Theory AbelCoset
theory AbelCoset
imports Coset Ring
begin
subsection ‹More Lifting from Groups to Abelian Groups›
subsubsection ‹Definitions›
text ‹Hiding ‹<+>› from \<^theory>‹HOL.Sum_Type› until I come
  up with better syntax here›
no_notation Sum_Type.Plus (infixr ‹<+>› 65)
definition
  a_r_coset    :: "[_, 'a set, 'a] ⇒ 'a set"    (infixl ‹+>ı› 60)
  where "a_r_coset G = r_coset (add_monoid G)"
definition
  a_l_coset    :: "[_, 'a, 'a set] ⇒ 'a set"    (infixl ‹<+ı› 60)
  where "a_l_coset G = l_coset (add_monoid G)"
definition
  A_RCOSETS  :: "[_, 'a set] ⇒ ('a set)set"
    (‹(‹open_block notation=‹prefix a_rcosets››a'_rcosetsı _)› [81] 80)
  where "A_RCOSETS G H = RCOSETS (add_monoid G) H"
definition
  set_add  :: "[_, 'a set ,'a set] ⇒ 'a set" (infixl ‹<+>ı› 60)
  where "set_add G = set_mult (add_monoid G)"
definition
  A_SET_INV :: "[_,'a set] ⇒ 'a set"
    (‹(‹open_block notation=‹prefix a_set_inv››a'_set'_invı _)› [81] 80)
  where "A_SET_INV G H = SET_INV (add_monoid G) H"
definition
  a_r_congruent :: "[('a,'b)ring_scheme, 'a set] ⇒ ('a*'a)set"  (‹racongı›)
  where "a_r_congruent G = r_congruent (add_monoid G)"
definition
  A_FactGroup :: "[('a,'b) ring_scheme, 'a set] ⇒ ('a set) monoid" (infixl ‹A'_Mod› 65)
    
  where "A_FactGroup G H = FactGroup (add_monoid G) H"
definition
  a_kernel :: "('a, 'm) ring_scheme ⇒ ('b, 'n) ring_scheme ⇒  ('a ⇒ 'b) ⇒ 'a set"
    
  where "a_kernel G H h = kernel (add_monoid G) (add_monoid H) h"
locale abelian_group_hom = G?: abelian_group G + H?: abelian_group H
    for G (structure) and H (structure) +
  fixes h
  assumes a_group_hom: "group_hom (add_monoid G) (add_monoid H) h"
lemmas a_r_coset_defs =
  a_r_coset_def r_coset_def
lemma a_r_coset_def':
  fixes G (structure)
  shows "H +> a ≡ ⋃h∈H. {h ⊕ a}"
  unfolding a_r_coset_defs by simp
lemmas a_l_coset_defs =
  a_l_coset_def l_coset_def
lemma a_l_coset_def':
  fixes G (structure)
  shows "a <+ H ≡ ⋃h∈H. {a ⊕ h}"
  unfolding a_l_coset_defs by simp
lemmas A_RCOSETS_defs =
  A_RCOSETS_def RCOSETS_def
lemma A_RCOSETS_def':
  fixes G (structure)
  shows "a_rcosets H ≡ ⋃a∈carrier G. {H +> a}"
  unfolding A_RCOSETS_defs by (fold a_r_coset_def, simp)
lemmas set_add_defs =
  set_add_def set_mult_def
lemma set_add_def':
  fixes G (structure)
  shows "H <+> K ≡ ⋃h∈H. ⋃k∈K. {h ⊕ k}"
  unfolding set_add_defs by simp
lemmas A_SET_INV_defs =
  A_SET_INV_def SET_INV_def
lemma A_SET_INV_def':
  fixes G (structure)
  shows "a_set_inv H ≡ ⋃h∈H. {⊖ h}"
  unfolding A_SET_INV_defs by (fold a_inv_def)
subsubsection ‹Cosets›
sublocale abelian_group <
        add: group "(add_monoid G)"
  rewrites "carrier (add_monoid G) =   carrier G"
       and "   mult (add_monoid G) =       add G"
       and "    one (add_monoid G) =      zero G"
       and "  m_inv (add_monoid G) =     a_inv G"
       and "finprod (add_monoid G) =    finsum G"
       and "r_coset (add_monoid G) = a_r_coset G"
       and "l_coset (add_monoid G) = a_l_coset G"
       and "(λa k. pow (add_monoid G) a k) = (λa k. add_pow G k a)"
  by (rule a_group)
     (auto simp: m_inv_def a_inv_def finsum_def a_r_coset_def a_l_coset_def add_pow_def)
context abelian_group
begin
thm add.coset_mult_assoc
lemmas a_repr_independence' = add.repr_independence
end
lemma (in abelian_group) a_coset_add_assoc:
     "[| M ⊆ carrier G; g ∈ carrier G; h ∈ carrier G |]
      ==> (M +> g) +> h = M +> (g ⊕ h)"
by (rule group.coset_mult_assoc [OF a_group,
    folded a_r_coset_def, simplified monoid_record_simps])
thm abelian_group.a_coset_add_assoc
lemma (in abelian_group) a_coset_add_zero [simp]:
  "M ⊆ carrier G ==> M +> 𝟬 = M"
by (rule group.coset_mult_one [OF a_group,
    folded a_r_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_coset_add_inv1:
     "[| M +> (x ⊕ (⊖ y)) = M;  x ∈ carrier G ; y ∈ carrier G;
         M ⊆ carrier G |] ==> M +> x = M +> y"
by (rule group.coset_mult_inv1 [OF a_group,
    folded a_r_coset_def a_inv_def, simplified monoid_record_simps])
lemma (in abelian_group) a_coset_add_inv2:
     "[| M +> x = M +> y;  x ∈ carrier G;  y ∈ carrier G;  M ⊆ carrier G |]
      ==> M +> (x ⊕ (⊖ y)) = M"
by (rule group.coset_mult_inv2 [OF a_group,
    folded a_r_coset_def a_inv_def, simplified monoid_record_simps])
lemma (in abelian_group) a_coset_join1:
     "[| H +> x = H;  x ∈ carrier G;  subgroup H (add_monoid G) |] ==> x ∈ H"
by (rule group.coset_join1 [OF a_group,
    folded a_r_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_solve_equation:
    "⟦subgroup H (add_monoid G); x ∈ H; y ∈ H⟧ ⟹ ∃h∈H. y = h ⊕ x"
by (rule group.solve_equation [OF a_group,
    folded a_r_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_repr_independence:
  "⟦ y ∈ H +> x; x ∈ carrier G; subgroup H (add_monoid G) ⟧ ⟹
     H +> x = H +> y"
  using a_repr_independence' by (simp add: a_r_coset_def)
lemma (in abelian_group) a_coset_join2:
     "⟦x ∈ carrier G;  subgroup H (add_monoid G); x∈H⟧ ⟹ H +> x = H"
by (rule group.coset_join2 [OF a_group,
    folded a_r_coset_def, simplified monoid_record_simps])
lemma (in abelian_monoid) a_r_coset_subset_G:
     "[| H ⊆ carrier G; x ∈ carrier G |] ==> H +> x ⊆ carrier G"
by (rule monoid.r_coset_subset_G [OF a_monoid,
    folded a_r_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_rcosI:
     "[| h ∈ H; H ⊆ carrier G; x ∈ carrier G|] ==> h ⊕ x ∈ H +> x"
by (rule group.rcosI [OF a_group,
    folded a_r_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_rcosetsI:
     "⟦H ⊆ carrier G; x ∈ carrier G⟧ ⟹ H +> x ∈ a_rcosets H"
by (rule group.rcosetsI [OF a_group,
    folded a_r_coset_def A_RCOSETS_def, simplified monoid_record_simps])
text‹Really needed?›
lemma (in abelian_group) a_transpose_inv:
     "[| x ⊕ y = z;  x ∈ carrier G;  y ∈ carrier G;  z ∈ carrier G |]
      ==> (⊖ x) ⊕ z = y"
  using r_neg1 by blast
subsubsection ‹Subgroups›
locale additive_subgroup =
  fixes H and G (structure)
  assumes a_subgroup: "subgroup H (add_monoid G)"
lemma (in additive_subgroup) is_additive_subgroup:
  shows "additive_subgroup H G"
by (rule additive_subgroup_axioms)
lemma additive_subgroupI:
  fixes G (structure)
  assumes a_subgroup: "subgroup H (add_monoid G)"
  shows "additive_subgroup H G"
by (rule additive_subgroup.intro) (rule a_subgroup)
lemma (in additive_subgroup) a_subset:
     "H ⊆ carrier G"
by (rule subgroup.subset[OF a_subgroup,
    simplified monoid_record_simps])
lemma (in additive_subgroup) a_closed [intro, simp]:
     "⟦x ∈ H; y ∈ H⟧ ⟹ x ⊕ y ∈ H"
by (rule subgroup.m_closed[OF a_subgroup,
    simplified monoid_record_simps])
lemma (in additive_subgroup) zero_closed [simp]:
     "𝟬 ∈ H"
by (rule subgroup.one_closed[OF a_subgroup,
    simplified monoid_record_simps])
lemma (in additive_subgroup) a_inv_closed [intro,simp]:
     "x ∈ H ⟹ ⊖ x ∈ H"
by (rule subgroup.m_inv_closed[OF a_subgroup,
    folded a_inv_def, simplified monoid_record_simps])
subsubsection ‹Additive subgroups are normal›
text ‹Every subgroup of an ‹abelian_group› is normal›
locale abelian_subgroup = additive_subgroup + abelian_group G +
  assumes a_normal: "normal H (add_monoid G)"
lemma (in abelian_subgroup) is_abelian_subgroup:
  shows "abelian_subgroup H G"
by (rule abelian_subgroup_axioms)
lemma abelian_subgroupI:
  assumes a_normal: "normal H (add_monoid G)"
      and a_comm: "!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊕⇘G⇙ y = y ⊕⇘G⇙ x"
  shows "abelian_subgroup H G"
proof -
  interpret normal "H" "(add_monoid G)"
    by (rule a_normal)
  show "abelian_subgroup H G"
    by standard (simp add: a_comm)
qed
lemma abelian_subgroupI2:
  fixes G (structure)
  assumes a_comm_group: "comm_group (add_monoid G)"
      and a_subgroup: "subgroup H (add_monoid G)"
  shows "abelian_subgroup H G"
proof -
  interpret comm_group "(add_monoid G)"
    by (rule a_comm_group)
  interpret subgroup "H" "(add_monoid G)"
    by (rule a_subgroup)
  have "(⋃xa∈H. {xa ⊕ x}) = (⋃xa∈H. {x ⊕ xa})" if "x ∈ carrier G" for x
  proof -
    have "H ⊆ carrier G"
      using a_subgroup that unfolding subgroup_def by simp
    with that show "(⋃h∈H. {h ⊕⇘G⇙ x}) = (⋃h∈H. {x ⊕⇘G⇙ h})"
      using m_comm [simplified] by fastforce
  qed
  then show "abelian_subgroup H G"
    by unfold_locales (auto simp: r_coset_def l_coset_def)
qed
lemma abelian_subgroupI3:
  fixes G (structure)
  assumes "additive_subgroup H G"
    and "abelian_group G"
  shows "abelian_subgroup H G"
  using assms abelian_subgroupI2 abelian_group.a_comm_group additive_subgroup_def by blast
lemma (in abelian_subgroup) a_coset_eq:
     "(∀x ∈ carrier G. H +> x = x <+ H)"
by (rule normal.coset_eq[OF a_normal,
    folded a_r_coset_def a_l_coset_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_inv_op_closed1:
  shows "⟦x ∈ carrier G; h ∈ H⟧ ⟹ (⊖ x) ⊕ h ⊕ x ∈ H"
by (rule normal.inv_op_closed1 [OF a_normal,
    folded a_inv_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_inv_op_closed2:
  shows "⟦x ∈ carrier G; h ∈ H⟧ ⟹ x ⊕ h ⊕ (⊖ x) ∈ H"
by (rule normal.inv_op_closed2 [OF a_normal,
    folded a_inv_def, simplified monoid_record_simps])
lemma (in abelian_group) a_lcos_m_assoc:
  "⟦ M ⊆ carrier G; g ∈ carrier G; h ∈ carrier G ⟧ ⟹ g <+ (h <+ M) = (g ⊕ h) <+ M"
by (rule group.lcos_m_assoc [OF a_group,
    folded a_l_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_lcos_mult_one:
     "M ⊆ carrier G ==> 𝟬 <+ M = M"
by (rule group.lcos_mult_one [OF a_group,
    folded a_l_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_l_coset_subset_G:
  "⟦ H ⊆ carrier G; x ∈ carrier G ⟧ ⟹ x <+ H ⊆ carrier G"
by (rule group.l_coset_subset_G [OF a_group,
    folded a_l_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_l_coset_swap:
     "⟦y ∈ x <+ H;  x ∈ carrier G;  subgroup H (add_monoid G)⟧ ⟹ x ∈ y <+ H"
by (rule group.l_coset_swap [OF a_group,
    folded a_l_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_l_coset_carrier:
     "[| y ∈ x <+ H;  x ∈ carrier G;  subgroup H (add_monoid G) |] ==> y ∈ carrier G"
by (rule group.l_coset_carrier [OF a_group,
    folded a_l_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_l_repr_imp_subset:
  assumes "y ∈ x <+ H" "x ∈ carrier G" "subgroup H (add_monoid G)"
  shows "y <+ H ⊆ x <+ H"
  by (metis (full_types) a_l_coset_defs(1) add.l_repr_independence assms set_eq_subset)
lemma (in abelian_group) a_l_repr_independence:
  assumes y: "y ∈ x <+ H" and x: "x ∈ carrier G" and sb: "subgroup H (add_monoid G)"
  shows "x <+ H = y <+ H"
apply (rule group.l_repr_independence [OF a_group,
    folded a_l_coset_def, simplified monoid_record_simps])
apply (rule y)
apply (rule x)
apply (rule sb)
done
lemma (in abelian_group) setadd_subset_G:
     "⟦H ⊆ carrier G; K ⊆ carrier G⟧ ⟹ H <+> K ⊆ carrier G"
by (rule group.setmult_subset_G [OF a_group,
    folded set_add_def, simplified monoid_record_simps])
lemma (in abelian_group) subgroup_add_id: "subgroup H (add_monoid G) ⟹ H <+> H = H"
by (rule group.subgroup_mult_id [OF a_group,
    folded set_add_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_rcos_inv:
  assumes x:     "x ∈ carrier G"
  shows "a_set_inv (H +> x) = H +> (⊖ x)" 
by (rule normal.rcos_inv [OF a_normal,
  folded a_r_coset_def a_inv_def A_SET_INV_def, simplified monoid_record_simps]) (rule x)
lemma (in abelian_group) a_setmult_rcos_assoc:
     "⟦H ⊆ carrier G; K ⊆ carrier G; x ∈ carrier G⟧
      ⟹ H <+> (K +> x) = (H <+> K) +> x"
by (rule group.setmult_rcos_assoc [OF a_group,
    folded set_add_def a_r_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_rcos_assoc_lcos:
     "⟦H ⊆ carrier G; K ⊆ carrier G; x ∈ carrier G⟧
      ⟹ (H +> x) <+> K = H <+> (x <+ K)"
by (rule group.rcos_assoc_lcos [OF a_group,
     folded set_add_def a_r_coset_def a_l_coset_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_rcos_sum:
     "⟦x ∈ carrier G; y ∈ carrier G⟧
      ⟹ (H +> x) <+> (H +> y) = H +> (x ⊕ y)"
by (rule normal.rcos_sum [OF a_normal,
    folded set_add_def a_r_coset_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) rcosets_add_eq:
  "M ∈ a_rcosets H ⟹ H <+> M = M"
  
by (rule normal.rcosets_mult_eq [OF a_normal,
    folded set_add_def A_RCOSETS_def, simplified monoid_record_simps])
subsubsection ‹Congruence Relation›
lemma (in abelian_subgroup) a_equiv_rcong:
   shows "equiv (carrier G) (racong H)"
by (rule subgroup.equiv_rcong [OF a_subgroup a_group,
    folded a_r_congruent_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_l_coset_eq_rcong:
  assumes a: "a ∈ carrier G"
  shows "a <+ H = racong H `` {a}"
by (rule subgroup.l_coset_eq_rcong [OF a_subgroup a_group,
    folded a_r_congruent_def a_l_coset_def, simplified monoid_record_simps]) (rule a)
lemma (in abelian_subgroup) a_rcos_equation:
  shows
     "⟦ha ⊕ a = h ⊕ b; a ∈ carrier G;  b ∈ carrier G;  
        h ∈ H;  ha ∈ H;  hb ∈ H⟧
      ⟹ hb ⊕ a ∈ (⋃h∈H. {h ⊕ b})"
by (rule group.rcos_equation [OF a_group a_subgroup,
    folded a_r_congruent_def a_l_coset_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_rcos_disjoint: "pairwise disjnt (a_rcosets H)"
by (rule group.rcos_disjoint [OF a_group a_subgroup,
    folded A_RCOSETS_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_rcos_self:
  shows "x ∈ carrier G ⟹ x ∈ H +> x"
by (rule group.rcos_self [OF a_group _ a_subgroup,
    folded a_r_coset_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_rcosets_part_G:
  shows "⋃(a_rcosets H) = carrier G"
by (rule group.rcosets_part_G [OF a_group a_subgroup,
    folded A_RCOSETS_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_cosets_finite:
     "⟦c ∈ a_rcosets H;  H ⊆ carrier G;  finite (carrier G)⟧ ⟹ finite c"
by (rule group.cosets_finite [OF a_group,
    folded A_RCOSETS_def, simplified monoid_record_simps])
lemma (in abelian_group) a_card_cosets_equal:
     "⟦c ∈ a_rcosets H;  H ⊆ carrier G; finite(carrier G)⟧
      ⟹ card c = card H"
  by (simp add: A_RCOSETS_defs(1) add.card_rcosets_equal)
lemma (in abelian_group) rcosets_subset_PowG:
     "additive_subgroup H G  ⟹ a_rcosets H ⊆ Pow(carrier G)"
by (rule group.rcosets_subset_PowG [OF a_group,
    folded A_RCOSETS_def, simplified monoid_record_simps],
    rule additive_subgroup.a_subgroup)
theorem (in abelian_group) a_lagrange:
     "⟦finite(carrier G); additive_subgroup H G⟧
      ⟹ card(a_rcosets H) * card(H) = order(G)"
by (rule group.lagrange [OF a_group,
    folded A_RCOSETS_def, simplified monoid_record_simps order_def, folded order_def])
    (fast intro!: additive_subgroup.a_subgroup)+
subsubsection ‹Factorization›
lemmas A_FactGroup_defs = A_FactGroup_def FactGroup_def
lemma A_FactGroup_def':
  fixes G (structure)
  shows "G A_Mod H ≡ ⦇carrier = a_rcosets⇘G⇙ H, mult = set_add G, one = H⦈"
unfolding A_FactGroup_defs
by (fold A_RCOSETS_def set_add_def)
lemma (in abelian_subgroup) a_setmult_closed:
     "⟦K1 ∈ a_rcosets H; K2 ∈ a_rcosets H⟧ ⟹ K1 <+> K2 ∈ a_rcosets H"
by (rule normal.setmult_closed [OF a_normal,
    folded A_RCOSETS_def set_add_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_setinv_closed:
     "K ∈ a_rcosets H ⟹ a_set_inv K ∈ a_rcosets H"
by (rule normal.setinv_closed [OF a_normal,
    folded A_RCOSETS_def A_SET_INV_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_rcosets_assoc:
     "⟦M1 ∈ a_rcosets H; M2 ∈ a_rcosets H; M3 ∈ a_rcosets H⟧
      ⟹ M1 <+> M2 <+> M3 = M1 <+> (M2 <+> M3)"
by (rule normal.rcosets_assoc [OF a_normal,
    folded A_RCOSETS_def set_add_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_subgroup_in_rcosets:
     "H ∈ a_rcosets H"
by (rule subgroup.subgroup_in_rcosets [OF a_subgroup a_group,
    folded A_RCOSETS_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_rcosets_inv_mult_group_eq:
     "M ∈ a_rcosets H ⟹ a_set_inv M <+> M = H"
by (rule normal.rcosets_inv_mult_group_eq [OF a_normal,
    folded A_RCOSETS_def A_SET_INV_def set_add_def, simplified monoid_record_simps])
theorem (in abelian_subgroup) a_factorgroup_is_group:
  "group (G A_Mod H)"
by (rule normal.factorgroup_is_group [OF a_normal,
    folded A_FactGroup_def, simplified monoid_record_simps])
text ‹Since the Factorization is based on an \emph{abelian} subgroup, is results in 
        a commutative group›
theorem (in abelian_subgroup) a_factorgroup_is_comm_group: "comm_group (G A_Mod H)"
proof -
  have "Group.comm_monoid_axioms (G A_Mod H)"
    apply (rule comm_monoid_axioms.intro)
    apply (auto simp: A_FactGroup_def FactGroup_def RCOSETS_def a_normal add.m_comm normal.rcos_sum)
    done
  then show ?thesis
    by (intro comm_group.intro comm_monoid.intro) (simp_all add: a_factorgroup_is_group group.is_monoid)
qed
lemma add_A_FactGroup [simp]: "X ⊗⇘(G A_Mod H)⇙ X' = X <+>⇘G⇙ X'"
by (simp add: A_FactGroup_def set_add_def)
lemma (in abelian_subgroup) a_inv_FactGroup:
     "X ∈ carrier (G A_Mod H) ⟹ inv⇘G A_Mod H⇙ X = a_set_inv X"
by (rule normal.inv_FactGroup [OF a_normal,
    folded A_FactGroup_def A_SET_INV_def, simplified monoid_record_simps])
text‹The coset map is a homomorphism from \<^term>‹G› to the quotient group
  \<^term>‹G Mod H››
lemma (in abelian_subgroup) a_r_coset_hom_A_Mod:
  "(λa. H +> a) ∈ hom (add_monoid G) (G A_Mod H)"
by (rule normal.r_coset_hom_Mod [OF a_normal,
    folded A_FactGroup_def a_r_coset_def, simplified monoid_record_simps])
text ‹The isomorphism theorems have been omitted from lifting, at
  least for now›
subsubsection‹The First Isomorphism Theorem›
text‹The quotient by the kernel of a homomorphism is isomorphic to the 
  range of that homomorphism.›
lemmas a_kernel_defs =
  a_kernel_def kernel_def
lemma a_kernel_def':
  "a_kernel R S h = {x ∈ carrier R. h x = 𝟬⇘S⇙}"
by (rule a_kernel_def[unfolded kernel_def, simplified ring_record_simps])
subsubsection ‹Homomorphisms›
lemma abelian_group_homI:
  assumes "abelian_group G"
  assumes "abelian_group H"
  assumes a_group_hom: "group_hom (add_monoid G)
                                  (add_monoid H) h"
  shows "abelian_group_hom G H h"
proof -
  interpret G: abelian_group G by fact
  interpret H: abelian_group H by fact
  show ?thesis
    by (intro abelian_group_hom.intro abelian_group_hom_axioms.intro 
        G.abelian_group_axioms H.abelian_group_axioms a_group_hom)
qed
lemma (in abelian_group_hom) is_abelian_group_hom:
  "abelian_group_hom G H h"
  ..
lemma (in abelian_group_hom) hom_add [simp]:
  "[| x ∈ carrier G; y ∈ carrier G |]
        ==> h (x ⊕⇘G⇙ y) = h x ⊕⇘H⇙ h y"
by (rule group_hom.hom_mult[OF a_group_hom,
    simplified ring_record_simps])
lemma (in abelian_group_hom) hom_closed [simp]:
  "x ∈ carrier G ⟹ h x ∈ carrier H"
by (rule group_hom.hom_closed[OF a_group_hom,
    simplified ring_record_simps])
lemma (in abelian_group_hom) zero_closed [simp]:
  "h 𝟬 ∈ carrier H"
  by simp
lemma (in abelian_group_hom) hom_zero [simp]:
  "h 𝟬 = 𝟬⇘H⇙"
by (rule group_hom.hom_one[OF a_group_hom,
    simplified ring_record_simps])
lemma (in abelian_group_hom) a_inv_closed [simp]:
  "x ∈ carrier G ==> h (⊖x) ∈ carrier H"
  by simp
lemma (in abelian_group_hom) hom_a_inv [simp]:
  "x ∈ carrier G ==> h (⊖x) = ⊖⇘H⇙ (h x)"
by (rule group_hom.hom_inv[OF a_group_hom,
    folded a_inv_def, simplified ring_record_simps])
lemma (in abelian_group_hom) additive_subgroup_a_kernel:
  "additive_subgroup (a_kernel G H h) G"
  by (simp add: additive_subgroup.intro a_group_hom a_kernel_def group_hom.subgroup_kernel)
text‹The kernel of a homomorphism is an abelian subgroup›
lemma (in abelian_group_hom) abelian_subgroup_a_kernel:
  "abelian_subgroup (a_kernel G H h) G"
  apply (rule abelian_subgroupI)
   apply (simp add: G.abelian_group_axioms abelian_subgroup.a_normal abelian_subgroupI3 additive_subgroup_a_kernel)
  apply (simp add: G.a_comm)
  done
lemma (in abelian_group_hom) A_FactGroup_nonempty:
  assumes X: "X ∈ carrier (G A_Mod a_kernel G H h)"
  shows "X ≠ {}"
by (rule group_hom.FactGroup_nonempty[OF a_group_hom,
    folded a_kernel_def A_FactGroup_def, simplified ring_record_simps]) (rule X)
lemma (in abelian_group_hom) FactGroup_the_elem_mem:
  assumes X: "X ∈ carrier (G A_Mod (a_kernel G H h))"
  shows "the_elem (h`X) ∈ carrier H"
by (rule group_hom.FactGroup_the_elem_mem[OF a_group_hom,
    folded a_kernel_def A_FactGroup_def, simplified ring_record_simps]) (rule X)
lemma (in abelian_group_hom) A_FactGroup_hom:
     "(λX. the_elem (h`X)) ∈ hom (G A_Mod (a_kernel G H h))
          (add_monoid H)"
by (rule group_hom.FactGroup_hom[OF a_group_hom,
    folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])
lemma (in abelian_group_hom) A_FactGroup_inj_on:
     "inj_on (λX. the_elem (h ` X)) (carrier (G A_Mod a_kernel G H h))"
by (rule group_hom.FactGroup_inj_on[OF a_group_hom,
    folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])
text‹If the homomorphism \<^term>‹h› is onto \<^term>‹H›, then so is the
homomorphism from the quotient group›
lemma (in abelian_group_hom) A_FactGroup_onto:
  assumes h: "h ` carrier G = carrier H"
  shows "(λX. the_elem (h ` X)) ` carrier (G A_Mod a_kernel G H h) = carrier H"
by (rule group_hom.FactGroup_onto[OF a_group_hom,
    folded a_kernel_def A_FactGroup_def, simplified ring_record_simps]) (rule h)
text‹If \<^term>‹h› is a homomorphism from \<^term>‹G› onto \<^term>‹H›, then the
 quotient group \<^term>‹G Mod (kernel G H h)› is isomorphic to \<^term>‹H›.›
theorem (in abelian_group_hom) A_FactGroup_iso_set:
  "h ` carrier G = carrier H
   ⟹ (λX. the_elem (h`X)) ∈ iso (G A_Mod (a_kernel G H h)) (add_monoid H)"
by (rule group_hom.FactGroup_iso_set[OF a_group_hom,
    folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])
corollary (in abelian_group_hom) A_FactGroup_iso :
  "h ` carrier G = carrier H
   ⟹  (G A_Mod (a_kernel G H h)) ≅  (add_monoid H)"
  using A_FactGroup_iso_set unfolding is_iso_def by auto
subsubsection ‹Cosets›
text ‹Not eveything from \texttt{CosetExt.thy} is lifted here.›
lemma (in additive_subgroup) a_Hcarr [simp]:
  assumes hH: "h ∈ H"
  shows "h ∈ carrier G"
by (rule subgroup.mem_carrier [OF a_subgroup,
    simplified monoid_record_simps]) (rule hH)
lemma (in abelian_subgroup) a_elemrcos_carrier:
  assumes acarr: "a ∈ carrier G"
      and a': "a' ∈ H +> a"
  shows "a' ∈ carrier G"
by (rule subgroup.elemrcos_carrier [OF a_subgroup a_group,
    folded a_r_coset_def, simplified monoid_record_simps]) (rule acarr, rule a')
lemma (in abelian_subgroup) a_rcos_const:
  assumes hH: "h ∈ H"
  shows "H +> h = H"
by (rule subgroup.rcos_const [OF a_subgroup a_group,
    folded a_r_coset_def, simplified monoid_record_simps]) (rule hH)
lemma (in abelian_subgroup) a_rcos_module_imp:
  assumes xcarr: "x ∈ carrier G"
      and x'cos: "x' ∈ H +> x"
  shows "(x' ⊕ ⊖x) ∈ H"
by (rule subgroup.rcos_module_imp [OF a_subgroup a_group,
    folded a_r_coset_def a_inv_def, simplified monoid_record_simps]) (rule xcarr, rule x'cos)
lemma (in abelian_subgroup) a_rcos_module_rev:
  assumes "x ∈ carrier G" "x' ∈ carrier G"
      and "(x' ⊕ ⊖x) ∈ H"
  shows "x' ∈ H +> x"
using assms
by (rule subgroup.rcos_module_rev [OF a_subgroup a_group,
    folded a_r_coset_def a_inv_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_rcos_module:
  assumes "x ∈ carrier G" "x' ∈ carrier G"
  shows "(x' ∈ H +> x) = (x' ⊕ ⊖x ∈ H)"
using assms
by (rule subgroup.rcos_module [OF a_subgroup a_group,
    folded a_r_coset_def a_inv_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_rcos_module_minus:
  assumes "ring G"
  assumes carr: "x ∈ carrier G" "x' ∈ carrier G"
  shows "(x' ∈ H +> x) = (x' ⊖ x ∈ H)"
proof -
  interpret G: ring G by fact
  from carr
  have "(x' ∈ H +> x) = (x' ⊕ ⊖x ∈ H)" by (rule a_rcos_module)
  with carr
  show "(x' ∈ H +> x) = (x' ⊖ x ∈ H)"
    by (simp add: minus_eq)
qed
lemma (in abelian_subgroup) a_repr_independence':
  assumes "y ∈ H +> x" "x ∈ carrier G"
  shows "H +> x = H +> y"
  using a_repr_independence a_subgroup assms by blast
lemma (in abelian_subgroup) a_repr_independenceD:
  assumes "y ∈ carrier G" "H +> x = H +> y"
  shows "y ∈ H +> x"
  by (simp add: a_rcos_self assms)
lemma (in abelian_subgroup) a_rcosets_carrier:
  "X ∈ a_rcosets H ⟹ X ⊆ carrier G"
  using a_rcosets_part_G by auto
subsubsection ‹Addition of Subgroups›
lemma (in abelian_monoid) set_add_closed:
  assumes "A ⊆ carrier G" "B ⊆ carrier G"
  shows "A <+> B ⊆ carrier G"
  by (simp add: assms add.set_mult_closed set_add_defs(1))
lemma (in abelian_group) add_additive_subgroups:
  assumes subH: "additive_subgroup H G"
    and subK: "additive_subgroup K G"
  shows "additive_subgroup (H <+> K) G"
  unfolding set_add_def
  using add.mult_subgroups additive_subgroup_def subH subK
  by (blast intro: additive_subgroup.intro)
end