Theory Sum_Topology
section‹Disjoint sum of arbitarily many spaces›
theory Sum_Topology
  imports Abstract_Topology
begin
definition sum_topology :: "('a ⇒ 'b topology) ⇒ 'a set ⇒ ('a × 'b) topology" where
  "sum_topology X I ≡
    topology (λU. U ⊆ Sigma I (topspace ∘ X) ∧ (∀i ∈ I. openin (X i) {x. (i,x) ∈ U}))"
lemma is_sum_topology: "istopology (λU. U ⊆ Sigma I (topspace ∘ X) ∧ (∀i∈I. openin (X i) {x. (i, x) ∈ U}))"
proof -
  have 1: "{x. (i, x) ∈ S ∩ T} = {x. (i, x) ∈ S} ∩ {x::'b. (i, x) ∈ T}" for S T and i::'a
    by auto
  have 2: "{x. (i, x) ∈ ⋃ 𝒦} = (⋃K∈𝒦. {x::'b. (i, x) ∈ K})" for 𝒦 and i::'a
    by auto
  show ?thesis
    unfolding istopology_def 1 2 by blast
qed
lemma openin_sum_topology:
   "openin (sum_topology X I) U ⟷
        U ⊆ Sigma I (topspace ∘ X) ∧ (∀i ∈ I. openin (X i) {x. (i,x) ∈ U})"
  by (auto simp: sum_topology_def is_sum_topology)
lemma openin_disjoint_union:
   "openin (sum_topology X I) (Sigma I U) ⟷ (∀i ∈ I. openin (X i) (U i))"
  using openin_subset by (force simp: openin_sum_topology)
lemma topspace_sum_topology [simp]:
   "topspace(sum_topology X I) = Sigma I (topspace ∘ X)"
  by (metis comp_apply openin_disjoint_union openin_subset openin_sum_topology openin_topspace subset_antisym)
lemma openin_sum_topology_alt:
   "openin (sum_topology X I) U ⟷ (∃T. U = Sigma I T ∧ (∀i ∈ I. openin (X i) (T i)))"
  by (bestsimp simp: openin_sum_topology dest: openin_subset)
lemma forall_openin_sum_topology:
   "(∀U. openin (sum_topology X I) U ⟶ P U) ⟷ (∀T. (∀i ∈ I. openin (X i) (T i)) ⟶ P(Sigma I T))"
  by (auto simp: openin_sum_topology_alt)
lemma exists_openin_sum_topology:
   "(∃U. openin (sum_topology X I) U ∧ P U) ⟷
    (∃T. (∀i ∈ I. openin (X i) (T i)) ∧ P(Sigma I T))"
  by (auto simp: openin_sum_topology_alt)
lemma closedin_sum_topology:
   "closedin (sum_topology X I) U ⟷ U ⊆ Sigma I (topspace ∘ X) ∧ (∀i ∈ I. closedin (X i) {x. (i,x) ∈ U})"
     (is "?lhs = ?rhs")
proof
  assume L: ?lhs
  then have U: "U ⊆ Sigma I (topspace ∘ X)"
    using closedin_subset by fastforce
  then have "∀i∈I. {x. (i, x) ∈ U} ⊆ topspace (X i)"
    by fastforce
  moreover have "openin (X i) (topspace (X i) - {x. (i, x) ∈ U})" if "i∈I" for i
    apply (subst openin_subopen)
    using L that unfolding closedin_def openin_sum_topology
    by (bestsimp simp: o_def subset_iff)
  ultimately show ?rhs
    by (simp add: U closedin_def)
next
  assume R: ?rhs
  then have "openin (X i) {x. (i, x) ∈ topspace (sum_topology X I) - U}" if "i∈I" for i
    apply (subst openin_subopen)
    using that unfolding closedin_def openin_sum_topology
    by (bestsimp simp: o_def subset_iff)
  then show ?lhs
    by (simp add: R closedin_def openin_sum_topology)
qed
lemma closedin_disjoint_union:
   "closedin (sum_topology X I) (Sigma I U) ⟷ (∀i ∈ I. closedin (X i) (U i))"
  using closedin_subset by (force simp: closedin_sum_topology)
lemma closedin_sum_topology_alt:
   "closedin (sum_topology X I) U ⟷ (∃T. U = Sigma I T ∧ (∀i ∈ I. closedin (X i) (T i)))"
  using closedin_subset unfolding closedin_sum_topology by auto blast
lemma forall_closedin_sum_topology:
   "(∀U. closedin (sum_topology X I) U ⟶ P U) ⟷
        (∀t. (∀i ∈ I. closedin (X i) (t i)) ⟶ P(Sigma I t))"
  by (metis closedin_sum_topology_alt)
lemma exists_closedin_sum_topology:
   "(∃U. closedin (sum_topology X I) U ∧ P U) ⟷
    (∃T. (∀i ∈ I. closedin (X i) (T i)) ∧ P(Sigma I T))"
  by (simp add: closedin_sum_topology_alt) blast
lemma open_map_component_injection:
   "i ∈ I ⟹ open_map (X i) (sum_topology X I) (λx. (i,x))"
  unfolding open_map_def openin_sum_topology
  using openin_subset openin_subopen by (force simp: image_iff)
lemma closed_map_component_injection:
  assumes "i ∈ I"
  shows "closed_map(X i) (sum_topology X I) (λx. (i,x))"
proof -
  have "closedin (X j) {x. j = i ∧ x ∈ U}"
    if "⋀U S. closedin U S ⟹ S ⊆ topspace U" and "closedin (X i) U" and "j ∈ I" for U j
    using that by (cases "j=i") auto
  then show ?thesis
    using closedin_subset assms by (force simp: closed_map_def closedin_sum_topology image_iff)
qed
lemma continuous_map_component_injection:
   "i ∈ I ⟹ continuous_map(X i) (sum_topology X I) (λx. (i,x))"
  apply (clarsimp simp: continuous_map_def openin_sum_topology)
  by (smt (verit, best) Collect_cong mem_Collect_eq openin_subset subsetD)
lemma subtopology_sum_topology:
  "subtopology (sum_topology X I) (Sigma I S) =
        sum_topology (λi. subtopology (X i) (S i)) I"
  unfolding topology_eq
proof (intro strip iffI)
  fix T
  assume *: "openin (subtopology (sum_topology X I) (Sigma I S)) T"
  then obtain U where U: "∀i∈I. openin (X i) (U i) ∧ T = Sigma I U ∩ Sigma I S" 
    by (auto simp: openin_subtopology openin_sum_topology_alt)
  have "T = (SIGMA i:I. U i ∩ S i)"
  proof
    show "T ⊆ (SIGMA i:I. U i ∩ S i)"
      by (metis "*" SigmaE Sigma_Int_distrib2 U openin_imp_subset subset_iff)
    show "(SIGMA i:I. U i ∩ S i) ⊆ T"
      using U by fastforce
  qed
  then show "openin (sum_topology (λi. subtopology (X i) (S i)) I) T"
    by (simp add: U openin_disjoint_union openin_subtopology_Int)
next
  fix T
  assume *: "openin (sum_topology (λi. subtopology (X i) (S i)) I) T"
  then obtain U where "∀i∈I. ∃T. openin (X i) T ∧ U i = T ∩ S i" and Teq: "T = Sigma I U"
    by (auto simp: openin_subtopology openin_sum_topology_alt)
  then obtain B where "⋀i. i∈I ⟹ openin (X i) (B i) ∧ U i = B i ∩ S i"
    by metis
  then show "openin (subtopology (sum_topology X I) (Sigma I S)) T"
    by (auto simp: openin_subtopology openin_sum_topology_alt Teq)
qed
lemma embedding_map_component_injection:
   "i ∈ I ⟹ embedding_map (X i) (sum_topology X I) (λx. (i,x))"
  by (metis injective_open_imp_embedding_map continuous_map_component_injection
            open_map_component_injection inj_onI prod.inject)
lemma topological_property_of_sum_component:
  assumes major: "P (sum_topology X I)"
    and minor: "⋀X S. ⟦P X; closedin X S; openin X S⟧ ⟹ P(subtopology X S)"
    and PQ:  "⋀X Y. X homeomorphic_space Y ⟹ (P X ⟷ Q Y)"
  shows "(∀i ∈ I. Q(X i))"
proof -
  have "Q(X i)" if "i ∈ I" for i
  proof -
    have "P(subtopology (sum_topology X I) (Pair i ` topspace (X i)))"
      by (meson closed_map_component_injection closed_map_def closedin_topspace major minor open_map_component_injection open_map_def openin_topspace that)
    then show ?thesis
      by (metis PQ embedding_map_component_injection embedding_map_imp_homeomorphic_space homeomorphic_space_sym that)
  qed
  then show ?thesis by metis
qed
end