Theory ZF_Base
section ‹Base of Zermelo-Fraenkel Set Theory›
theory ZF_Base
imports FOL
begin
subsection ‹Signature›
declare [[eta_contract = false]]
typedecl i
instance i :: "term" ..
axiomatization mem :: "[i, i] ⇒ o"  (infixl ‹∈› 50)  
  and zero :: "i"  (‹0›)  
  and Pow :: "i ⇒ i"  
  and Inf :: "i"  
  and Union :: "i ⇒ i"  (‹(‹open_block notation=‹prefix ⋃››⋃_)› [90] 90)
  and PrimReplace :: "[i, [i, i] ⇒ o] ⇒ i"
abbreviation not_mem :: "[i, i] ⇒ o"  (infixl ‹∉› 50)  
  where "x ∉ y ≡ ¬ (x ∈ y)"
subsection ‹Bounded Quantifiers›
definition Ball :: "[i, i ⇒ o] ⇒ o"
  where "Ball(A, P) ≡ ∀x. x∈A ⟶ P(x)"
definition Bex :: "[i, i ⇒ o] ⇒ o"
  where "Bex(A, P) ≡ ∃x. x∈A ∧ P(x)"
syntax
  "_Ball" :: "[pttrn, i, o] ⇒ o"  (‹(‹indent=3 notation=‹binder ∀∈››∀_∈_./ _)› 10)
  "_Bex" :: "[pttrn, i, o] ⇒ o"  (‹(‹indent=3 notation=‹binder ∃∈››∃_∈_./ _)› 10)
syntax_consts
  "_Ball" ⇌ Ball and
  "_Bex" ⇌ Bex
translations
  "∀x∈A. P" ⇌ "CONST Ball(A, λx. P)"
  "∃x∈A. P" ⇌ "CONST Bex(A, λx. P)"
subsection ‹Variations on Replacement›
definition Replace :: "[i, [i, i] ⇒ o] ⇒ i"
  where "Replace(A,P) ≡ PrimReplace(A, λx y. (∃!z. P(x,z)) ∧ P(x,y))"
syntax
  "_Replace" :: "[pttrn, pttrn, i, o] ⇒ i"  (‹(‹indent=1 notation=‹mixfix relational replacement››{_ ./ _ ∈ _, _})›)
syntax_consts
  "_Replace" ⇌ Replace
translations
  "{y. x∈A, Q}" ⇌ "CONST Replace(A, λx y. Q)"
definition RepFun :: "[i, i ⇒ i] ⇒ i"
  where "RepFun(A,f) ≡ {y . x∈A, y=f(x)}"
syntax
  "_RepFun" :: "[i, pttrn, i] ⇒ i"  (‹(‹indent=1 notation=‹mixfix functional replacement››{_ ./ _ ∈ _})› [51,0,51])
syntax_consts
  "_RepFun" ⇌ RepFun
translations
  "{b. x∈A}" ⇌ "CONST RepFun(A, λx. b)"
definition Collect :: "[i, i ⇒ o] ⇒ i"
  where "Collect(A,P) ≡ {y . x∈A, x=y ∧ P(x)}"
syntax
  "_Collect" :: "[pttrn, i, o] ⇒ i"  (‹(‹indent=1 notation=‹mixfix set comprehension››{_ ∈ _ ./ _})›)
syntax_consts
  "_Collect" ⇌ Collect
translations
  "{x∈A. P}" ⇌ "CONST Collect(A, λx. P)"
subsection ‹General union and intersection›
definition Inter :: "i ⇒ i"  (‹(‹open_block notation=‹prefix ⋂››⋂_)› [90] 90)
  where "⋂(A) ≡ { x∈⋃(A) . ∀y∈A. x∈y}"
syntax
  "_UNION" :: "[pttrn, i, i] ⇒ i"  (‹(‹indent=3 notation=‹binder ⋃∈››⋃_∈_./ _)› 10)
  "_INTER" :: "[pttrn, i, i] ⇒ i"  (‹(‹indent=3 notation=‹binder ⋂∈››⋂_∈_./ _)› 10)
syntax_consts
  "_UNION" == Union and
  "_INTER" == Inter
translations
  "⋃x∈A. B" == "CONST Union({B. x∈A})"
  "⋂x∈A. B" == "CONST Inter({B. x∈A})"
subsection ‹Finite sets and binary operations›
definition Upair :: "[i, i] ⇒ i"
  where "Upair(a,b) ≡ {y. x∈Pow(Pow(0)), (x=0 ∧ y=a) | (x=Pow(0) ∧ y=b)}"
definition Subset :: "[i, i] ⇒ o"  (infixl ‹⊆› 50)  
  where subset_def: "A ⊆ B ≡ ∀x∈A. x∈B"
definition Diff :: "[i, i] ⇒ i"  (infixl ‹-› 65)  
  where "A - B ≡ { x∈A . ¬(x∈B) }"
definition Un :: "[i, i] ⇒ i"  (infixl ‹∪› 65)  
  where "A ∪ B ≡ ⋃(Upair(A,B))"
definition Int :: "[i, i] ⇒ i"  (infixl ‹∩› 70)  
  where "A ∩ B ≡ ⋂(Upair(A,B))"
definition cons :: "[i, i] ⇒ i"
  where "cons(a,A) ≡ Upair(a,a) ∪ A"
definition succ :: "i ⇒ i"
  where "succ(i) ≡ cons(i, i)"
nonterminal "is"
syntax
  "" :: "i ⇒ is"  (‹_›)
  "_Enum" :: "[i, is] ⇒ is"  (‹_,/ _›)
  "_Finset" :: "is ⇒ i"  (‹(‹indent=1 notation=‹mixfix set enumeration››{_})›)
translations
  "{x, xs}" == "CONST cons(x, {xs})"
  "{x}" == "CONST cons(x, 0)"
subsection ‹Axioms›
axiomatization
where
  extension:     "A = B ⟷ A ⊆ B ∧ B ⊆ A" and
  Union_iff:     "A ∈ ⋃(C) ⟷ (∃B∈C. A∈B)" and
  Pow_iff:       "A ∈ Pow(B) ⟷ A ⊆ B" and
  
  infinity:      "0 ∈ Inf ∧ (∀y∈Inf. succ(y) ∈ Inf)" and
  
  foundation:    "A = 0 ∨ (∃x∈A. ∀y∈x. y∉A)" and
  
  replacement:   "(∀x∈A. ∀y z. P(x,y) ∧ P(x,z) ⟶ y = z) ⟹
                         b ∈ PrimReplace(A,P) ⟷ (∃x∈A. P(x,b))"
subsection ‹Definite descriptions -- via Replace over the set "1"›
definition The :: "(i ⇒ o) ⇒ i"  (binder ‹THE › 10)
  where the_def: "The(P)    ≡ ⋃({y . x ∈ {0}, P(y)})"
definition If :: "[o, i, i] ⇒ i"  (‹(‹notation=‹mixfix if then else››if (_)/ then (_)/ else (_))› [10] 10)
  where if_def: "if P then a else b ≡ THE z. P ∧ z=a | ¬P ∧ z=b"
abbreviation (input)
  old_if :: "[o, i, i] ⇒ i"  (‹if '(_,_,_')›)
  where "if(P,a,b) ≡ If(P,a,b)"
subsection ‹Ordered Pairing›
definition Pair :: "[i, i] ⇒ i"
  where "Pair(a,b) ≡ {{a,a}, {a,b}}"
definition fst :: "i ⇒ i"
  where "fst(p) ≡ THE a. ∃b. p = Pair(a, b)"
definition snd :: "i ⇒ i"
  where "snd(p) ≡ THE b. ∃a. p = Pair(a, b)"
definition split :: "[[i, i] ⇒ 'a, i] ⇒ 'a::{}"  
  where "split(c) ≡ λp. c(fst(p), snd(p))"
nonterminal "tuple_args"
syntax
  "" :: "i ⇒ tuple_args"  (‹_›)
  "_Tuple_args" :: "[i, tuple_args] ⇒ tuple_args"  (‹_,/ _›)
  "_Tuple" :: "[i, tuple_args] ⇒ i"  (‹(‹indent=1 notation=‹mixfix tuple enumeration››⟨_,/ _⟩)›)
translations
  "⟨x, y, z⟩"   == "⟨x, ⟨y, z⟩⟩"
  "⟨x, y⟩"      == "CONST Pair(x, y)"
nonterminal patterns
syntax
  "_pattern"  :: "patterns ⇒ pttrn"  (‹(‹open_block notation=‹pattern tuple››⟨_⟩)›)
  ""          :: "pttrn ⇒ patterns"  (‹_›)
  "_patterns" :: "[pttrn, patterns] ⇒ patterns"  (‹_,/_›)
syntax_consts
  "_pattern" "_patterns" == split
translations
  "λ⟨x,y,zs⟩.b" == "CONST split(λx ⟨y,zs⟩.b)"
  "λ⟨x,y⟩.b"    == "CONST split(λx y. b)"
definition Sigma :: "[i, i ⇒ i] ⇒ i"
  where "Sigma(A,B) ≡ ⋃x∈A. ⋃y∈B(x). {⟨x,y⟩}"
abbreviation cart_prod :: "[i, i] ⇒ i"  (infixr ‹×› 80)  
  where "A × B ≡ Sigma(A, λ_. B)"
subsection ‹Relations and Functions›
definition converse :: "i ⇒ i"
  where "converse(r) ≡ {z. w∈r, ∃x y. w=⟨x,y⟩ ∧ z=⟨y,x⟩}"
definition domain :: "i ⇒ i"
  where "domain(r) ≡ {x. w∈r, ∃y. w=⟨x,y⟩}"
definition range :: "i ⇒ i"
  where "range(r) ≡ domain(converse(r))"
definition field :: "i ⇒ i"
  where "field(r) ≡ domain(r) ∪ range(r)"
definition relation :: "i ⇒ o"  
  where "relation(r) ≡ ∀z∈r. ∃x y. z = ⟨x,y⟩"
definition "function" :: "i ⇒ o"  
  where "function(r) ≡ ∀x y. ⟨x,y⟩ ∈ r ⟶ (∀y'. ⟨x,y'⟩ ∈ r ⟶ y = y')"
definition Image :: "[i, i] ⇒ i"  (infixl ‹``› 90)  
  where image_def: "r `` A  ≡ {y ∈ range(r). ∃x∈A. ⟨x,y⟩ ∈ r}"
definition vimage :: "[i, i] ⇒ i"  (infixl ‹-``› 90)  
  where vimage_def: "r -`` A ≡ converse(r)``A"
definition restrict :: "[i, i] ⇒ i"
  where "restrict(r,A) ≡ {z ∈ r. ∃x∈A. ∃y. z = ⟨x,y⟩}"
definition Lambda :: "[i, i ⇒ i] ⇒ i"
  where lam_def: "Lambda(A,b) ≡ {⟨x,b(x)⟩. x∈A}"
definition "apply" :: "[i, i] ⇒ i"  (infixl ‹`› 90)  
  where "f`a ≡ ⋃(f``{a})"
definition Pi :: "[i, i ⇒ i] ⇒ i"
  where "Pi(A,B) ≡ {f∈Pow(Sigma(A,B)). A⊆domain(f) ∧ function(f)}"
abbreviation function_space :: "[i, i] ⇒ i"  (infixr ‹→› 60)  
  where "A → B ≡ Pi(A, λ_. B)"
syntax
  "_PROD"     :: "[pttrn, i, i] ⇒ i"        (‹(‹indent=3 notation=‹mixfix ∏∈››∏_∈_./ _)› 10)
  "_SUM"      :: "[pttrn, i, i] ⇒ i"        (‹(‹indent=3 notation=‹mixfix ∑∈››∑_∈_./ _)› 10)
  "_lam"      :: "[pttrn, i, i] ⇒ i"        (‹(‹indent=3 notation=‹mixfix λ∈››λ_∈_./ _)› 10)
syntax_consts
  "_PROD" == Pi and
  "_SUM" == Sigma and
  "_lam" == Lambda
translations
  "∏x∈A. B"   == "CONST Pi(A, λx. B)"
  "∑x∈A. B"   == "CONST Sigma(A, λx. B)"
  "λx∈A. f"    == "CONST Lambda(A, λx. f)"
subsection ‹ASCII syntax›
notation (ASCII)
  cart_prod       (infixr ‹*› 80) and
  Int             (infixl ‹Int› 70) and
  Un              (infixl ‹Un› 65) and
  function_space  (infixr ‹->› 60) and
  Subset          (infixl ‹<=› 50) and
  mem             (infixl ‹:› 50) and
  not_mem         (infixl ‹¬:› 50)
syntax (ASCII)
  "_Ball"     :: "[pttrn, i, o] ⇒ o"        (‹(‹indent=3 notation=‹binder ALL:››ALL _:_./ _)› 10)
  "_Bex"      :: "[pttrn, i, o] ⇒ o"        (‹(‹indent=3 notation=‹binder EX:››EX _:_./ _)› 10)
  "_Collect"  :: "[pttrn, i, o] ⇒ i"        (‹(‹indent=1 notation=‹mixfix set comprehension››{_: _ ./ _})›)
  "_Replace"  :: "[pttrn, pttrn, i, o] ⇒ i" (‹(‹indent=1 notation=‹mixfix relational replacement››{_ ./ _: _, _})›)
  "_RepFun"   :: "[i, pttrn, i] ⇒ i"        (‹(‹indent=1 notation=‹mixfix functional replacement››{_ ./ _: _})› [51,0,51])
  "_UNION"    :: "[pttrn, i, i] ⇒ i"        (‹(‹indent=3 notation=‹binder UN:››UN _:_./ _)› 10)
  "_INTER"    :: "[pttrn, i, i] ⇒ i"        (‹(‹indent=3 notation=‹binder INT:››INT _:_./ _)› 10)
  "_PROD"     :: "[pttrn, i, i] ⇒ i"        (‹(‹indent=3 notation=‹binder PROD:››PROD _:_./ _)› 10)
  "_SUM"      :: "[pttrn, i, i] ⇒ i"        (‹(‹indent=3 notation=‹binder SUM:››SUM _:_./ _)› 10)
  "_lam"      :: "[pttrn, i, i] ⇒ i"        (‹(‹indent=3 notation=‹binder lam:››lam _:_./ _)› 10)
  "_Tuple"    :: "[i, tuple_args] ⇒ i"      (‹(‹indent=1 notation=‹mixfix tuple enumeration››<_,/ _>)›)
  "_pattern"  :: "patterns ⇒ pttrn"         (‹<_>›)
subsection ‹Substitution›
lemma subst_elem: "⟦b∈A;  a=b⟧ ⟹ a∈A"
by (erule ssubst, assumption)
subsection‹Bounded universal quantifier›
lemma ballI [intro!]: "⟦⋀x. x∈A ⟹ P(x)⟧ ⟹ ∀x∈A. P(x)"
by (simp add: Ball_def)
lemmas strip = impI allI ballI
lemma bspec [dest?]: "⟦∀x∈A. P(x);  x: A⟧ ⟹ P(x)"
by (simp add: Ball_def)
lemma rev_ballE [elim]:
    "⟦∀x∈A. P(x);  x∉A ⟹ Q;  P(x) ⟹ Q⟧ ⟹ Q"
by (simp add: Ball_def, blast)
lemma ballE: "⟦∀x∈A. P(x);  P(x) ⟹ Q;  x∉A ⟹ Q⟧ ⟹ Q"
by blast
lemma rev_bspec: "⟦x: A;  ∀x∈A. P(x)⟧ ⟹ P(x)"
by (simp add: Ball_def)
lemma ball_triv [simp]: "(∀x∈A. P) ⟷ ((∃x. x∈A) ⟶ P)"
by (simp add: Ball_def)
lemma ball_cong [cong]:
    "⟦A=A';  ⋀x. x∈A' ⟹ P(x) ⟷ P'(x)⟧ ⟹ (∀x∈A. P(x)) ⟷ (∀x∈A'. P'(x))"
by (simp add: Ball_def)
lemma atomize_ball:
    "(⋀x. x ∈ A ⟹ P(x)) ≡ Trueprop (∀x∈A. P(x))"
  by (simp only: Ball_def atomize_all atomize_imp)
lemmas [symmetric, rulify] = atomize_ball
  and [symmetric, defn] = atomize_ball
subsection‹Bounded existential quantifier›
lemma bexI [intro]: "⟦P(x);  x: A⟧ ⟹ ∃x∈A. P(x)"
by (simp add: Bex_def, blast)
lemma rev_bexI: "⟦x∈A;  P(x)⟧ ⟹ ∃x∈A. P(x)"
by blast
lemma bexCI: "⟦∀x∈A. ¬P(x) ⟹ P(a);  a: A⟧ ⟹ ∃x∈A. P(x)"
by blast
lemma bexE [elim!]: "⟦∃x∈A. P(x);  ⋀x. ⟦x∈A; P(x)⟧ ⟹ Q⟧ ⟹ Q"
by (simp add: Bex_def, blast)
lemma bex_triv [simp]: "(∃x∈A. P) ⟷ ((∃x. x∈A) ∧ P)"
by (simp add: Bex_def)
lemma bex_cong [cong]:
    "⟦A=A';  ⋀x. x∈A' ⟹ P(x) ⟷ P'(x)⟧
     ⟹ (∃x∈A. P(x)) ⟷ (∃x∈A'. P'(x))"
by (simp add: Bex_def cong: conj_cong)
subsection‹Rules for subsets›
lemma subsetI [intro!]:
    "(⋀x. x∈A ⟹ x∈B) ⟹ A ⊆ B"
by (simp add: subset_def)
lemma subsetD [elim]: "⟦A ⊆ B;  c∈A⟧ ⟹ c∈B"
  unfolding subset_def
apply (erule bspec, assumption)
done
lemma subsetCE [elim]:
    "⟦A ⊆ B;  c∉A ⟹ P;  c∈B ⟹ P⟧ ⟹ P"
by (simp add: subset_def, blast)
lemma rev_subsetD: "⟦c∈A; A⊆B⟧ ⟹ c∈B"
by blast
lemma contra_subsetD: "⟦A ⊆ B; c ∉ B⟧ ⟹ c ∉ A"
  by blast
lemma rev_contra_subsetD: "⟦c ∉ B;  A ⊆ B⟧ ⟹ c ∉ A"
  by blast
lemma subset_refl [simp]: "A ⊆ A"
  by blast
lemma subset_trans: "⟦A⊆B;  B⊆C⟧ ⟹ A⊆C"
  by blast
lemma subset_iff:
     "A⊆B ⟷ (∀x. x∈A ⟶ x∈B)"
  by auto
text‹For calculations›
declare subsetD [trans] rev_subsetD [trans] subset_trans [trans]
subsection‹Rules for equality›
lemma equalityI [intro]: "⟦A ⊆ B;  B ⊆ A⟧ ⟹ A = B"
  by (rule extension [THEN iffD2], rule conjI)
lemma equality_iffI: "(⋀x. x∈A ⟷ x∈B) ⟹ A = B"
  by (rule equalityI, blast+)
lemmas equalityD1 = extension [THEN iffD1, THEN conjunct1]
lemmas equalityD2 = extension [THEN iffD1, THEN conjunct2]
lemma equalityE: "⟦A = B;  ⟦A⊆B; B⊆A⟧ ⟹ P⟧  ⟹  P"
  by (blast dest: equalityD1 equalityD2)
lemma equalityCE:
  "⟦A = B;  ⟦c∈A; c∈B⟧ ⟹ P;  ⟦c∉A; c∉B⟧ ⟹ P⟧  ⟹  P"
  by (erule equalityE, blast)
lemma equality_iffD:
  "A = B ⟹ (⋀x. x ∈ A ⟷ x ∈ B)"
  by auto
subsection‹Rules for Replace -- the derived form of replacement›
lemma Replace_iff:
    "b ∈ {y. x∈A, P(x,y)}  ⟷  (∃x∈A. P(x,b) ∧ (∀y. P(x,y) ⟶ y=b))"
  unfolding Replace_def
  by (rule replacement [THEN iff_trans], blast+)
lemma ReplaceI [intro]:
    "⟦P(x,b);  x: A;  ⋀y. P(x,y) ⟹ y=b⟧ ⟹
     b ∈ {y. x∈A, P(x,y)}"
by (rule Replace_iff [THEN iffD2], blast)
lemma ReplaceE:
    "⟦b ∈ {y. x∈A, P(x,y)};
        ⋀x. ⟦x: A;  P(x,b);  ∀y. P(x,y)⟶y=b⟧ ⟹ R
⟧ ⟹ R"
by (rule Replace_iff [THEN iffD1, THEN bexE], simp+)
lemma ReplaceE2 [elim!]:
  "⟦b ∈ {y. x∈A, P(x,y)};
        ⋀x. ⟦x: A;  P(x,b)⟧ ⟹ R
   ⟧ ⟹ R"
  by (erule ReplaceE, blast)
lemma Replace_cong [cong]:
  "⟦A=B;  ⋀x y. x∈B ⟹ P(x,y) ⟷ Q(x,y)⟧ ⟹ Replace(A,P) = Replace(B,Q)"
  apply (rule equality_iffI)
  apply (simp add: Replace_iff)
  done
subsection‹Rules for RepFun›
lemma RepFunI: "a ∈ A ⟹ f(a) ∈ {f(x). x∈A}"
by (simp add: RepFun_def Replace_iff, blast)
lemma RepFun_eqI [intro]: "⟦b=f(a);  a ∈ A⟧ ⟹ b ∈ {f(x). x∈A}"
  by (blast intro: RepFunI)
lemma RepFunE [elim!]:
  "⟦b ∈ {f(x). x∈A};
        ⋀x.⟦x∈A;  b=f(x)⟧ ⟹ P⟧ ⟹
     P"
  by (simp add: RepFun_def Replace_iff, blast)
lemma RepFun_cong [cong]:
  "⟦A=B;  ⋀x. x∈B ⟹ f(x)=g(x)⟧ ⟹ RepFun(A,f) = RepFun(B,g)"
  by (simp add: RepFun_def)
lemma RepFun_iff [simp]: "b ∈ {f(x). x∈A} ⟷ (∃x∈A. b=f(x))"
  by (unfold Bex_def, blast)
lemma triv_RepFun [simp]: "{x. x∈A} = A"
  by blast
subsection‹Rules for Collect -- forming a subset by separation›
lemma separation [simp]: "a ∈ {x∈A. P(x)} ⟷ a∈A ∧ P(a)"
  by (auto simp: Collect_def)
lemma CollectI [intro!]: "⟦a∈A;  P(a)⟧ ⟹ a ∈ {x∈A. P(x)}"
  by simp
lemma CollectE [elim!]: "⟦a ∈ {x∈A. P(x)};  ⟦a∈A; P(a)⟧ ⟹ R⟧ ⟹ R"
  by simp
lemma CollectD1: "a ∈ {x∈A. P(x)} ⟹ a∈A" and CollectD2: "a ∈ {x∈A. P(x)} ⟹ P(a)"
  by auto
lemma Collect_cong [cong]:
  "⟦A=B;  ⋀x. x∈B ⟹ P(x) ⟷ Q(x)⟧
     ⟹ Collect(A, λx. P(x)) = Collect(B, λx. Q(x))"
  by (simp add: Collect_def)
subsection‹Rules for Unions›
declare Union_iff [simp]
lemma UnionI [intro]: "⟦B: C;  A: B⟧ ⟹ A: ⋃(C)"
  by auto
lemma UnionE [elim!]: "⟦A ∈ ⋃(C);  ⋀B.⟦A: B;  B: C⟧ ⟹ R⟧ ⟹ R"
  by auto
subsection‹Rules for Unions of families›
lemma UN_iff [simp]: "b ∈ (⋃x∈A. B(x)) ⟷ (∃x∈A. b ∈ B(x))"
  by blast
lemma UN_I: "⟦a: A;  b: B(a)⟧ ⟹ b: (⋃x∈A. B(x))"
  by force
lemma UN_E [elim!]:
  "⟦b ∈ (⋃x∈A. B(x));  ⋀x.⟦x: A;  b: B(x)⟧ ⟹ R⟧ ⟹ R"
  by blast
lemma UN_cong:
  "⟦A=B;  ⋀x. x∈B ⟹ C(x)=D(x)⟧ ⟹ (⋃x∈A. C(x)) = (⋃x∈B. D(x))"
  by simp
subsection‹Rules for the empty set›
lemma not_mem_empty [simp]: "a ∉ 0"
  using foundation by (best dest: equalityD2)
lemmas emptyE [elim!] = not_mem_empty [THEN notE]
lemma empty_subsetI [simp]: "0 ⊆ A"
  by blast
lemma equals0I: "⟦⋀y. y∈A ⟹ False⟧ ⟹ A=0"
  by blast
lemma equals0D [dest]: "A=0 ⟹ a ∉ A"
  by blast
declare sym [THEN equals0D, dest]
lemma not_emptyI: "a∈A ⟹ A ≠ 0"
  by blast
lemma not_emptyE:  "⟦A ≠ 0;  ⋀x. x∈A ⟹ R⟧ ⟹ R"
  by blast
subsection‹Rules for Inter›
lemma Inter_iff: "A ∈ ⋂(C) ⟷ (∀x∈C. A: x) ∧ C≠0"
  by (force simp: Inter_def)
lemma InterI [intro!]:
  "⟦⋀x. x: C ⟹ A: x;  C≠0⟧ ⟹ A ∈ ⋂(C)"
  by (simp add: Inter_iff)
lemma InterD [elim, Pure.elim]: "⟦A ∈ ⋂(C);  B ∈ C⟧ ⟹ A ∈ B"
  by (force simp: Inter_def)
lemma InterE [elim]:
  "⟦A ∈ ⋂(C);  B∉C ⟹ R;  A∈B ⟹ R⟧ ⟹ R"
  by (auto simp: Inter_def)
subsection‹Rules for Intersections of families›
lemma INT_iff: "b ∈ (⋂x∈A. B(x)) ⟷ (∀x∈A. b ∈ B(x)) ∧ A≠0"
  by (force simp add: Inter_def)
lemma INT_I: "⟦⋀x. x: A ⟹ b: B(x);  A≠0⟧ ⟹ b: (⋂x∈A. B(x))"
  by blast
lemma INT_E: "⟦b ∈ (⋂x∈A. B(x));  a: A⟧ ⟹ b ∈ B(a)"
  by blast
lemma INT_cong:
  "⟦A=B;  ⋀x. x∈B ⟹ C(x)=D(x)⟧ ⟹ (⋂x∈A. C(x)) = (⋂x∈B. D(x))"
  by simp
subsection‹Rules for Powersets›
lemma PowI: "A ⊆ B ⟹ A ∈ Pow(B)"
  by (erule Pow_iff [THEN iffD2])
lemma PowD: "A ∈ Pow(B)  ⟹  A⊆B"
  by (erule Pow_iff [THEN iffD1])
declare Pow_iff [iff]
lemmas Pow_bottom = empty_subsetI [THEN PowI]    
lemmas Pow_top = subset_refl [THEN PowI]         
subsection‹Cantor's Theorem: There is no surjection from a set to its powerset.›
lemma cantor: "∃S ∈ Pow(A). ∀x∈A. b(x) ≠ S"
  by (best elim!: equalityCE del: ReplaceI RepFun_eqI)
end