Theory OG_Syntax
theory OG_Syntax
imports OG_Tactics Quote_Antiquote
begin
text‹Syntax for commands and for assertions and boolean expressions in
 commands ‹com› and annotated commands ‹ann_com›.›
abbreviation Skip :: "'a com"  (‹SKIP› 63)
  where "SKIP ≡ Basic id"
abbreviation AnnSkip :: "'a assn ⇒ 'a ann_com"  (‹_//SKIP› [90] 63)
  where "r SKIP ≡ AnnBasic r id"
notation
  Seq  (‹_,,/ _› [55, 56] 55) and
  AnnSeq  (‹_;;/ _› [60,61] 60)
syntax
  "_Assign"      :: "idt ⇒ 'b ⇒ 'a com"    (‹(´_ :=/ _)› [70, 65] 61)
  "_AnnAssign"   :: "'a assn ⇒ idt ⇒ 'b ⇒ 'a com"    (‹(_ ´_ :=/ _)› [90,70,65] 61)
translations
  "´x := a" ⇀ "CONST Basic «´(_update_name x (λ_. a))»"
  "r ´x := a" ⇀ "CONST AnnBasic r «´(_update_name x (λ_. a))»"
syntax
  "_AnnCond1"    :: "'a assn ⇒ 'a bexp  ⇒ 'a ann_com  ⇒ 'a ann_com ⇒ 'a ann_com"
                    (‹_ //IF _ /THEN _ /ELSE _ /FI›  [90,0,0,0] 61)
  "_AnnCond2"    :: "'a assn ⇒ 'a bexp  ⇒ 'a ann_com ⇒ 'a ann_com"
                    (‹_ //IF _ /THEN _ /FI›  [90,0,0] 61)
  "_AnnWhile"    :: "'a assn ⇒ 'a bexp  ⇒ 'a assn ⇒ 'a ann_com ⇒ 'a ann_com"
                    (‹_ //WHILE _ /INV _ //DO _//OD›  [90,0,0,0] 61)
  "_AnnAwait"    :: "'a assn ⇒ 'a bexp  ⇒ 'a com ⇒ 'a ann_com"
                    (‹_ //AWAIT _ /THEN /_ /END›  [90,0,0] 61)
  "_AnnAtom"     :: "'a assn  ⇒ 'a com ⇒ 'a ann_com"   (‹_//⟨_⟩› [90,0] 61)
  "_AnnWait"     :: "'a assn ⇒ 'a bexp ⇒ 'a ann_com"   (‹_//WAIT _ END› [90,0] 61)
  "_Cond"        :: "'a bexp ⇒ 'a com ⇒ 'a com ⇒ 'a com"
                                  (‹(0IF _/ THEN _/ ELSE _/ FI)› [0, 0, 0] 61)
  "_Cond2"       :: "'a bexp ⇒ 'a com ⇒ 'a com"   (‹IF _ THEN _ FI› [0,0] 56)
  "_While_inv"   :: "'a bexp ⇒ 'a assn ⇒ 'a com ⇒ 'a com"
                    (‹(0WHILE _/ INV _ //DO _ /OD)›  [0, 0, 0] 61)
  "_While"       :: "'a bexp ⇒ 'a com ⇒ 'a com"
                    (‹(0WHILE _ //DO _ /OD)›  [0, 0] 61)
translations
  "IF b THEN c1 ELSE c2 FI" ⇀ "CONST Cond ⦃b⦄ c1 c2"
  "IF b THEN c FI" ⇌ "IF b THEN c ELSE SKIP FI"
  "WHILE b INV i DO c OD" ⇀ "CONST While ⦃b⦄ i c"
  "WHILE b DO c OD" ⇌ "WHILE b INV CONST undefined DO c OD"
  "r IF b THEN c1 ELSE c2 FI" ⇀ "CONST AnnCond1 r ⦃b⦄ c1 c2"
  "r IF b THEN c FI" ⇀ "CONST AnnCond2 r ⦃b⦄ c"
  "r WHILE b INV i DO c OD" ⇀ "CONST AnnWhile r ⦃b⦄ i c"
  "r AWAIT b THEN c END" ⇀ "CONST AnnAwait r ⦃b⦄ c"
  "r ⟨c⟩" ⇌ "r AWAIT CONST True THEN c END"
  "r WAIT b END" ⇌ "r AWAIT b THEN SKIP END"
nonterminal prgs
syntax
  "_PAR" :: "prgs ⇒ 'a"              (‹COBEGIN//_//COEND› [57] 56)
  "_prg" :: "['a, 'a] ⇒ prgs"        (‹_//_› [60, 90] 57)
  "_prgs" :: "['a, 'a, prgs] ⇒ prgs"  (‹_//_//∥//_› [60,90,57] 57)
  "_prg_scheme" :: "['a, 'a, 'a, 'a, 'a] ⇒ prgs"
                  (‹SCHEME [_ ≤ _ < _] _// _› [0,0,0,60, 90] 57)
translations
  "_prg c q" ⇌ "[(CONST Some c, q)]"
  "_prgs c q ps" ⇌ "(CONST Some c, q) # ps"
  "_PAR ps" ⇌ "CONST Parallel ps"
  "_prg_scheme j i k c q" ⇌ "CONST map (λi. (CONST Some c, q)) [j..<k]"
print_translation ‹
  let
    fun quote_tr' f (t :: ts) =
          Term.list_comb (f $ Syntax_Trans.quote_tr' \<^syntax_const>‹_antiquote› t, ts)
      | quote_tr' _ _ = raise Match;
    fun annquote_tr' f (r :: t :: ts) =
          Term.list_comb (f $ r $ Syntax_Trans.quote_tr' \<^syntax_const>‹_antiquote› t, ts)
      | annquote_tr' _ _ = raise Match;
    val assert_tr' = quote_tr' (Syntax.const \<^syntax_const>‹_Assert›);
    fun bexp_tr' name ((Const (\<^const_syntax>‹Collect›, _) $ t) :: ts) =
          quote_tr' (Syntax.const name) (t :: ts)
      | bexp_tr' _ _ = raise Match;
    fun annbexp_tr' name (r :: (Const (\<^const_syntax>‹Collect›, _) $ t) :: ts) =
          annquote_tr' (Syntax.const name) (r :: t :: ts)
      | annbexp_tr' _ _ = raise Match;
    fun assign_tr' (Abs (x, _, f $ k $ Bound 0) :: ts) =
          quote_tr' (Syntax.const \<^syntax_const>‹_Assign› $ Syntax_Trans.update_name_tr' f)
            (Abs (x, dummyT, Syntax_Trans.const_abs_tr' k) :: ts)
      | assign_tr' _ = raise Match;
    fun annassign_tr' (r :: Abs (x, _, f $ k $ Bound 0) :: ts) =
          quote_tr' (Syntax.const \<^syntax_const>‹_AnnAssign› $ r $ Syntax_Trans.update_name_tr' f)
            (Abs (x, dummyT, Syntax_Trans.const_abs_tr' k) :: ts)
      | annassign_tr' _ = raise Match;
    fun Parallel_PAR [(Const (\<^const_syntax>‹Cons›, _) $
            (Const (\<^const_syntax>‹Pair›, _) $ (Const (\<^const_syntax>‹Some›,_) $ t1 ) $ t2) $
            Const (\<^const_syntax>‹Nil›, _))] = Syntax.const \<^syntax_const>‹_prg› $ t1 $ t2
      | Parallel_PAR [(Const (\<^const_syntax>‹Cons›, _) $
            (Const (\<^const_syntax>‹Pair›, _) $ (Const (\<^const_syntax>‹Some›, _) $ t1) $ t2) $ ts)] =
          Syntax.const \<^syntax_const>‹_prgs› $ t1 $ t2 $ Parallel_PAR [ts]
      | Parallel_PAR _ = raise Match;
    fun Parallel_tr' ts = Syntax.const \<^syntax_const>‹_PAR› $ Parallel_PAR ts;
  in
   [(\<^const_syntax>‹Collect›, K assert_tr'),
    (\<^const_syntax>‹Basic›, K assign_tr'),
    (\<^const_syntax>‹Cond›, K (bexp_tr' \<^syntax_const>‹_Cond›)),
    (\<^const_syntax>‹While›, K (bexp_tr' \<^syntax_const>‹_While_inv›)),
    (\<^const_syntax>‹AnnBasic›, K annassign_tr'),
    (\<^const_syntax>‹AnnWhile›, K (annbexp_tr' \<^syntax_const>‹_AnnWhile›)),
    (\<^const_syntax>‹AnnAwait›, K (annbexp_tr' \<^syntax_const>‹_AnnAwait›)),
    (\<^const_syntax>‹AnnCond1›, K (annbexp_tr' \<^syntax_const>‹_AnnCond1›)),
    (\<^const_syntax>‹AnnCond2›, K (annbexp_tr' \<^syntax_const>‹_AnnCond2›))]
  end
›
end