Theory Stream
section ‹Programs defined over streams›
theory Stream
imports List
begin
definition iter1 :: "[i⇒i,i]⇒i"
  where "iter1(f,a) == letrec iter x be x$iter(f(x)) in iter(a)"
definition iter2 :: "[i⇒i,i]⇒i"
  where "iter2(f,a) == letrec iter x be x$map(f,iter(x)) in iter(a)"
subsection ‹Map of composition is composition of maps›
lemma map_comp:
  assumes 1: "l:Lists(A)"
  shows "map(f ∘ g,l) = map(f,map(g,l))"
  apply (eq_coinduct3 "{p. EX x y. p=<x,y> ∧ (EX l:Lists (A) .x=map (f ∘ g,l) ∧ y=map (f,map (g,l)))}")
   apply (blast intro: 1)
  apply safe
  apply (drule ListsXH [THEN iffD1])
  apply EQgen
   apply fastforce
  done
lemma map_id:
  assumes 1: "l:Lists(A)"
  shows "map(λx. x, l) = l"
  apply (eq_coinduct3 "{p. EX x y. p=<x,y> ∧ (EX l:Lists (A) .x=map (λx. x,l) ∧ y=l) }")
  apply (blast intro: 1)
  apply safe
  apply (drule ListsXH [THEN iffD1])
  apply EQgen
  apply blast
  done
subsection ‹Mapping distributes over append›
lemma map_append:
  assumes "l:Lists(A)"
    and "m:Lists(A)"
  shows "map(f,l@m) = map(f,l) @ map(f,m)"
  apply (eq_coinduct3
    "{p. EX x y. p=<x,y> ∧ (EX l:Lists (A). EX m:Lists (A). x=map (f,l@m) ∧ y=map (f,l) @ map (f,m))}")
  apply (blast intro: assms)
  apply safe
  apply (drule ListsXH [THEN iffD1])
  apply EQgen
  apply (drule ListsXH [THEN iffD1])
  apply EQgen
  apply blast
  done
subsection ‹Append is associative›
lemma append_assoc:
  assumes "k:Lists(A)"
    and "l:Lists(A)"
    and "m:Lists(A)"
  shows "k @ l @ m = (k @ l) @ m"
  apply (eq_coinduct3
    "{p. EX x y. p=<x,y> ∧ (EX k:Lists (A). EX l:Lists (A). EX m:Lists (A). x=k @ l @ m ∧ y= (k @ l) @ m) }")
  apply (blast intro: assms)
  apply safe
  apply (drule ListsXH [THEN iffD1])
  apply EQgen
   prefer 2
   apply blast
  apply (tactic ‹DEPTH_SOLVE (eresolve_tac \<^context> [XH_to_E @{thm ListsXH}] 1
    THEN EQgen_tac \<^context> [] 1)›)
  done
subsection ‹Appending anything to an infinite list doesn't alter it›
lemma ilist_append:
  assumes "l:ILists(A)"
  shows "l @ m = l"
  apply (eq_coinduct3 "{p. EX x y. p=<x,y> ∧ (EX l:ILists (A) .EX m. x=l@m ∧ y=l)}")
  apply (blast intro: assms)
  apply safe
  apply (drule IListsXH [THEN iffD1])
  apply EQgen
  apply blast
  done
lemma iter1B: "iter1(f,a) = a$iter1(f,f(a))"
  apply (unfold iter1_def)
  apply (rule letrecB [THEN trans])
  apply simp
  done
lemma iter2B: "iter2(f,a) = a $ map(f,iter2(f,a))"
  apply (unfold iter2_def)
  apply (rule letrecB [THEN trans])
  apply (rule refl)
  done
lemma iter2Blemma:
  "n:Nat ⟹  
    map(f) ^ n ` iter2(f,a) = (f ^ n ` a) $ (map(f) ^ n ` map(f,iter2(f,a)))"
  apply (rule_tac P = "λx. lhs(x) = rhs" for lhs rhs in iter2B [THEN ssubst])
  apply (simp add: nmapBcons)
  done
lemma iter1_iter2_eq: "iter1(f,a) = iter2(f,a)"
  apply (eq_coinduct3
    "{p. EX x y. p=<x,y> ∧ (EX n:Nat. x=iter1 (f,f^n`a) ∧ y=map (f) ^n`iter2 (f,a))}")
  apply (fast intro!: napplyBzero [symmetric] napplyBzero [symmetric, THEN arg_cong])
  apply (EQgen iter1B iter2Blemma)
  apply (subst napply_f, assumption)
  apply (rule_tac f1 = f in napplyBsucc [THEN subst])
  apply blast
  done
end