Theory Lfp
section ‹The Knaster-Tarski Theorem›
theory Lfp
imports Set
begin
definition
  lfp :: "['a set⇒'a set] ⇒ 'a set" where 
  "lfp(f) == Inter({u. f(u) <= u})"
lemma lfp_lowerbound: "f(A) <= A ⟹ lfp(f) <= A"
  unfolding lfp_def by blast
lemma lfp_greatest: "(⋀u. f(u) <= u ⟹ A<=u) ⟹ A <= lfp(f)"
  unfolding lfp_def by blast
lemma lfp_lemma2: "mono(f) ⟹ f(lfp(f)) <= lfp(f)"
  by (rule lfp_greatest, rule subset_trans, drule monoD, rule lfp_lowerbound, assumption+)
lemma lfp_lemma3: "mono(f) ⟹ lfp(f) <= f(lfp(f))"
  by (rule lfp_lowerbound, frule monoD, drule lfp_lemma2, assumption+)
lemma lfp_Tarski: "mono(f) ⟹ lfp(f) = f(lfp(f))"
  by (rule equalityI lfp_lemma2 lfp_lemma3 | assumption)+
lemma induct:
  assumes lfp: "a: lfp(f)"
    and mono: "mono(f)"
    and indhyp: "⋀x. ⟦x: f(lfp(f) Int {x. P(x)})⟧ ⟹ P(x)"
  shows "P(a)"
  apply (rule_tac a = a in Int_lower2 [THEN subsetD, THEN CollectD])
  apply (rule lfp [THEN [2] lfp_lowerbound [THEN subsetD]])
  apply (rule Int_greatest, rule subset_trans, rule Int_lower1 [THEN mono [THEN monoD]],
    rule mono [THEN lfp_lemma2], rule CollectI [THEN subsetI], rule indhyp, assumption)
  done
lemma def_lfp_Tarski: "⟦h == lfp(f); mono(f)⟧ ⟹ h = f(h)"
  apply unfold
  apply (drule lfp_Tarski)
  apply assumption
  done
lemma def_induct: "⟦A == lfp(f);  a:A;  mono(f); ⋀x. x: f(A Int {x. P(x)}) ⟹ P(x)⟧ ⟹ P(a)"
  apply (rule induct [of concl: P a])
    apply simp
   apply assumption
  apply blast
  done
lemma lfp_mono: "⟦mono(g); ⋀Z. f(Z) <= g(Z)⟧ ⟹ lfp(f) <= lfp(g)"
  apply (rule lfp_lowerbound)
  apply (rule subset_trans)
   apply (erule meta_spec)
  apply (erule lfp_lemma2)
  done
end