Theory Solve
section ‹Weak possibilities mapping (abstraction)›
theory Solve
imports IOA
begin
definition is_weak_pmap :: "['c ⇒ 'a, ('action,'c)ioa,('action,'a)ioa] ⇒ bool" where
  "is_weak_pmap f C A ≡
   (∀s∈starts_of(C). f(s)∈starts_of(A)) ∧
   (∀s t a. reachable C s ∧
            (s,a,t)∈trans_of(C)
            ⟶ (if a∈externals(asig_of(C)) then
                   (f(s),a,f(t))∈trans_of(A)
                 else f(s)=f(t)))"
declare mk_trace_thm [simp] trans_in_actions [simp]
lemma trace_inclusion: 
  "[| IOA(C); IOA(A); externals(asig_of(C)) = externals(asig_of(A));  
           is_weak_pmap f C A |] ==> traces(C) ⊆ traces(A)"
  apply (unfold is_weak_pmap_def traces_def)
  apply (simp (no_asm) add: has_trace_def)
  apply safe
  apply (rename_tac ex1 ex2)
  
  apply (rule_tac x = "mk_trace C ex1" in exI)
  apply simp
  
  apply (rule_tac x = "(mk_trace A ex1,λi. f (ex2 i))" in bexI)
  
   apply (simp (no_asm_simp) add: mk_trace_def filter_oseq_idemp)
  
  apply (frule states_of_exec_reachable)
  
  apply (simp add: executions_def)
  apply safe
  
  apply (drule bspec)
  apply assumption
  
  apply (simp add: is_execution_fragment_def)
  apply safe
  apply (erule_tac x = "ex2 n" in allE)
  apply (erule_tac x = "ex2 (Suc n)" in allE)
  apply (erule_tac x = a in allE)
  apply simp
  done
lemma imp_conj_lemma: "(P ⟹ Q⟶R) ⟹ P∧Q ⟶ R"
  by blast
lemma :
  "a∈externals(asig_of(A1||A2)) =     
   (a∈externals(asig_of(A1)) ∧ a∈externals(asig_of(A2)) ∨
   a∈externals(asig_of(A1)) ∧ a∉externals(asig_of(A2)) ∨
   a∉externals(asig_of(A1)) ∧ a∈externals(asig_of(A2)))"
  apply (auto simp add: externals_def asig_of_par asig_comp_def asig_inputs_def asig_outputs_def)
  done
lemma comp1_reachable: "[| reachable (C1||C2) s |] ==> reachable C1 (fst s)"
  apply (simp add: reachable_def)
  apply (erule bexE)
  apply (rule_tac x =
    "(filter_oseq (λa. a∈actions (asig_of (C1))) (fst ex) , λi. fst (snd ex i))" in bexI)
  apply force
  apply (simp cong del: if_weak_cong
    add: executions_def is_execution_fragment_def par_def starts_of_def
      trans_of_def filter_oseq_def
    split: option.split)
  done
lemma comp2_reachable: "[| reachable (C1||C2) s|] ==> reachable C2 (snd s)"
  apply (simp add: reachable_def)
  apply (erule bexE)
  apply (rule_tac x =
    "(filter_oseq (λa. a∈actions (asig_of (C2))) (fst ex) , λi. snd (snd ex i))" in bexI)
  apply force
  apply (simp cong del: if_weak_cong
    add: executions_def is_execution_fragment_def par_def starts_of_def
    trans_of_def filter_oseq_def
    split: option.split)
  done
declare if_split [split del] if_weak_cong [cong del]
lemma fxg_is_weak_pmap_of_product_IOA: 
     "[| is_weak_pmap f C1 A1;  
         externals(asig_of(A1))=externals(asig_of(C1)); 
         is_weak_pmap g C2 A2;   
         externals(asig_of(A2))=externals(asig_of(C2));  
         compat_ioas C1 C2; compat_ioas A1 A2  |]      
   ==> is_weak_pmap (λp.(f(fst(p)),g(snd(p)))) (C1||C2) (A1||A2)"
  apply (unfold is_weak_pmap_def)
  apply (rule conjI)
  apply (simp add: par_def starts_of_def)
  apply (rule allI)+
  apply (rule imp_conj_lemma)
  apply (simp (no_asm) add: externals_of_par_extra)
  apply (simp (no_asm) add: par_def)
  apply (simp add: trans_of_def)
  apply (simplesubst if_split)
  apply (rule conjI)
  apply (rule impI)
  apply (erule disjE)
  apply (simp add: comp1_reachable comp2_reachable ext_is_act)
  apply (erule disjE)
  apply (simp add: comp1_reachable comp2_reachable ext_is_act ext1_ext2_is_not_act2)
  apply (simp add: comp1_reachable comp2_reachable ext_is_act ext1_ext2_is_not_act1)
  apply (rule impI)
  apply (subgoal_tac "a∉externals (asig_of (A1)) & a∉externals (asig_of (A2))")
  prefer 2
  apply force
  apply (simp (no_asm) add: conj_disj_distribR cong add: conj_cong split: if_split)
  apply (tactic ‹
    REPEAT((resolve_tac \<^context> [conjI, impI] 1 ORELSE eresolve_tac \<^context> [conjE] 1) THEN
      asm_full_simp_tac(\<^context> addsimps [@{thm comp1_reachable}, @{thm comp2_reachable}]) 1)›)
  done
lemma reachable_rename_ioa: "[| reachable (rename C g) s |] ==> reachable C s"
  apply (simp add: reachable_def)
  apply (erule bexE)
  apply (rule_tac x = "((λi. case (fst ex i) of None ⇒ None | Some (x) => g x) ,snd ex)" in bexI)
  apply (simp (no_asm))
  apply (simp add: executions_def is_execution_fragment_def par_def
    starts_of_def trans_of_def rename_def split: option.split)
  apply force
  done
lemma rename_through_pmap: "[| is_weak_pmap f C A |] 
                       ==> (is_weak_pmap f (rename C g) (rename A g))"
  apply (simp add: is_weak_pmap_def)
  apply (rule conjI)
  apply (simp add: rename_def starts_of_def)
  apply (rule allI)+
  apply (rule imp_conj_lemma)
  apply (simp (no_asm) add: rename_def)
  apply (simp add: externals_def asig_inputs_def asig_outputs_def asig_of_def trans_of_def)
  apply safe
  apply (simplesubst if_split)
  apply (rule conjI)
  apply (rule impI)
  apply (erule disjE)
  apply (erule exE)
  apply (erule conjE)
  apply (drule sym)
  apply (drule sym)
  apply simp
  apply hypsubst+
  apply (cut_tac C = "C" and g = "g" and s = "s" in reachable_rename_ioa)
  apply assumption
  apply simp
  apply (erule exE)
  apply (erule conjE)
  apply (drule sym)
  apply (drule sym)
  apply simp
  apply hypsubst+
  apply (cut_tac C = "C" and g = "g" and s = "s" in reachable_rename_ioa)
  apply assumption
  apply simp
  apply (simp (no_asm) cong add: conj_cong)
  apply (rule impI)
  apply (erule conjE)
  apply (cut_tac C = "C" and g = "g" and s = "s" in reachable_rename_ioa)
  apply auto
  done
declare if_split [split] if_weak_cong [cong]
end