Theory Exact_Sequence
section ‹Exact Sequences›
theory Exact_Sequence
  imports Elementary_Groups Solvable_Groups
begin
subsection ‹Definitions›
inductive exact_seq :: "'a monoid list × ('a ⇒ 'a) list ⇒ bool"  where
unity:     " group_hom G1 G2 f ⟹ exact_seq ([G2, G1], [f])" |
extension: "⟦ exact_seq ((G # K # l), (g # q)); group H ; h ∈ hom G H ;
              kernel G H h = image g (carrier K) ⟧ ⟹ exact_seq (H # G # K # l, h # g # q)"
inductive_simps exact_seq_end_iff [simp]: "exact_seq ([G,H], (g # q))"
inductive_simps exact_seq_cons_iff [simp]: "exact_seq ((G # K # H # l), (g # h # q))"
abbreviation exact_seq_arrow ::
  "('a ⇒ 'a) ⇒ 'a monoid list × ('a ⇒ 'a) list ⇒  'a monoid ⇒ 'a monoid list × ('a ⇒ 'a) list"
  (‹(‹indent=3 notation=‹mixfix exact_seq››_ / ⤏ı _)› [1000, 60])
  where "exact_seq_arrow  f t G ≡ (G # (fst t), f # (snd t))"
subsection ‹Basic Properties›
lemma exact_seq_length1: "exact_seq t ⟹ length (fst t) = Suc (length (snd t))"
  by (induct t rule: exact_seq.induct) auto
lemma exact_seq_length2: "exact_seq t ⟹ length (snd t) ≥ Suc 0"
  by (induct t rule: exact_seq.induct) auto
lemma dropped_seq_is_exact_seq:
  assumes "exact_seq (G, F)" and "(i :: nat) < length F"
  shows "exact_seq (drop i G, drop i F)"
proof-
  have "exact_seq (drop i (fst t), drop i (snd t))" if "exact_seq t" "i < length (snd t)" for t i
    using that
  proof (induction arbitrary: i)
    case (unity G1 G2 f) thus ?case
      by (simp add: exact_seq.unity)
  next
    case (extension G K l g q H h) show ?case
    proof (cases)
      assume "i = 0" thus ?case
        using exact_seq.extension[OF extension.hyps] by simp
    next
      assume "i ≠ 0" hence "i ≥ Suc 0" by simp
      then obtain k where "k < length (snd (G # K # l, g # q))" "i = Suc k"
        using Suc_le_D extension.prems by auto
      thus ?thesis using extension.IH by simp 
    qed
  qed
  thus ?thesis using assms by auto
qed
lemma truncated_seq_is_exact_seq:
  assumes "exact_seq (l, q)" and "length l ≥ 3"
  shows "exact_seq (tl l, tl q)"
  using exact_seq_length1[OF assms(1)] dropped_seq_is_exact_seq[OF assms(1), of "Suc 0"]
        exact_seq_length2[OF assms(1)] assms(2) by (simp add: drop_Suc)
lemma exact_seq_imp_exact_hom:
   assumes "exact_seq (G1 # l,q) ⤏⇘g1⇙ G2 ⤏⇘g2⇙ G3"
   shows "g1 ` (carrier G1) = kernel G2 G3 g2"
proof -
  have "(hd (tl (snd t))) ` (carrier (hd (tl (tl (fst t))))) =
            kernel (hd (tl (fst t))) (hd (fst t)) (hd (snd t))"
    if "exact_seq t" and "length (fst t) ≥ 3 ∧ length (snd t) ≥ 2" for t
    using that
  proof (induction)
    case (unity G1 G2 f)
    then show ?case by auto
  next
    case (extension G l g q H h)
    then show ?case by auto
  qed
  with assms show ?thesis by fastforce
qed
lemma exact_seq_imp_exact_hom_arbitrary:
   assumes "exact_seq (G, F)"
     and "Suc i < length F"
   shows "(F ! (Suc i)) ` (carrier (G ! (Suc (Suc i)))) = kernel (G ! (Suc i)) (G ! i) (F ! i)"
proof -
  have "length (drop i F) ≥ 2" "length (drop i G) ≥ 3"
    using assms(2) exact_seq_length1[OF assms(1)] by auto
  then obtain l q
    where "drop i G = (G ! i) # (G ! (Suc i)) # (G ! (Suc (Suc i))) # l"
     and  "drop i F = (F ! i) # (F ! (Suc i)) # q"
    by (metis Cons_nth_drop_Suc Suc_less_eq assms exact_seq_length1 fst_conv
        le_eq_less_or_eq le_imp_less_Suc prod.sel(2))
  thus ?thesis
  using dropped_seq_is_exact_seq[OF assms(1), of i] assms(2)
        exact_seq_imp_exact_hom[of "G ! i" "G ! (Suc i)" "G ! (Suc (Suc i))" l q] by auto
qed
lemma exact_seq_imp_group_hom :
  assumes "exact_seq ((G # l, q)) ⤏⇘g⇙ H"
  shows "group_hom G H g"
proof-
  have aux_lemma: "group_hom (hd (tl (fst t))) (hd (fst t)) (hd(snd t))" if "exact_seq t" for t
    using that
  proof (induction)
    case (unity G1 G2 f)
    then show ?case by auto
  next
    case (extension G l g q H h)
    then show ?case unfolding group_hom_def group_hom_axioms_def by auto
  qed
  show ?thesis using aux_lemma[OF assms]
    by simp
qed
lemma exact_seq_imp_group_hom_arbitrary:
  assumes "exact_seq (G, F)" and "(i :: nat) < length F"
  shows "group_hom (G ! (Suc i)) (G ! i) (F ! i)"
proof -
  have "length (drop i F) ≥ 1" "length (drop i G) ≥ 2"
    using assms(2) exact_seq_length1[OF assms(1)] by auto
  then obtain l q
    where "drop i G = (G ! i) # (G ! (Suc i)) # l"
     and  "drop i F = (F ! i) # q"
    by (metis Cons_nth_drop_Suc Suc_leI assms exact_seq_length1 fst_conv
        le_eq_less_or_eq le_imp_less_Suc prod.sel(2))
  thus ?thesis
  using dropped_seq_is_exact_seq[OF assms(1), of i] assms(2)
        exact_seq_imp_group_hom[of "G ! i" "G ! (Suc i)" l q "F ! i"] by simp
qed
subsection ‹Link Between Exact Sequences and Solvable Conditions›
lemma exact_seq_solvable_imp :
  assumes "exact_seq ([G1],[]) ⤏⇘g1⇙ G2 ⤏⇘g2⇙ G3"
    and "inj_on g1 (carrier G1)"
    and "g2 ` (carrier G2) = carrier G3"
  shows "solvable G2 ⟹ (solvable G1) ∧ (solvable G3)"
proof -
  assume G2: "solvable G2"
  have "group_hom G1 G2 g1"
    using exact_seq_imp_group_hom_arbitrary[OF assms(1), of "Suc 0"] by simp
  hence "solvable G1"
    using group_hom.inj_hom_imp_solvable[of G1 G2 g1] assms(2) G2 by simp
  moreover have "group_hom G2 G3 g2"
    using exact_seq_imp_group_hom_arbitrary[OF assms(1), of 0] by simp
  hence "solvable G3"
    using group_hom.surj_hom_imp_solvable[of G2 G3 g2] assms(3) G2 by simp
  ultimately show ?thesis by simp
qed
lemma exact_seq_solvable_recip :
  assumes "exact_seq ([G1],[]) ⤏⇘g1⇙ G2 ⤏⇘g2⇙ G3"
    and "inj_on g1 (carrier G1)"
    and "g2 ` (carrier G2) = carrier G3"
  shows "(solvable G1) ∧ (solvable G3) ⟹ solvable G2"
proof -
  assume "(solvable G1) ∧ (solvable G3)"
  hence G1: "solvable G1" and G3: "solvable G3" by auto
  have g1: "group_hom G1 G2 g1" and g2: "group_hom G2 G3 g2"
    using exact_seq_imp_group_hom_arbitrary[OF assms(1), of "Suc 0"]
          exact_seq_imp_group_hom_arbitrary[OF assms(1), of 0] by auto
  show ?thesis
    using solvable_condition[OF g1 g2 assms(3)]
          exact_seq_imp_exact_hom[OF assms(1)] G1 G3 by auto
qed
proposition exact_seq_solvable_iff :
  assumes "exact_seq ([G1],[]) ⤏⇘g1⇙ G2 ⤏⇘g2⇙ G3"
    and "inj_on g1 (carrier G1)"
    and "g2 ` (carrier G2) = carrier G3"
  shows "(solvable G1) ∧ (solvable G3) ⟷  solvable G2"
  using exact_seq_solvable_recip exact_seq_solvable_imp assms by blast
lemma exact_seq_eq_triviality:
  assumes "exact_seq ([E,D,C,B,A], [k,h,g,f])"
  shows "trivial_group C ⟷ f ` carrier A = carrier B ∧ inj_on k (carrier D)" (is "_ = ?rhs")
proof
  assume C: "trivial_group C"
  with assms have "inj_on k (carrier D)"
    apply (auto simp: group_hom.image_from_trivial_group trivial_group_def hom_one)
    apply (simp add: group_hom_def group_hom_axioms_def group_hom.inj_iff_trivial_ker)
    done
  with assms C show ?rhs
    apply (auto simp: group_hom.image_from_trivial_group trivial_group_def hom_one)
     apply (auto simp: group_hom_def group_hom_axioms_def hom_def kernel_def)
    done
next
  assume ?rhs
  with assms show "trivial_group C"
    apply (simp add: trivial_group_def)
    by (metis group_hom.inj_iff_trivial_ker group_hom.trivial_hom_iff group_hom_axioms.intro group_hom_def)
qed
lemma exact_seq_imp_triviality:
   "⟦exact_seq ([E,D,C,B,A], [k,h,g,f]); f ∈ iso A B; k ∈ iso D E⟧ ⟹ trivial_group C"
  by (metis (no_types, lifting) Group.iso_def bij_betw_def exact_seq_eq_triviality mem_Collect_eq)
lemma exact_seq_epi_eq_triviality:
   "exact_seq ([D,C,B,A], [h,g,f]) ⟹ (f ` carrier A = carrier B) ⟷ trivial_homomorphism B C g"
  by (auto simp: trivial_homomorphism_def kernel_def)
lemma exact_seq_mon_eq_triviality:
   "exact_seq ([D,C,B,A], [h,g,f]) ⟹ inj_on h (carrier C) ⟷ trivial_homomorphism B C g"
  by (auto simp: trivial_homomorphism_def kernel_def group.is_monoid inj_on_one_iff' image_def) blast
lemma exact_sequence_sum_lemma:
  assumes "comm_group G" and h: "h ∈ iso A C" and k: "k ∈ iso B D"
    and ex: "exact_seq ([D,G,A], [g,i])" "exact_seq ([C,G,B], [f,j])"
    and fih: "⋀x. x ∈ carrier A ⟹ f(i x) = h x"
    and gjk: "⋀x. x ∈ carrier B ⟹ g(j x) = k x"
  shows "(λ(x, y). i x ⊗⇘G⇙ j y) ∈ Group.iso (A ×× B) G ∧ (λz. (f z, g z)) ∈ Group.iso G (C ×× D)"
    (is "?ij ∈ _ ∧ ?gf ∈ _")
proof (rule epi_iso_compose_rev)
  interpret comm_group G
    by (rule assms)
  interpret f: group_hom G C f
    using ex by (simp add: group_hom_def group_hom_axioms_def)
  interpret g: group_hom G D g
    using ex by (simp add: group_hom_def group_hom_axioms_def)
  interpret i: group_hom A G i
    using ex by (simp add: group_hom_def group_hom_axioms_def)
  interpret j: group_hom B G j
    using ex by (simp add: group_hom_def group_hom_axioms_def)
  have kerf: "kernel G C f = j ` carrier B" and "group A" "group B" "i ∈ hom A G"
    using ex by (auto simp: group_hom_def group_hom_axioms_def)
  then obtain h' where "h' ∈ hom C A" "(∀x ∈ carrier A. h'(h x) = x)"
    and hh': "(∀y ∈ carrier C. h(h' y) = y)" and "group_isomorphisms A C h h'"
    using h by (auto simp: group.iso_iff_group_isomorphisms group_isomorphisms_def)
  have homij: "?ij ∈ hom (A ×× B) G"
    unfolding case_prod_unfold
    apply (rule hom_group_mult)
    using ex by (simp_all add: group_hom_def hom_of_fst [unfolded o_def] hom_of_snd [unfolded o_def])
  show homgf: "?gf ∈ hom G (C ×× D)"
    using ex by (simp add: hom_paired)
  show "?ij ∈ epi (A ×× B) G"
  proof (clarsimp simp add: epi_iff_subset homij)
    fix x
    assume x: "x ∈ carrier G"
    with ‹i ∈ hom A G› ‹h' ∈ hom C A› have "x ⊗⇘G⇙ inv⇘G⇙(i(h'(f x))) ∈ kernel G C f"
      by (simp add: kernel_def hom_in_carrier hh' fih)
    with kerf obtain y where y: "y ∈ carrier B" "j y = x ⊗⇘G⇙ inv⇘G⇙(i(h'(f x)))"
      by auto
    have "i (h' (f x)) ⊗⇘G⇙ (x ⊗⇘G⇙ inv⇘G⇙ i (h' (f x))) = x ⊗⇘G⇙ (i (h' (f x)) ⊗⇘G⇙ inv⇘G⇙ i (h' (f x)))"
      by (meson ‹h' ∈ hom C A› x f.hom_closed hom_in_carrier i.hom_closed inv_closed m_lcomm)
    also have "… = x"
      using ‹h' ∈ hom C A› hom_in_carrier x by fastforce
    finally show "x ∈ (λ(x, y). i x ⊗⇘G⇙ j y) ` (carrier A × carrier B)"
      using x y apply (clarsimp simp: image_def)
      apply (rule_tac x="h'(f x)" in bexI)
       apply (rule_tac x=y in bexI, auto)
      by (meson ‹h' ∈ hom C A› f.hom_closed hom_in_carrier)
  qed
  show "(λz. (f z, g z)) ∘ (λ(x, y). i x ⊗⇘G⇙ j y) ∈ Group.iso (A ×× B) (C ×× D)"
    apply (rule group.iso_eq [where f = "λ(x,y). (h x,k y)"])
    using ex
    apply (auto simp: group_hom_def group_hom_axioms_def DirProd_group iso_paired2 h k fih gjk kernel_def set_eq_iff)
     apply (metis f.hom_closed f.r_one fih imageI)
    apply (metis g.hom_closed g.l_one gjk imageI)
    done
qed
subsection ‹Splitting lemmas and Short exact sequences›
text‹Ported from HOL Light by LCP›
definition short_exact_sequence
  where "short_exact_sequence A B C f g ≡ ∃T1 T2 e1 e2. exact_seq ([T1,A,B,C,T2], [e1,f,g,e2]) ∧ trivial_group T1 ∧ trivial_group T2"
lemma short_exact_sequenceD:
  assumes "short_exact_sequence A B C f g" shows "exact_seq ([A,B,C], [f,g]) ∧ f ∈ epi B A ∧ g ∈ mon C B"
  using assms
  apply (auto simp: short_exact_sequence_def group_hom_def group_hom_axioms_def)
  apply (simp add: epi_iff_subset group_hom.intro group_hom.kernel_to_trivial_group group_hom_axioms.intro)
  by (metis (no_types, lifting) group_hom.inj_iff_trivial_ker group_hom.intro group_hom_axioms.intro
      hom_one image_empty image_insert mem_Collect_eq mon_def trivial_group_def)
lemma short_exact_sequence_iff:
  "short_exact_sequence A B C f g ⟷ exact_seq ([A,B,C], [f,g]) ∧ f ∈ epi B A ∧ g ∈ mon C B"
proof -
  have "short_exact_sequence A B C f g"
    if "exact_seq ([A, B, C], [f, g])" and "f ∈ epi B A" and "g ∈ mon C B"
  proof -
    show ?thesis
      unfolding short_exact_sequence_def
    proof (intro exI conjI)
      have "kernel A (singleton_group 𝟭⇘A⇙) (λx. 𝟭⇘A⇙) = f ` carrier B"
        using that by (simp add: kernel_def singleton_group_def epi_def)
      moreover have "kernel C B g = {𝟭⇘C⇙}"
        using that group_hom.inj_iff_trivial_ker mon_def by fastforce
      ultimately show "exact_seq ([singleton_group (one A), A, B, C, singleton_group (one C)], [λx. 𝟭⇘A⇙, f, g, id])"
        using that
        by (simp add: group_hom_def group_hom_axioms_def group.id_hom_singleton)
    qed auto
qed
  then show ?thesis
    using short_exact_sequenceD by blast
qed
lemma very_short_exact_sequence:
  assumes "exact_seq ([D,C,B,A], [h,g,f])" "trivial_group A" "trivial_group D"
  shows "g ∈ iso B C"
  using assms
  apply simp
  by (metis (no_types, lifting) group_hom.image_from_trivial_group group_hom.iso_iff
      group_hom.kernel_to_trivial_group group_hom.trivial_ker_imp_inj group_hom_axioms.intro group_hom_def hom_carrier inj_on_one_iff')
lemma splitting_sublemma_gen:
  assumes ex: "exact_seq ([C,B,A], [g,f])" and fim: "f ` carrier A = H"
      and "subgroup K B" and 1: "H ∩ K ⊆ {one B}" and eq: "set_mult B H K = carrier B"
  shows "g ∈ iso (subgroup_generated B K) (subgroup_generated C(g ` carrier B))"
proof -
  interpret KB: subgroup K B
    by (rule assms)
  interpret fAB: group_hom A B f
    using ex by simp
  interpret gBC: group_hom B C g
    using ex by (simp add: group_hom_def group_hom_axioms_def)
  have "group A" "group B" "group C" and kerg: "kernel B C g = f ` carrier A"
      using ex by (auto simp: group_hom_def group_hom_axioms_def)
  have ker_eq: "kernel B C g = H"
    using ex by (simp add: fim)
  then have "subgroup H B"
    using ex by (simp add: group_hom.img_is_subgroup)
  show ?thesis
    unfolding iso_iff
  proof (intro conjI)
    show "g ∈ hom (subgroup_generated B K) (subgroup_generated C(g ` carrier B))"
      by (metis ker_eq ‹subgroup K B› eq gBC.hom_between_subgroups gBC.set_mult_ker_hom(2) order_refl subgroup.subset)
    show "g ` carrier (subgroup_generated B K) = carrier (subgroup_generated C(g ` carrier B))"
      by (metis assms(3) eq fAB.H.subgroupE(1) gBC.img_is_subgroup gBC.set_mult_ker_hom(2) ker_eq subgroup.carrier_subgroup_generated_subgroup)
    interpret gKBC: group_hom "subgroup_generated B K" C g
      apply (auto simp: group_hom_def group_hom_axioms_def ‹group C›)
      by (simp add: fAB.H.hom_from_subgroup_generated gBC.homh)
    have *: "x = 𝟭⇘B⇙"
      if x: "x ∈ carrier (subgroup_generated B K)" and "g x = 𝟭⇘C⇙" for x
    proof -
      have x': "x ∈ carrier B"
        using that fAB.H.carrier_subgroup_generated_subset by blast
      moreover have "x ∈ H"
        using kerg fim x' that by (auto simp: kernel_def set_eq_iff)
      ultimately show ?thesis
        by (metis "1" x Int_iff singletonD KB.carrier_subgroup_generated_subgroup subsetCE)
    qed
    show "inj_on g (carrier (subgroup_generated B K))"
      using "*" gKBC.inj_on_one_iff by auto
  qed
qed
lemma splitting_sublemma:
  assumes ex: "short_exact_sequence C B A g f" and fim: "f ` carrier A = H"
      and "subgroup K B" and 1: "H ∩ K ⊆ {one B}" and eq: "set_mult B H K = carrier B"
    shows "f ∈ iso A (subgroup_generated B H)" (is ?f)
          "g ∈ iso (subgroup_generated B K) C" (is ?g)
proof -
  show ?f
    using short_exact_sequenceD [OF ex]
    apply (clarsimp simp add: group_hom_def group.iso_onto_image)
    using fim group.iso_onto_image by blast
  have "C = subgroup_generated C(g ` carrier B)"
    using short_exact_sequenceD [OF ex]
    apply simp
    by (metis epi_iff_subset group.subgroup_generated_group_carrier hom_carrier subset_antisym)
  then show ?g
    using short_exact_sequenceD [OF ex]
    by (metis "1" ‹subgroup K B› eq fim splitting_sublemma_gen)
qed
lemma splitting_lemma_left_gen:
  assumes ex: "exact_seq ([C,B,A], [g,f])" and f': "f' ∈ hom B A" and iso: "(f' ∘ f) ∈ iso A A"
    and injf: "inj_on f (carrier A)" and surj: "g ` carrier B = carrier C"
 obtains H K where "H ⊲ B" "K ⊲ B" "H ∩ K ⊆ {one B}" "set_mult B H K = carrier B"
                   "f ∈ iso A (subgroup_generated B H)" "g ∈ iso (subgroup_generated B K) C"
proof -
  interpret gBC: group_hom B C g
    using ex by (simp add: group_hom_def group_hom_axioms_def)
  have "group A" "group B" "group C" and kerg: "kernel B C g = f ` carrier A"
    using ex by (auto simp: group_hom_def group_hom_axioms_def)
  then have *: "f ` carrier A ∩ kernel B A f' = {𝟭⇘B⇙} ∧ f ` carrier A <#>⇘B⇙ kernel B A f' = carrier B"
    using group_semidirect_sum_image_ker [of f A B f' A] assms by auto
  interpret f'AB: group_hom B A f'
    using assms by (auto simp: group_hom_def group_hom_axioms_def)
  let ?H = "f ` carrier A"
  let ?K = "kernel B A f'"
  show thesis
  proof
    show "?H ⊲ B"
      by (simp add: gBC.normal_kernel flip: kerg)
    show "?K ⊲ B"
      by (rule f'AB.normal_kernel)
    show "?H ∩ ?K ⊆ {𝟭⇘B⇙}" "?H <#>⇘B⇙ ?K = carrier B"
      using * by auto
    show "f ∈ Group.iso A (subgroup_generated B ?H)"
      using ex by (simp add: injf iso_onto_image group_hom_def group_hom_axioms_def)
    have C: "C = subgroup_generated C(g ` carrier B)"
      using surj by (simp add: gBC.subgroup_generated_group_carrier)
    show "g ∈ Group.iso (subgroup_generated B ?K) C"
      apply (subst C)
      apply (rule splitting_sublemma_gen [OF ex refl])
      using * by (auto simp: f'AB.subgroup_kernel)
  qed
qed
lemma splitting_lemma_left:
  assumes ex: "exact_seq ([C,B,A], [g,f])" and f': "f' ∈ hom B A"
    and inv: "(⋀x. x ∈ carrier A ⟹ f'(f x) = x)"
    and injf: "inj_on f (carrier A)" and surj: "g ` carrier B = carrier C"
 obtains H K where "H ⊲ B" "K ⊲ B" "H ∩ K ⊆ {one B}" "set_mult B H K = carrier B"
                   "f ∈ iso A (subgroup_generated B H)" "g ∈ iso (subgroup_generated B K) C"
proof -
  interpret fAB: group_hom A B f
    using ex by simp
  interpret gBC: group_hom B C g
    using ex by (simp add: group_hom_def group_hom_axioms_def)
  have "group A" "group B" "group C" and kerg: "kernel B C g = f ` carrier A"
      using ex by (auto simp: group_hom_def group_hom_axioms_def)
  have iso: "f' ∘ f ∈ Group.iso A A"
    using ex by (auto simp: inv intro:  group.iso_eq [OF ‹group A› id_iso])
  show thesis
    by (metis that splitting_lemma_left_gen [OF ex f' iso injf surj])
qed
lemma splitting_lemma_right_gen:
  assumes ex: "short_exact_sequence C B A g f" and g': "g' ∈ hom C B" and iso: "(g ∘ g') ∈ iso C C"
 obtains H K where "H ⊲ B" "subgroup K B" "H ∩ K ⊆ {one B}" "set_mult B H K = carrier B"
                   "f ∈ iso A (subgroup_generated B H)" "g ∈ iso (subgroup_generated B K) C"
proof
  interpret fAB: group_hom A B f
    using short_exact_sequenceD [OF ex] by (simp add: group_hom_def group_hom_axioms_def)
  interpret gBC: group_hom B C g
    using short_exact_sequenceD [OF ex] by (simp add: group_hom_def group_hom_axioms_def)
  have *: "f ` carrier A ∩ g' ` carrier C = {𝟭⇘B⇙}"
          "f ` carrier A <#>⇘B⇙ g' ` carrier C = carrier B"
          "group A" "group B" "group C"
          "kernel B C g = f ` carrier A"
    using group_semidirect_sum_ker_image [of g g' C C B] short_exact_sequenceD [OF ex]
    by (simp_all add: g' iso group_hom_def)
  show "kernel B C g ⊲ B"
    by (simp add: gBC.normal_kernel)
  show "(kernel B C g) ∩ (g' ` carrier C) ⊆ {𝟭⇘B⇙}" "(kernel B C g) <#>⇘B⇙ (g' ` carrier C) = carrier B"
    by (auto simp: *)
  show "f ∈ Group.iso A (subgroup_generated B (kernel B C g))"
    by (metis "*"(6) fAB.group_hom_axioms group.iso_onto_image group_hom_def short_exact_sequenceD [OF ex])
  show "subgroup (g' ` carrier C) B"
    using splitting_sublemma
    by (simp add: fAB.H.is_group g' gBC.is_group group_hom.img_is_subgroup group_hom_axioms_def group_hom_def)
  then show "g ∈ Group.iso (subgroup_generated B (g' ` carrier C)) C"
    by (metis (no_types, lifting) iso_iff fAB.H.hom_from_subgroup_generated gBC.homh image_comp inj_on_imageI iso subgroup.carrier_subgroup_generated_subgroup)
qed
lemma splitting_lemma_right:
  assumes ex: "short_exact_sequence C B A g f" and g': "g' ∈ hom C B" and gg': "⋀z. z ∈ carrier C ⟹ g(g' z) = z"
 obtains H K where "H ⊲ B" "subgroup K B" "H ∩ K ⊆ {one B}" "set_mult B H K = carrier B"
                   "f ∈ iso A (subgroup_generated B H)" "g ∈ iso (subgroup_generated B K) C"
proof -
  have *: "group A" "group B" "group C"
    using group_semidirect_sum_ker_image [of g g' C C B] short_exact_sequenceD [OF ex]
    by (simp_all add: g'  group_hom_def)
  show thesis
    apply (rule splitting_lemma_right_gen [OF ex g' group.iso_eq [OF _ id_iso]])
    using * apply (auto simp: gg' intro: that)
    done
qed
end