Theory Sparse_In
theory Sparse_In 
  imports Homotopy
begin
subsection ‹A set of points sparse in another set›
definition sparse_in:: "'a :: topological_space set ⇒ 'a set ⇒ bool"
    (infixl ‹(sparse'_in)› 50)
  where
  "pts sparse_in A = (∀x∈A. ∃B. x∈B ∧ open B ∧ (∀y∈B. ¬ y islimpt pts))"
lemma sparse_in_empty[simp]: "{} sparse_in A"
  by (meson UNIV_I empty_iff islimpt_def open_UNIV sparse_in_def)
lemma finite_imp_sparse:
  fixes pts::"'a:: t1_space set"
  shows "finite pts ⟹ pts sparse_in S"
  by (meson UNIV_I islimpt_finite open_UNIV sparse_in_def)
lemma sparse_in_singleton[simp]: "{x} sparse_in (A::'a:: t1_space set)"
  by (rule finite_imp_sparse) auto
lemma sparse_in_ball_def:
  "pts sparse_in D ⟷ (∀x∈D. ∃e>0. ∀y∈ball x e. ¬ y islimpt pts)"
  unfolding sparse_in_def
  by (meson Elementary_Metric_Spaces.open_ball open_contains_ball_eq subset_eq)
lemma get_sparse_in_cover:
  assumes "pts sparse_in A"
  obtains B where "open B" "A ⊆ B" "∀y∈B. ¬ y islimpt pts"
proof -
  obtain getB where getB:"x∈getB x" "open (getB x)" "∀y∈getB x. ¬ y islimpt pts"
    if "x∈A" for x
    using assms(1) unfolding sparse_in_def by metis
  define B where "B = Union (getB ` A)"
  have "open B" unfolding B_def using getB(2) by blast
  moreover have "A ⊆ B" unfolding B_def using getB(1) by auto
  moreover have "∀y∈B. ¬ y islimpt pts" unfolding B_def by (meson UN_iff getB(3))
  ultimately show ?thesis using that by blast
qed
lemma sparse_in_open:
  assumes "open A"
  shows "pts sparse_in A ⟷ (∀y∈A. ¬y islimpt pts)"
  using assms unfolding sparse_in_def by auto
lemma sparse_in_not_in:
  assumes "pts sparse_in A" "x∈A"
  obtains B where "open B" "x∈B" "∀y∈B. y≠x ⟶ y∉pts"
  using assms unfolding sparse_in_def
  by (metis islimptI)
lemma sparse_in_subset:
  assumes "pts sparse_in A" "B ⊆ A"
  shows "pts sparse_in B"
  using assms unfolding sparse_in_def  by auto
lemma sparse_in_subset2:
  assumes "pts1 sparse_in D" "pts2 ⊆ pts1"
  shows "pts2 sparse_in D"
  by (meson assms(1) assms(2) islimpt_subset sparse_in_def)
lemma sparse_in_union:
  assumes "pts1 sparse_in D1" "pts2 sparse_in D1" 
  shows "(pts1 ∪ pts2) sparse_in (D1 ∩ D2)" 
  using assms unfolding sparse_in_def islimpt_Un
  by (metis Int_iff open_Int)
lemma sparse_in_compact_finite:
  assumes "pts sparse_in A" "compact A"
  shows "finite (A ∩ pts)"
  apply (rule finite_not_islimpt_in_compact[OF ‹compact A›])
  using assms unfolding sparse_in_def by blast
lemma sparse_imp_closedin_pts:
  assumes "pts sparse_in D" 
  shows "closedin (top_of_set D) (D ∩ pts)"
  using assms islimpt_subset unfolding closedin_limpt sparse_in_def 
  by fastforce
lemma open_diff_sparse_pts:
  assumes "open D" "pts sparse_in D" 
  shows "open (D - pts)"
  using assms sparse_imp_closedin_pts
  by (metis Diff_Diff_Int Diff_cancel Diff_eq_empty_iff Diff_subset 
      closedin_def double_diff openin_open_eq topspace_euclidean_subtopology)
lemma sparse_in_UNIV_imp_closed: "X sparse_in UNIV ⟹ closed X"
  by (simp add: Compl_eq_Diff_UNIV closed_open open_diff_sparse_pts)
lemma sparse_imp_countable:
  fixes D::"'a ::euclidean_space set"
  assumes  "open D" "pts sparse_in D"
  shows "countable (D ∩ pts)"
proof -
  obtain K :: "nat ⇒ 'a ::euclidean_space set"
      where K: "D = (⋃n. K n)" "⋀n. compact (K n)"
    using assms  by (metis open_Union_compact_subsets)
  then have "D∩ pts = (⋃n. K n ∩ pts)"
    by blast
  moreover have "⋀n. finite (K n ∩ pts)"
    by (metis K(1) K(2) Union_iff assms(2) rangeI 
        sparse_in_compact_finite sparse_in_subset subsetI)
  ultimately show ?thesis
    by (metis countableI_type countable_UN countable_finite)
qed
lemma sparse_imp_connected:
  fixes D::"'a ::euclidean_space set"
  assumes  "2 ≤ DIM ('a)"  "connected D" "open D" "pts sparse_in D"
  shows "connected (D - pts)"
  using assms
  by (metis Diff_Compl Diff_Diff_Int Diff_eq connected_open_diff_countable 
      sparse_imp_countable)
lemma sparse_in_eventually_iff:
  assumes "open A"
  shows "pts sparse_in A ⟷ (∀y∈A. (∀⇩F y in at y. y ∉ pts))"
  unfolding sparse_in_open[OF ‹open A›] islimpt_iff_eventually
  by simp
lemma get_sparse_from_eventually:
  fixes A::"'a::topological_space set"
  assumes "∀x∈A. ∀⇩F z in at x. P z" "open A"
  obtains pts where "pts sparse_in A" "∀x∈A - pts. P x"
proof -
  define pts::"'a set" where "pts={x. ¬P x}"
  have "pts sparse_in A" "∀x∈A - pts. P x"
    unfolding sparse_in_eventually_iff[OF ‹open A›] pts_def
    using assms(1) by simp_all
  then show ?thesis using that by blast
qed
lemma sparse_disjoint:
  assumes "pts ∩ A = {}" "open A"
  shows "pts sparse_in A"
  using assms unfolding sparse_in_eventually_iff[OF ‹open A›]
      eventually_at_topological
  by blast
subsection ‹Co-sparseness filter›
text ‹
  The co-sparseness filter allows us to talk about properties that hold on a given set except
  for an ``insignificant'' number of points that are sparse in that set.
›
lemma is_filter_cosparse: "is_filter (λP. {x. ¬P x} sparse_in A)"
proof (standard, goal_cases)
  case 1
  thus ?case by auto
next
  case (2 P Q)
  from sparse_in_union[OF this, of UNIV] show ?case
    by (auto simp: Un_def)
next
  case (3 P Q)
  from 3(2) show ?case
    by (rule sparse_in_subset2) (use 3(1) in auto)
qed  
definition cosparse :: "'a set ⇒ 'a :: topological_space filter" where
 "cosparse A = Abs_filter (λP. {x. ¬P x} sparse_in A)"
syntax
  "_eventually_cosparse" :: "pttrn => 'a set => bool => bool"  (‹(‹indent=3 notation=‹binder ∀≈››∀⇩≈_∈_./ _)› [0, 0, 10] 10)
syntax_consts
  "_eventually_cosparse" == eventually
translations
  "∀⇩≈x∈A. P" == "CONST eventually (λx. P) (CONST cosparse A)"
syntax
  "_qeventually_cosparse" :: "pttrn ⇒ bool ⇒ 'a ⇒ 'a"  (‹(‹indent=3 notation=‹binder ∀≈››∀⇩≈_ | (_)./ _)› [0, 0, 10] 10)
syntax_consts
  "_qeventually_cosparse" == eventually
translations
  "∀⇩≈x|P. t" => "CONST eventually (λx. t) (CONST cosparse {x. P})"
print_translation ‹
  [(\<^const_syntax>‹eventually›, K (Collect_binder_tr' \<^syntax_const>‹_qeventually_cosparse›))]
›
lemma eventually_cosparse: "eventually P (cosparse A) ⟷ {x. ¬P x} sparse_in A"
  unfolding cosparse_def by (rule eventually_Abs_filter[OF is_filter_cosparse])
lemma eventually_not_in_cosparse:
  assumes "X sparse_in A"
  shows   "eventually (λx. x ∉ X) (cosparse A)"
  using assms by (auto simp: eventually_cosparse)
lemma eventually_cosparse_open_eq:
  "open A ⟹ eventually P (cosparse A) ⟷ (∀x∈A. eventually P (at x))"
  unfolding eventually_cosparse
  by (subst sparse_in_open) (auto simp: islimpt_conv_frequently_at frequently_def)
lemma eventually_cosparse_imp_eventually_at:
  "eventually P (cosparse A) ⟹ x ∈ A ⟹ eventually P (at x within B)"
  unfolding eventually_cosparse sparse_in_def islimpt_def eventually_at_topological 
  by fastforce
lemma eventually_in_cosparse:
  assumes "A ⊆ X" "open A"
  shows   "eventually (λx. x ∈ X) (cosparse A)"
proof -
  have "eventually (λx. x ∈ A) (cosparse A)"
    using assms by (auto simp: eventually_cosparse_open_eq intro: eventually_at_in_open')
  thus ?thesis
    by eventually_elim (use assms(1) in blast)
qed
lemma cosparse_eq_bot_iff: "cosparse A = bot ⟷ (∀x∈A. open {x})"
proof -
  have "cosparse A = bot ⟷ eventually (λ_. False) (cosparse A)"
    by (simp add: trivial_limit_def)
  also have "… ⟷ (∀x∈A. open {x})"
    unfolding eventually_cosparse sparse_in_def
    by (auto simp: islimpt_UNIV_iff)
  finally show ?thesis .
qed
lemma cosparse_empty [simp]: "cosparse {} = bot"
  by (rule filter_eqI) (auto simp: eventually_cosparse sparse_in_def)
lemma cosparse_eq_bot_iff' [simp]: "cosparse (A :: 'a :: perfect_space set) = bot ⟷ A = {}"
  by (auto simp: cosparse_eq_bot_iff not_open_singleton)
end