Theory HOL-Library.Rewrite
theory Rewrite
imports Main
begin
consts rewrite_HOLE :: "'a::{}"  (‹⌑›)
lemma eta_expand:
  fixes f :: "'a::{} ⇒ 'b::{}"
  shows "f ≡ λx. f x" .
lemma imp_cong_eq:
  "(PROP A ⟹ (PROP B ⟹ PROP C) ≡ (PROP B' ⟹ PROP C')) ≡
    ((PROP B ⟹ PROP A ⟹ PROP C) ≡ (PROP B' ⟹ PROP A ⟹ PROP C'))"
  apply (intro Pure.equal_intr_rule)
     apply (drule (1) cut_rl; drule Pure.equal_elim_rule1 Pure.equal_elim_rule2; assumption)+
   apply (drule Pure.equal_elim_rule1 Pure.equal_elim_rule2; assumption)+
  done
ML_file ‹cconv.ML›
ML_file ‹rewrite.ML›
end