot)⟧ ⟹ P(fix(f))"
  unfolding inclXH by blast
lemma inclE: "⟦INCL(P); (ALL n:Nat. P(f^n`bot)) ⟶ P(fix(f)) ⟹ R⟧ ⟹ R"
  by (blast dest: inclD)
subsection ‹Lemmas for Inclusive Predicates›
lemma npo_INCL: "INCL(λx. ¬ a(x) [= t)"
  apply (rule inclI)
  apply (drule bspec)
   apply (rule zeroT)
  apply (erule contrapos)
  apply (rule po_trans)
   prefer 2
   apply assumption
  apply (subst napplyBzero)
  apply (rule po_cong, rule po_bot)
  done
lemma conj_INCL: "⟦INCL(P); INCL(Q)⟧ ⟹ INCL(λx. P(x) ∧ Q(x))"
  by (blast intro!: inclI dest!: inclD)
lemma all_INCL: "(⋀a. INCL(P(a))) ⟹ INCL(λx. ALL a. P(a,x))"
  by (blast intro!: inclI dest!: inclD)
lemma ball_INCL: "(⋀a. a:A ⟹ INCL(P(a))) ⟹ INCL(λx. ALL a:A. P(a,x))"
  by (blast intro!: inclI dest!: inclD)
lemma eq_INCL: "INCL(λx. a(x) = (b(x)::'a::prog))"
  apply (simp add: eq_iff)
  apply (rule conj_INCL po_INCL)+
  done
subsection ‹Derivation of Reachability Condition›
lemma fix_idgenfp: "idgen(fix(idgen)) = fix(idgen)"
  apply (rule fixB [symmetric])
  done
lemma id_idgenfp: "idgen(lam x. x) = lam x. x"
  apply (simp add: idgen_def)
  apply (rule term_case [THEN allI])
      apply simp_all
  done
schematic_goal idgenfp_lam: "idgen(d) = d ⟹ d = lam x. ?f(x)"
  apply (unfold idgen_def)
  apply (erule ssubst)
  apply (rule refl)
  done
lemma l_lemma: "⟦a = b; a ` t = u⟧ ⟹ b ` t = u"
  by (simp add: idgen_def)
lemma idgen_lemmas:
  "idgen(d) = d ⟹ d ` bot = bot"
  "idgen(d) = d ⟹ d ` true = true"
  "idgen(d) = d ⟹ d ` false = false"
  "idgen(d) = d ⟹ d ` <a,b> = <d ` a,d ` b>"
  "idgen(d) = d ⟹ d ` (lam x. f(x)) = lam x. d ` f(x)"
  by (erule l_lemma, simp add: idgen_def)+
lemma po_eta:
  "⟦ALL x. t ` x [= u ` x; EX f. t=lam x. f(x); EX f. u=lam x. f(x)⟧ ⟹ t [= u"
  apply (drule cond_eta)+
  apply (erule ssubst)
  apply (erule ssubst)
  apply (rule po_lam [THEN iffD2])
  apply simp
  done
schematic_goal po_eta_lemma: "idgen(d) = d ⟹ d = lam x. ?f(x)"
  apply (unfold idgen_def)
  apply (erule sym)
  done
lemma lemma1:
  "idgen(d) = d ⟹
    {p. EX a b. p=<a,b> ∧ (EX t. a=fix(idgen) ` t ∧ b = d ` t)} <=
      POgen({p. EX a b. p=<a,b> ∧ (EX t. a=fix(idgen) ` t  ∧ b = d ` t)})"
  apply clarify
  apply (rule_tac t = t in term_case)
      apply (simp_all add: POgenXH idgen_lemmas idgen_lemmas [OF fix_idgenfp])
   apply blast
  apply fast
  done
lemma fix_least_idgen: "idgen(d) = d ⟹ fix(idgen) [= d"
  apply (rule allI [THEN po_eta])
    apply (rule lemma1 [THEN [2] po_coinduct])
     apply (blast intro: po_eta_lemma fix_idgenfp)+
  done
lemma lemma2:
  "idgen(d) = d ⟹
    {p. EX a b. p=<a,b> ∧ b = d ` a} <= POgen({p. EX a b. p=<a,b> ∧ b = d ` a})"
  apply clarify
  apply (rule_tac t = a in term_case)
      apply (simp_all add: POgenXH idgen_lemmas)
  apply fast
  done
lemma id_least_idgen: "idgen(d) = d ⟹ lam x. x [= d"
  apply (rule allI [THEN po_eta])
    apply (rule lemma2 [THEN [2] po_coinduct])
     apply simp
    apply (fast intro: po_eta_lemma fix_idgenfp)+
  done
lemma reachability: "fix(idgen) = lam x. x"
  apply (fast intro: eq_iff [THEN iffD2]
    id_idgenfp [THEN fix_least_idgen] fix_idgenfp [THEN id_least_idgen])
  done
lemma id_apply: "f = lam x. x ⟹ f`t = t"
  apply (erule ssubst)
  apply (rule applyB)
  done
lemma term_ind:
  assumes 1: "P(bot)" and 2: "P(true)" and 3: "P(false)"
    and 4: "⋀x y. ⟦P(x); P(y)⟧ ⟹ P(<x,y>)"
    and 5: "⋀u.(⋀x. P(u(x))) ⟹ P(lam x. u(x))"
    and 6: "INCL(P)"
  shows "P(t)"
  apply (rule reachability [THEN id_apply, THEN subst])
  apply (rule_tac x = t in spec)
  apply (rule fix_ind)
    apply (unfold idgen_def)
    apply (rule allI)
    apply (subst applyBbot)
    apply (rule 1)
   apply (rule allI)
   apply (rule applyB [THEN ssubst])
    apply (rule_tac t = "xa" in term_case)
       apply simp_all
       apply (fast intro: assms INCL_subst all_INCL)+
  done
end