Theory Cpo
theory Cpo
  imports Main
begin
section ‹Partial orders›
declare [[typedef_overloaded]]
subsection ‹Type class for partial orders›
class below =
  fixes below :: "'a ⇒ 'a ⇒ bool"
begin
notation (ASCII)
  below (infix ‹<<› 50)
notation
  below (infix ‹⊑› 50)
abbreviation not_below :: "'a ⇒ 'a ⇒ bool"  (infix ‹\<notsqsubseteq>› 50)
  where "not_below x y ≡ ¬ below x y"
notation (ASCII)
  not_below  (infix ‹~<<› 50)
lemma below_eq_trans: "a ⊑ b ⟹ b = c ⟹ a ⊑ c"
  by (rule subst)
lemma eq_below_trans: "a = b ⟹ b ⊑ c ⟹ a ⊑ c"
  by (rule ssubst)
end
class po = below +
  assumes below_refl [iff]: "x ⊑ x"
  assumes below_trans: "x ⊑ y ⟹ y ⊑ z ⟹ x ⊑ z"
  assumes below_antisym: "x ⊑ y ⟹ y ⊑ x ⟹ x = y"
begin
lemma eq_imp_below: "x = y ⟹ x ⊑ y"
  by simp
lemma box_below: "a ⊑ b ⟹ c ⊑ a ⟹ b ⊑ d ⟹ c ⊑ d"
  by (rule below_trans [OF below_trans])
lemma po_eq_conv: "x = y ⟷ x ⊑ y ∧ y ⊑ x"
  by (fast intro!: below_antisym)
lemma rev_below_trans: "y ⊑ z ⟹ x ⊑ y ⟹ x ⊑ z"
  by (rule below_trans)
lemma not_below2not_eq: "x \<notsqsubseteq> y ⟹ x ≠ y"
  by auto
end
lemmas HOLCF_trans_rules [trans] =
  below_trans
  below_antisym
  below_eq_trans
  eq_below_trans
context po
begin
subsection ‹Upper bounds›
definition is_ub :: "'a set ⇒ 'a ⇒ bool" (infix ‹<|› 55)
  where "S <| x ⟷ (∀y∈S. y ⊑ x)"
lemma is_ubI: "(⋀x. x ∈ S ⟹ x ⊑ u) ⟹ S <| u"
  by (simp add: is_ub_def)
lemma is_ubD: "⟦S <| u; x ∈ S⟧ ⟹ x ⊑ u"
  by (simp add: is_ub_def)
lemma ub_imageI: "(⋀x. x ∈ S ⟹ f x ⊑ u) ⟹ (λx. f x) ` S <| u"
  unfolding is_ub_def by fast
lemma ub_imageD: "⟦f ` S <| u; x ∈ S⟧ ⟹ f x ⊑ u"
  unfolding is_ub_def by fast
lemma ub_rangeI: "(⋀i. S i ⊑ x) ⟹ range S <| x"
  unfolding is_ub_def by fast
lemma ub_rangeD: "range S <| x ⟹ S i ⊑ x"
  unfolding is_ub_def by fast
lemma is_ub_empty [simp]: "{} <| u"
  unfolding is_ub_def by fast
lemma is_ub_insert [simp]: "(insert x A) <| y = (x ⊑ y ∧ A <| y)"
  unfolding is_ub_def by fast
lemma is_ub_upward: "⟦S <| x; x ⊑ y⟧ ⟹ S <| y"
  unfolding is_ub_def by (fast intro: below_trans)
subsection ‹Least upper bounds›
definition is_lub :: "'a set ⇒ 'a ⇒ bool" (infix ‹<<|› 55)
  where "S <<| x ⟷ S <| x ∧ (∀u. S <| u ⟶ x ⊑ u)"
definition lub :: "'a set ⇒ 'a"
  where "lub S = (THE x. S <<| x)"
end
syntax (ASCII)
  "_BLub" :: "[pttrn, 'a set, 'b] ⇒ 'b" (‹(‹indent=3 notation=‹binder LUB››LUB _:_./ _)› [0,0, 10] 10)
syntax
  "_BLub" :: "[pttrn, 'a set, 'b] ⇒ 'b" (‹(‹indent=3 notation=‹binder ⨆››⨆_∈_./ _)› [0,0, 10] 10)
syntax_consts
  "_BLub" ⇌ lub
translations
  "LUB x:A. t" ⇌ "CONST lub ((λx. t) ` A)"
context po
begin
abbreviation Lub  (binder ‹⨆› 10)
  where "⨆n. t n ≡ lub (range t)"
notation (ASCII)
  Lub  (binder ‹LUB › 10)
text ‹access to some definition as inference rule›
lemma is_lubD1: "S <<| x ⟹ S <| x"
  unfolding is_lub_def by fast
lemma is_lubD2: "⟦S <<| x; S <| u⟧ ⟹ x ⊑ u"
  unfolding is_lub_def by fast
lemma is_lubI: "⟦S <| x; ⋀u. S <| u ⟹ x ⊑ u⟧ ⟹ S <<| x"
  unfolding is_lub_def by fast
lemma is_lub_below_iff: "S <<| x ⟹ x ⊑ u ⟷ S <| u"
  unfolding is_lub_def is_ub_def by (metis below_trans)
text ‹lubs are unique›
lemma is_lub_unique: "S <<| x ⟹ S <<| y ⟹ x = y"
  unfolding is_lub_def is_ub_def by (blast intro: below_antisym)
text ‹technical lemmas about \<^term>‹lub› and \<^term>‹is_lub››
lemma is_lub_lub: "M <<| x ⟹ M <<| lub M"
  unfolding lub_def by (rule theI [OF _ is_lub_unique])
lemma lub_eqI: "M <<| l ⟹ lub M = l"
  by (rule is_lub_unique [OF is_lub_lub])
lemma is_lub_singleton [simp]: "{x} <<| x"
  by (simp add: is_lub_def)
lemma lub_singleton [simp]: "lub {x} = x"
  by (rule is_lub_singleton [THEN lub_eqI])
lemma is_lub_bin: "x ⊑ y ⟹ {x, y} <<| y"
  by (simp add: is_lub_def)
lemma lub_bin: "x ⊑ y ⟹ lub {x, y} = y"
  by (rule is_lub_bin [THEN lub_eqI])
lemma is_lub_maximal: "S <| x ⟹ x ∈ S ⟹ S <<| x"
  by (erule is_lubI, erule (1) is_ubD)
lemma lub_maximal: "S <| x ⟹ x ∈ S ⟹ lub S = x"
  by (rule is_lub_maximal [THEN lub_eqI])
subsection ‹Countable chains›
definition chain :: "(nat ⇒ 'a) ⇒ bool"
  where 
  "chain Y = (∀i. Y i ⊑ Y (Suc i))"
lemma chainI: "(⋀i. Y i ⊑ Y (Suc i)) ⟹ chain Y"
  unfolding chain_def by fast
lemma chainE: "chain Y ⟹ Y i ⊑ Y (Suc i)"
  unfolding chain_def by fast
text ‹chains are monotone functions›
lemma chain_mono_less: "chain Y ⟹ i < j ⟹ Y i ⊑ Y j"
  by (erule less_Suc_induct, erule chainE, erule below_trans)
lemma chain_mono: "chain Y ⟹ i ≤ j ⟹ Y i ⊑ Y j"
  by (cases "i = j") (simp_all add: chain_mono_less)
lemma chain_shift: "chain Y ⟹ chain (λi. Y (i + j))"
  by (rule chainI, simp, erule chainE)
text ‹technical lemmas about (least) upper bounds of chains›
lemma is_lub_rangeD1: "range S <<| x ⟹ S i ⊑ x"
  by (rule is_lubD1 [THEN ub_rangeD])
lemma is_ub_range_shift: "chain S ⟹ range (λi. S (i + j)) <| x = range S <| x"
  apply (rule iffI)
   apply (rule ub_rangeI)
   apply (rule_tac y="S (i + j)" in below_trans)
    apply (erule chain_mono)
    apply (rule le_add1)
   apply (erule ub_rangeD)
  apply (rule ub_rangeI)
  apply (erule ub_rangeD)
  done
lemma is_lub_range_shift: "chain S ⟹ range (λi. S (i + j)) <<| x = range S <<| x"
  by (simp add: is_lub_def is_ub_range_shift)
text ‹the lub of a constant chain is the constant›
lemma chain_const [simp]: "chain (λi. c)"
  by (simp add: chainI)
lemma is_lub_const: "range (λx. c) <<| c"
by (blast dest: ub_rangeD intro: is_lubI ub_rangeI)
lemma lub_const [simp]: "(⨆i. c) = c"
  by (rule is_lub_const [THEN lub_eqI])
subsection ‹Finite chains›
definition max_in_chain :: "nat ⇒ (nat ⇒ 'a) ⇒ bool"
  where 
  "max_in_chain i C ⟷ (∀j. i ≤ j ⟶ C i = C j)"
definition finite_chain :: "(nat ⇒ 'a) ⇒ bool"
  where "finite_chain C = (chain C ∧ (∃i. max_in_chain i C))"
text ‹results about finite chains›
lemma max_in_chainI: "(⋀j. i ≤ j ⟹ Y i = Y j) ⟹ max_in_chain i Y"
  unfolding max_in_chain_def by fast
lemma max_in_chainD: "max_in_chain i Y ⟹ i ≤ j ⟹ Y i = Y j"
  unfolding max_in_chain_def by fast
lemma finite_chainI: "chain C ⟹ max_in_chain i C ⟹ finite_chain C"
  unfolding finite_chain_def by fast
lemma finite_chainE: "⟦finite_chain C; ⋀i. ⟦chain C; max_in_chain i C⟧ ⟹ R⟧ ⟹ R"
  unfolding finite_chain_def by fast
lemma lub_finch1: "chain C ⟹ max_in_chain i C ⟹ range C <<| C i"
  apply (rule is_lubI)
   apply (rule ub_rangeI, rename_tac j)
   apply (rule_tac x=i and y=j in linorder_le_cases)
    apply (drule (1) max_in_chainD, simp)
   apply (erule (1) chain_mono)
  apply (erule ub_rangeD)
  done
lemma lub_finch2: "finite_chain C ⟹ range C <<| C (LEAST i. max_in_chain i C)"
  apply (erule finite_chainE)
  apply (erule LeastI2 [where Q="λi. range C <<| C i"])
  apply (erule (1) lub_finch1)
  done
lemma finch_imp_finite_range: "finite_chain Y ⟹ finite (range Y)"
  apply (erule finite_chainE)
  apply (rule_tac B="Y ` {..i}" in finite_subset)
   apply (rule subsetI)
   apply (erule rangeE, rename_tac j)
   apply (rule_tac x=i and y=j in linorder_le_cases)
    apply (subgoal_tac "Y j = Y i", simp)
    apply (simp add: max_in_chain_def)
   apply simp
  apply simp
  done
lemma finite_range_has_max:
  fixes f :: "nat ⇒ 'a"
    and r :: "'a ⇒ 'a ⇒ bool"
  assumes mono: "⋀i j. i ≤ j ⟹ r (f i) (f j)"
  assumes finite_range: "finite (range f)"
  shows "∃k. ∀i. r (f i) (f k)"
proof (intro exI allI)
  fix i :: nat
  let ?j = "LEAST k. f k = f i"
  let ?k = "Max ((λx. LEAST k. f k = x) ` range f)"
  have "?j ≤ ?k"
  proof (rule Max_ge)
    show "finite ((λx. LEAST k. f k = x) ` range f)"
      using finite_range by (rule finite_imageI)
    show "?j ∈ (λx. LEAST k. f k = x) ` range f"
      by (intro imageI rangeI)
  qed
  hence "r (f ?j) (f ?k)"
    by (rule mono)
  also have "f ?j = f i"
    by (rule LeastI, rule refl)
  finally show "r (f i) (f ?k)" .
qed
lemma finite_range_imp_finch: "chain Y ⟹ finite (range Y) ⟹ finite_chain Y"
  apply (subgoal_tac "∃k. ∀i. Y i ⊑ Y k")
   apply (erule exE)
   apply (rule finite_chainI, assumption)
   apply (rule max_in_chainI)
   apply (rule below_antisym)
    apply (erule (1) chain_mono)
   apply (erule spec)
  apply (rule finite_range_has_max)
   apply (erule (1) chain_mono)
  apply assumption
  done
lemma bin_chain: "x ⊑ y ⟹ chain (λi. if i=0 then x else y)"
  by (rule chainI) simp
lemma bin_chainmax: "x ⊑ y ⟹ max_in_chain (Suc 0) (λi. if i=0 then x else y)"
  by (simp add: max_in_chain_def)
lemma is_lub_bin_chain: "x ⊑ y ⟹ range (λi::nat. if i=0 then x else y) <<| y"
  apply (frule bin_chain)
  apply (drule bin_chainmax)
  apply (drule (1) lub_finch1)
  apply simp
  done
text ‹the maximal element in a chain is its lub›
lemma lub_chain_maxelem: "Y i = c ⟹ ∀i. Y i ⊑ c ⟹ lub (range Y) = c"
  by (blast dest: ub_rangeD intro: lub_eqI is_lubI ub_rangeI)
end
section ‹Classes cpo and pcpo›
subsection ‹Complete partial orders›
text ‹The class cpo of chain complete partial orders›
class cpo = po +
  assumes cpo: "chain S ⟹ ∃x. range S <<| x"
default_sort cpo
context cpo
begin
text ‹in cpo's everthing equal to THE lub has lub properties for every chain›
lemma cpo_lubI: "chain S ⟹ range S <<| (⨆i. S i)"
  by (fast dest: cpo elim: is_lub_lub)
lemma thelubE: "⟦chain S; (⨆i. S i) = l⟧ ⟹ range S <<| l"
  by (blast dest: cpo intro: is_lub_lub)
text ‹Properties of the lub›
lemma is_ub_thelub: "chain S ⟹ S x ⊑ (⨆i. S i)"
  by (blast dest: cpo intro: is_lub_lub [THEN is_lub_rangeD1])
lemma is_lub_thelub: "⟦chain S; range S <| x⟧ ⟹ (⨆i. S i) ⊑ x"
  by (blast dest: cpo intro: is_lub_lub [THEN is_lubD2])
lemma lub_below_iff: "chain S ⟹ (⨆i. S i) ⊑ x ⟷ (∀i. S i ⊑ x)"
  by (simp add: is_lub_below_iff [OF cpo_lubI] is_ub_def)
lemma lub_below: "⟦chain S; ⋀i. S i ⊑ x⟧ ⟹ (⨆i. S i) ⊑ x"
  by (simp add: lub_below_iff)
lemma below_lub: "⟦chain S; x ⊑ S i⟧ ⟹ x ⊑ (⨆i. S i)"
  by (erule below_trans, erule is_ub_thelub)
lemma lub_range_mono: "⟦range X ⊆ range Y; chain Y; chain X⟧ ⟹ (⨆i. X i) ⊑ (⨆i. Y i)"
  apply (erule lub_below)
  apply (subgoal_tac "∃j. X i = Y j")
   apply clarsimp
   apply (erule is_ub_thelub)
  apply auto
  done
lemma lub_range_shift: "chain Y ⟹ (⨆i. Y (i + j)) = (⨆i. Y i)"
  apply (rule below_antisym)
   apply (rule lub_range_mono)
     apply fast
    apply assumption
   apply (erule chain_shift)
  apply (rule lub_below)
   apply assumption
  apply (rule_tac i="i" in below_lub)
   apply (erule chain_shift)
  apply (erule chain_mono)
  apply (rule le_add1)
  done
lemma maxinch_is_thelub: "chain Y ⟹ max_in_chain i Y = ((⨆i. Y i) = Y i)"
  apply (rule iffI)
   apply (fast intro!: lub_eqI lub_finch1)
  apply (unfold max_in_chain_def)
  apply (safe intro!: below_antisym)
   apply (fast elim!: chain_mono)
  apply (drule sym)
  apply (force elim!: is_ub_thelub)
  done
text ‹the ‹⊑› relation between two chains is preserved by their lubs›
lemma lub_mono: "⟦chain X; chain Y; ⋀i. X i ⊑ Y i⟧ ⟹ (⨆i. X i) ⊑ (⨆i. Y i)"
  by (fast elim: lub_below below_lub)
text ‹the = relation between two chains is preserved by their lubs›
lemma lub_eq: "(⋀i. X i = Y i) ⟹ (⨆i. X i) = (⨆i. Y i)"
  by simp
lemma ch2ch_lub:
  assumes 1: "⋀j. chain (λi. Y i j)"
  assumes 2: "⋀i. chain (λj. Y i j)"
  shows "chain (λi. ⨆j. Y i j)"
  apply (rule chainI)
  apply (rule lub_mono [OF 2 2])
  apply (rule chainE [OF 1])
  done
lemma diag_lub:
  assumes 1: "⋀j. chain (λi. Y i j)"
  assumes 2: "⋀i. chain (λj. Y i j)"
  shows "(⨆i. ⨆j. Y i j) = (⨆i. Y i i)"
proof (rule below_antisym)
  have 3: "chain (λi. Y i i)"
    apply (rule chainI)
    apply (rule below_trans)
     apply (rule chainE [OF 1])
    apply (rule chainE [OF 2])
    done
  have 4: "chain (λi. ⨆j. Y i j)"
    by (rule ch2ch_lub [OF 1 2])
  show "(⨆i. ⨆j. Y i j) ⊑ (⨆i. Y i i)"
    apply (rule lub_below [OF 4])
    apply (rule lub_below [OF 2])
    apply (rule below_lub [OF 3])
    apply (rule below_trans)
     apply (rule chain_mono [OF 1 max.cobounded1])
    apply (rule chain_mono [OF 2 max.cobounded2])
    done
  show "(⨆i. Y i i) ⊑ (⨆i. ⨆j. Y i j)"
    apply (rule lub_mono [OF 3 4])
    apply (rule is_ub_thelub [OF 2])
    done
qed
lemma ex_lub:
  assumes 1: "⋀j. chain (λi. Y i j)"
  assumes 2: "⋀i. chain (λj. Y i j)"
  shows "(⨆i. ⨆j. Y i j) = (⨆j. ⨆i. Y i j)"
  by (simp add: diag_lub 1 2)
end
subsection ‹Pointed cpos›
text ‹The class pcpo of pointed cpos›
class pcpo = cpo +
  assumes least: "∃x. ∀y. x ⊑ y"
begin
definition bottom :: "'a"  (‹⊥›)
  where "bottom = (THE x. ∀y. x ⊑ y)"
lemma minimal [iff]: "⊥ ⊑ x"
  unfolding bottom_def
  apply (rule the1I2)
   apply (rule ex_ex1I)
    apply (rule least)
   apply (blast intro: below_antisym)
  apply simp
  done
end
text ‹Old "UU" syntax:›
abbreviation (input) "UU ≡ bottom"
text ‹Simproc to rewrite \<^term>‹⊥ = x› to \<^term>‹x = ⊥›.›
setup ‹Reorient_Proc.add (fn \<^Const_>‹bottom _› => true | _ => false)›
simproc_setup reorient_bottom ("⊥ = x") = ‹K Reorient_Proc.proc›
text ‹useful lemmas about \<^term>‹⊥››
lemma below_bottom_iff [simp]: "x ⊑ ⊥ ⟷ x = ⊥"
  by (simp add: po_eq_conv)
lemma eq_bottom_iff: "x = ⊥ ⟷ x ⊑ ⊥"
  by simp
lemma bottomI: "x ⊑ ⊥ ⟹ x = ⊥"
  by (subst eq_bottom_iff)
lemma lub_eq_bottom_iff: "chain Y ⟹ (⨆i. Y i) = ⊥ ⟷ (∀i. Y i = ⊥)"
  by (simp only: eq_bottom_iff lub_below_iff)
subsection ‹Chain-finite and flat cpos›
text ‹further useful classes for HOLCF domains›
class chfin = po +
  assumes chfin: "chain Y ⟹ ∃n. max_in_chain n Y"
begin
subclass cpo
  apply standard
  apply (frule chfin)
  apply (blast intro: lub_finch1)
  done
lemma chfin2finch: "chain Y ⟹ finite_chain Y"
  by (simp add: chfin finite_chain_def)
end
class flat = pcpo +
  assumes ax_flat: "x ⊑ y ⟹ x = ⊥ ∨ x = y"
begin
subclass chfin
proof
  fix Y
  assume *: "chain Y"
  show "∃n. max_in_chain n Y"
    apply (unfold max_in_chain_def)
    apply (cases "∀i. Y i = ⊥")
     apply simp
    apply simp
    apply (erule exE)
    apply (rule_tac x="i" in exI)
    apply clarify
    using * apply (blast dest: chain_mono ax_flat)
    done
qed
lemma flat_below_iff: "x ⊑ y ⟷ x = ⊥ ∨ x = y"
  by (safe dest!: ax_flat)
lemma flat_eq: "a ≠ ⊥ ⟹ a ⊑ b = (a = b)"
  by (safe dest!: ax_flat)
end
subsection ‹Discrete cpos›
class discrete_cpo = below +
  assumes discrete_cpo [simp]: "x ⊑ y ⟷ x = y"
begin
subclass po
  by standard simp_all
text ‹In a discrete cpo, every chain is constant›
lemma discrete_chain_const:
  assumes S: "chain S"
  shows "∃x. S = (λi. x)"
proof (intro exI ext)
  fix i :: nat
  from S le0 have "S 0 ⊑ S i" by (rule chain_mono)
  then have "S 0 = S i" by simp
  then show "S i = S 0" by (rule sym)
qed
subclass chfin
proof
  fix S :: "nat ⇒ 'a"
  assume S: "chain S"
  then have "∃x. S = (λi. x)"
    by (rule discrete_chain_const)
  then have "max_in_chain 0 S"
    by (auto simp: max_in_chain_def)
  then show "∃i. max_in_chain i S" ..
qed
end
section ‹Continuity and monotonicity›
subsection ‹Definitions›
definition monofun :: "('a::po ⇒ 'b::po) ⇒ bool"  
  where "monofun f ⟷ (∀x y. x ⊑ y ⟶ f x ⊑ f y)"
definition cont :: "('a ⇒ 'b) ⇒ bool"
  where "cont f = (∀Y. chain Y ⟶ range (λi. f (Y i)) <<| f (⨆i. Y i))"
lemma contI: "(⋀Y. chain Y ⟹ range (λi. f (Y i)) <<| f (⨆i. Y i)) ⟹ cont f"
  by (simp add: cont_def)
lemma contE: "cont f ⟹ chain Y ⟹ range (λi. f (Y i)) <<| f (⨆i. Y i)"
  by (simp add: cont_def)
lemma monofunI: "(⋀x y. x ⊑ y ⟹ f x ⊑ f y) ⟹ monofun f"
  by (simp add: monofun_def)
lemma monofunE: "monofun f ⟹ x ⊑ y ⟹ f x ⊑ f y"
  by (simp add: monofun_def)
subsection ‹Equivalence of alternate definition›
text ‹monotone functions map chains to chains›
lemma ch2ch_monofun: "monofun f ⟹ chain Y ⟹ chain (λi. f (Y i))"
  apply (rule chainI)
  apply (erule monofunE)
  apply (erule chainE)
  done
text ‹monotone functions map upper bound to upper bounds›
lemma ub2ub_monofun: "monofun f ⟹ range Y <| u ⟹ range (λi. f (Y i)) <| f u"
  apply (rule ub_rangeI)
  apply (erule monofunE)
  apply (erule ub_rangeD)
  done
text ‹a lemma about binary chains›
lemma binchain_cont: "cont f ⟹ x ⊑ y ⟹ range (λi::nat. f (if i = 0 then x else y)) <<| f y"
  apply (subgoal_tac "f (⨆i::nat. if i = 0 then x else y) = f y")
   apply (erule subst)
   apply (erule contE)
   apply (erule bin_chain)
  apply (rule_tac f=f in arg_cong)
  apply (erule is_lub_bin_chain [THEN lub_eqI])
  done
text ‹continuity implies monotonicity›
lemma cont2mono: "cont f ⟹ monofun f"
  apply (rule monofunI)
  apply (drule (1) binchain_cont)
  apply (drule_tac i=0 in is_lub_rangeD1)
  apply simp
  done
lemmas cont2monofunE = cont2mono [THEN monofunE]
lemmas ch2ch_cont = cont2mono [THEN ch2ch_monofun]
text ‹continuity implies preservation of lubs›
lemma cont2contlubE: "cont f ⟹ chain Y ⟹ f (⨆i. Y i) = (⨆i. f (Y i))"
  apply (rule lub_eqI [symmetric])
  apply (erule (1) contE)
  done
lemma contI2:
  fixes f :: "'a ⇒ 'b"
  assumes mono: "monofun f"
  assumes below: "⋀Y. ⟦chain Y; chain (λi. f (Y i))⟧ ⟹ f (⨆i. Y i) ⊑ (⨆i. f (Y i))"
  shows "cont f"
proof (rule contI)
  fix Y :: "nat ⇒ 'a"
  assume Y: "chain Y"
  with mono have fY: "chain (λi. f (Y i))"
    by (rule ch2ch_monofun)
  have "(⨆i. f (Y i)) = f (⨆i. Y i)"
    apply (rule below_antisym)
     apply (rule lub_below [OF fY])
     apply (rule monofunE [OF mono])
     apply (rule is_ub_thelub [OF Y])
    apply (rule below [OF Y fY])
    done
  with fY show "range (λi. f (Y i)) <<| f (⨆i. Y i)"
    by (rule thelubE)
qed
subsection ‹Collection of continuity rules›
named_theorems cont2cont "continuity intro rule"
subsection ‹Continuity of basic functions›
text ‹The identity function is continuous›
lemma cont_id [simp, cont2cont]: "cont (λx. x)"
  apply (rule contI)
  apply (erule cpo_lubI)
  done
text ‹constant functions are continuous›
lemma cont_const [simp, cont2cont]: "cont (λx. c)"
  using is_lub_const by (rule contI)
text ‹application of functions is continuous›
lemma cont_apply:
  fixes f :: "'a ⇒ 'b ⇒ 'c" and t :: "'a ⇒ 'b"
  assumes 1: "cont (λx. t x)"
  assumes 2: "⋀x. cont (λy. f x y)"
  assumes 3: "⋀y. cont (λx. f x y)"
  shows "cont (λx. (f x) (t x))"
proof (rule contI2 [OF monofunI])
  fix x y :: "'a"
  assume "x ⊑ y"
  then show "f x (t x) ⊑ f y (t y)"
    by (auto intro: cont2monofunE [OF 1]
        cont2monofunE [OF 2]
        cont2monofunE [OF 3]
        below_trans)
next
  fix Y :: "nat ⇒ 'a"
  assume "chain Y"
  then show "f (⨆i. Y i) (t (⨆i. Y i)) ⊑ (⨆i. f (Y i) (t (Y i)))"
    by (simp only: cont2contlubE [OF 1] ch2ch_cont [OF 1]
        cont2contlubE [OF 2] ch2ch_cont [OF 2]
        cont2contlubE [OF 3] ch2ch_cont [OF 3]
        diag_lub below_refl)
qed
lemma cont_compose: "cont c ⟹ cont (λx. f x) ⟹ cont (λx. c (f x))"
  by (rule cont_apply [OF _ _ cont_const])
text ‹Least upper bounds preserve continuity›
lemma cont2cont_lub [simp]:
  assumes chain: "⋀x. chain (λi. F i x)"
    and cont: "⋀i. cont (λx. F i x)"
  shows "cont (λx. ⨆i. F i x)"
  apply (rule contI2)
   apply (simp add: monofunI cont2monofunE [OF cont] lub_mono chain)
  apply (simp add: cont2contlubE [OF cont])
  apply (simp add: diag_lub ch2ch_cont [OF cont] chain)
  done
text ‹if-then-else is continuous›
lemma cont_if [simp, cont2cont]: "cont f ⟹ cont g ⟹ cont (λx. if b then f x else g x)"
  by (induct b) simp_all
subsection ‹Finite chains and flat pcpos›
text ‹Monotone functions map finite chains to finite chains.›
lemma monofun_finch2finch: "monofun f ⟹ finite_chain Y ⟹ finite_chain (λn. f (Y n))"
  by (force simp add: finite_chain_def ch2ch_monofun max_in_chain_def)
text ‹The same holds for continuous functions.›
lemma cont_finch2finch: "cont f ⟹ finite_chain Y ⟹ finite_chain (λn. f (Y n))"
  by (rule cont2mono [THEN monofun_finch2finch])
text ‹All monotone functions with chain-finite domain are continuous.›
lemma chfindom_monofun2cont: "monofun f ⟹ cont f"
  for f :: "'a::chfin ⇒ 'b"
  apply (erule contI2)
  apply (frule chfin2finch)
  apply (clarsimp simp add: finite_chain_def)
  apply (subgoal_tac "max_in_chain i (λi. f (Y i))")
   apply (simp add: maxinch_is_thelub ch2ch_monofun)
  apply (force simp add: max_in_chain_def)
  done
text ‹All strict functions with flat domain are continuous.›
lemma flatdom_strict2mono: "f ⊥ = ⊥ ⟹ monofun f"
  for f :: "'a::flat ⇒ 'b::pcpo"
  apply (rule monofunI)
  apply (drule ax_flat)
  apply auto
  done
lemma flatdom_strict2cont: "f ⊥ = ⊥ ⟹ cont f"
  for f :: "'a::flat ⇒ 'b::pcpo"
  by (rule flatdom_strict2mono [THEN chfindom_monofun2cont])
text ‹All functions with discrete domain are continuous.›
lemma cont_discrete_cpo [simp, cont2cont]: "cont f"
  for f :: "'a::discrete_cpo ⇒ 'b"
  apply (rule contI)
  apply (drule discrete_chain_const, clarify)
  apply simp
  done
section ‹Admissibility and compactness›
subsection ‹Definitions›
context cpo
begin
definition adm :: "('a ⇒ bool) ⇒ bool"
  where "adm P ⟷ (∀Y. chain Y ⟶ (∀i. P (Y i)) ⟶ P (⨆i. Y i))"
lemma admI: "(⋀Y. ⟦chain Y; ∀i. P (Y i)⟧ ⟹ P (⨆i. Y i)) ⟹ adm P"
  unfolding adm_def by fast
lemma admD: "adm P ⟹ chain Y ⟹ (⋀i. P (Y i)) ⟹ P (⨆i. Y i)"
  unfolding adm_def by fast
lemma admD2: "adm (λx. ¬ P x) ⟹ chain Y ⟹ P (⨆i. Y i) ⟹ ∃i. P (Y i)"
  unfolding adm_def by fast
lemma triv_admI: "∀x. P x ⟹ adm P"
  by (rule admI) (erule spec)
end
subsection ‹Admissibility on chain-finite types›
text ‹For chain-finite (easy) types every formula is admissible.›
lemma adm_chfin [simp]: "adm P" for P :: "'a::chfin ⇒ bool"
  by (rule admI, frule chfin, auto simp add: maxinch_is_thelub)
subsection ‹Admissibility of special formulae and propagation›
context cpo
begin
lemma adm_const [simp]: "adm (λx. t)"
  by (rule admI, simp)
lemma adm_conj [simp]: "adm (λx. P x) ⟹ adm (λx. Q x) ⟹ adm (λx. P x ∧ Q x)"
  by (fast intro: admI elim: admD)
lemma adm_all [simp]: "(⋀y. adm (λx. P x y)) ⟹ adm (λx. ∀y. P x y)"
  by (fast intro: admI elim: admD)
lemma adm_ball [simp]: "(⋀y. y ∈ A ⟹ adm (λx. P x y)) ⟹ adm (λx. ∀y∈A. P x y)"
  by (fast intro: admI elim: admD)
text ‹Admissibility for disjunction is hard to prove. It requires 2 lemmas.›
lemma adm_disj_lemma1:
  assumes adm: "adm P"
  assumes chain: "chain Y"
  assumes P: "∀i. ∃j≥i. P (Y j)"
  shows "P (⨆i. Y i)"
proof -
  define f where "f i = (LEAST j. i ≤ j ∧ P (Y j))" for i
  have chain': "chain (λi. Y (f i))"
    unfolding f_def
    apply (rule chainI)
    apply (rule chain_mono [OF chain])
    apply (rule Least_le)
    apply (rule LeastI2_ex)
     apply (simp_all add: P)
    done
  have f1: "⋀i. i ≤ f i" and f2: "⋀i. P (Y (f i))"
    using LeastI_ex [OF P [rule_format]] by (simp_all add: f_def)
  have lub_eq: "(⨆i. Y i) = (⨆i. Y (f i))"
    apply (rule below_antisym)
     apply (rule lub_mono [OF chain chain'])
     apply (rule chain_mono [OF chain f1])
    apply (rule lub_range_mono [OF _ chain chain'])
    apply clarsimp
    done
  show "P (⨆i. Y i)"
    unfolding lub_eq using adm chain' f2 by (rule admD)
qed
lemma adm_disj_lemma2: "∀n::nat. P n ∨ Q n ⟹ (∀i. ∃j≥i. P j) ∨ (∀i. ∃j≥i. Q j)"
  apply (erule contrapos_pp)
  apply (clarsimp, rename_tac a b)
  apply (rule_tac x="max a b" in exI)
  apply simp
  done
lemma adm_disj [simp]: "adm (λx. P x) ⟹ adm (λx. Q x) ⟹ adm (λx. P x ∨ Q x)"
  apply (rule admI)
  apply (erule adm_disj_lemma2 [THEN disjE])
   apply (erule (2) adm_disj_lemma1 [THEN disjI1])
  apply (erule (2) adm_disj_lemma1 [THEN disjI2])
  done
lemma adm_imp [simp]: "adm (λx. ¬ P x) ⟹ adm (λx. Q x) ⟹ adm (λx. P x ⟶ Q x)"
  by (subst imp_conv_disj) (rule adm_disj)
lemma adm_iff [simp]: "adm (λx. P x ⟶ Q x) ⟹ adm (λx. Q x ⟶ P x) ⟹ adm (λx. P x ⟷ Q x)"
  by (subst iff_conv_conj_imp) (rule adm_conj)
end
text ‹admissibility and continuity›
lemma adm_below [simp]: "cont (λx. u x) ⟹ cont (λx. v x) ⟹ adm (λx. u x ⊑ v x)"
  by (simp add: adm_def cont2contlubE lub_mono ch2ch_cont)
lemma adm_eq [simp]: "cont (λx. u x) ⟹ cont (λx. v x) ⟹ adm (λx. u x = v x)"
  by (simp add: po_eq_conv)
lemma adm_subst: "cont (λx. t x) ⟹ adm P ⟹ adm (λx. P (t x))"
  by (simp add: adm_def cont2contlubE ch2ch_cont)
lemma adm_not_below [simp]: "cont (λx. t x) ⟹ adm (λx. t x \<notsqsubseteq> u)"
  by (rule admI) (simp add: cont2contlubE ch2ch_cont lub_below_iff)
subsection ‹Compactness›
context cpo
begin
definition compact :: "'a ⇒ bool"
  where "compact k = adm (λx. k \<notsqsubseteq> x)"
lemma compactI: "adm (λx. k \<notsqsubseteq> x) ⟹ compact k"
  unfolding compact_def .
lemma compactD: "compact k ⟹ adm (λx. k \<notsqsubseteq> x)"
  unfolding compact_def .
lemma compactI2: "(⋀Y. ⟦chain Y; x ⊑ (⨆i. Y i)⟧ ⟹ ∃i. x ⊑ Y i) ⟹ compact x"
  unfolding compact_def adm_def by fast
lemma compactD2: "compact x ⟹ chain Y ⟹ x ⊑ (⨆i. Y i) ⟹ ∃i. x ⊑ Y i"
  unfolding compact_def adm_def by fast
lemma compact_below_lub_iff: "compact x ⟹ chain Y ⟹ x ⊑ (⨆i. Y i) ⟷ (∃i. x ⊑ Y i)"
  by (fast intro: compactD2 elim: below_lub)
end
lemma compact_chfin [simp]: "compact x" for x :: "'a::chfin"
  by (rule compactI [OF adm_chfin])
lemma compact_imp_max_in_chain: "chain Y ⟹ compact (⨆i. Y i) ⟹ ∃i. max_in_chain i Y"
  apply (drule (1) compactD2, simp)
  apply (erule exE, rule_tac x=i in exI)
  apply (rule max_in_chainI)
  apply (rule below_antisym)
   apply (erule (1) chain_mono)
  apply (erule (1) below_trans [OF is_ub_thelub])
  done
text ‹admissibility and compactness›
lemma adm_compact_not_below [simp]:
  "compact k ⟹ cont (λx. t x) ⟹ adm (λx. k \<notsqsubseteq> t x)"
  unfolding compact_def by (rule adm_subst)
lemma adm_neq_compact [simp]: "compact k ⟹ cont (λx. t x) ⟹ adm (λx. t x ≠ k)"
  by (simp add: po_eq_conv)
lemma adm_compact_neq [simp]: "compact k ⟹ cont (λx. t x) ⟹ adm (λx. k ≠ t x)"
  by (simp add: po_eq_conv)
lemma compact_bottom [simp, intro]: "compact ⊥"
  by (rule compactI) simp
text ‹Any upward-closed predicate is admissible.›
lemma adm_upward:
  assumes P: "⋀x y. ⟦P x; x ⊑ y⟧ ⟹ P y"
  shows "adm P"
  by (rule admI, drule spec, erule P, erule is_ub_thelub)
lemmas adm_lemmas =
  adm_const adm_conj adm_all adm_ball adm_disj adm_imp adm_iff
  adm_below adm_eq adm_not_below
  adm_compact_not_below adm_compact_neq adm_neq_compact
section ‹Class instances for the full function space›
subsection ‹Full function space is a partial order›
instantiation "fun"  :: (type, below) below
begin
definition below_fun_def: "(⊑) ≡ (λf g. ∀x. f x ⊑ g x)"
instance ..
end
instance "fun" :: (type, po) po
proof
  fix f g h :: "'a ⇒ 'b"
  show "f ⊑ f"
    by (simp add: below_fun_def)
  show "f ⊑ g ⟹ g ⊑ f ⟹ f = g"
    by (simp add: below_fun_def fun_eq_iff below_antisym)
  show "f ⊑ g ⟹ g ⊑ h ⟹ f ⊑ h"
    unfolding below_fun_def by (fast elim: below_trans)
qed
lemma fun_below_iff: "f ⊑ g ⟷ (∀x. f x ⊑ g x)"
  by (simp add: below_fun_def)
lemma fun_belowI: "(⋀x. f x ⊑ g x) ⟹ f ⊑ g"
  by (simp add: below_fun_def)
lemma fun_belowD: "f ⊑ g ⟹ f x ⊑ g x"
  by (simp add: below_fun_def)
subsection ‹Full function space is chain complete›
text ‹Properties of chains of functions.›
lemma fun_chain_iff: "chain S ⟷ (∀x. chain (λi. S i x))"
  by (auto simp: chain_def fun_below_iff)
lemma ch2ch_fun: "chain S ⟹ chain (λi. S i x)"
  by (simp add: chain_def below_fun_def)
lemma ch2ch_lambda: "(⋀x. chain (λi. S i x)) ⟹ chain S"
  by (simp add: chain_def below_fun_def)
text ‹Type \<^typ>‹'a::type ⇒ 'b::cpo› is chain complete›
lemma is_lub_lambda: "(⋀x. range (λi. Y i x) <<| f x) ⟹ range Y <<| f"
  by (simp add: is_lub_def is_ub_def below_fun_def)
lemma is_lub_fun: "chain S ⟹ range S <<| (λx. ⨆i. S i x)"
  for S :: "nat ⇒ 'a::type ⇒ 'b"
  apply (rule is_lub_lambda)
  apply (rule cpo_lubI)
  apply (erule ch2ch_fun)
  done
lemma lub_fun: "chain S ⟹ (⨆i. S i) = (λx. ⨆i. S i x)"
  for S :: "nat ⇒ 'a::type ⇒ 'b"
  by (rule is_lub_fun [THEN lub_eqI])
instance "fun"  :: (type, cpo) cpo
  by intro_classes (rule exI, erule is_lub_fun)
instance "fun" :: (type, discrete_cpo) discrete_cpo
proof
  fix f g :: "'a ⇒ 'b"
  show "f ⊑ g ⟷ f = g"
    by (simp add: fun_below_iff fun_eq_iff)
qed
subsection ‹Full function space is pointed›
lemma minimal_fun: "(λx. ⊥) ⊑ f"
  by (simp add: below_fun_def)
instance "fun"  :: (type, pcpo) pcpo
  by standard (fast intro: minimal_fun)
lemma inst_fun_pcpo: "⊥ = (λx. ⊥)"
  by (rule minimal_fun [THEN bottomI, symmetric])
lemma app_strict [simp]: "⊥ x = ⊥"
  by (simp add: inst_fun_pcpo)
lemma lambda_strict: "(λx. ⊥) = ⊥"
  by (rule bottomI, rule minimal_fun)
subsection ‹Propagation of monotonicity and continuity›
text ‹The lub of a chain of monotone functions is monotone.›
lemma adm_monofun: "adm monofun"
  by (rule admI) (simp add: lub_fun fun_chain_iff monofun_def lub_mono)
text ‹The lub of a chain of continuous functions is continuous.›
lemma adm_cont: "adm cont"
  by (rule admI) (simp add: lub_fun fun_chain_iff)
text ‹Function application preserves monotonicity and continuity.›
lemma mono2mono_fun: "monofun f ⟹ monofun (λx. f x y)"
  by (simp add: monofun_def fun_below_iff)
lemma cont2cont_fun: "cont f ⟹ cont (λx. f x y)"
  apply (rule contI2)
   apply (erule cont2mono [THEN mono2mono_fun])
  apply (simp add: cont2contlubE lub_fun ch2ch_cont)
  done
lemma cont_fun: "cont (λf. f x)"
  using cont_id by (rule cont2cont_fun)
text ‹
  Lambda abstraction preserves monotonicity and continuity.
  (Note ‹(λx. λy. f x y) = f›.)
›
lemma mono2mono_lambda: "(⋀y. monofun (λx. f x y)) ⟹ monofun f"
  by (simp add: monofun_def fun_below_iff)
lemma cont2cont_lambda [simp]:
  assumes f: "⋀y. cont (λx. f x y)"
  shows "cont f"
  by (rule contI, rule is_lub_lambda, rule contE [OF f])
text ‹What D.A.Schmidt calls continuity of abstraction; never used here›
lemma contlub_lambda: "(⋀x. chain (λi. S i x)) ⟹ (λx. ⨆i. S i x) = (⨆i. (λx. S i x))"
  for S :: "nat ⇒ 'a::type ⇒ 'b"
  by (simp add: lub_fun ch2ch_lambda)
section ‹The cpo of cartesian products›
subsection ‹Unit type is a pcpo›
instantiation unit :: discrete_cpo
begin
definition below_unit_def [simp]: "x ⊑ (y::unit) ⟷ True"
instance
  by standard simp
end
instance unit :: pcpo
  by standard simp
subsection ‹Product type is a partial order›
instantiation prod :: (below, below) below
begin
definition below_prod_def: "(⊑) ≡ λp1 p2. (fst p1 ⊑ fst p2 ∧ snd p1 ⊑ snd p2)"
instance ..
end
instance prod :: (po, po) po
proof
  fix x y z :: "'a × 'b"
  show "x ⊑ x"
    by (simp add: below_prod_def)
  show "x ⊑ y ⟹ y ⊑ x ⟹ x = y"
    unfolding below_prod_def prod_eq_iff
    by (fast intro: below_antisym)
  show "x ⊑ y ⟹ y ⊑ z ⟹ x ⊑ z"
    unfolding below_prod_def
    by (fast intro: below_trans)
qed
subsection ‹Monotonicity of \emph{Pair}, \emph{fst}, \emph{snd}›
lemma prod_belowI: "fst p ⊑ fst q ⟹ snd p ⊑ snd q ⟹ p ⊑ q"
  by (simp add: below_prod_def)
lemma Pair_below_iff [simp]: "(a, b) ⊑ (c, d) ⟷ a ⊑ c ∧ b ⊑ d"
  by (simp add: below_prod_def)
text ‹Pair ‹(_,_)›  is monotone in both arguments›
lemma monofun_pair1: "monofun (λx. (x, y))"
  by (simp add: monofun_def)
lemma monofun_pair2: "monofun (λy. (x, y))"
  by (simp add: monofun_def)
lemma monofun_pair: "x1 ⊑ x2 ⟹ y1 ⊑ y2 ⟹ (x1, y1) ⊑ (x2, y2)"
  by simp
lemma ch2ch_Pair [simp]: "chain X ⟹ chain Y ⟹ chain (λi. (X i, Y i))"
  by (rule chainI, simp add: chainE)
text ‹\<^term>‹fst› and \<^term>‹snd› are monotone›
lemma fst_monofun: "x ⊑ y ⟹ fst x ⊑ fst y"
  by (simp add: below_prod_def)
lemma snd_monofun: "x ⊑ y ⟹ snd x ⊑ snd y"
  by (simp add: below_prod_def)
lemma monofun_fst: "monofun fst"
  by (simp add: monofun_def below_prod_def)
lemma monofun_snd: "monofun snd"
  by (simp add: monofun_def below_prod_def)
lemmas ch2ch_fst [simp] = ch2ch_monofun [OF monofun_fst]
lemmas ch2ch_snd [simp] = ch2ch_monofun [OF monofun_snd]
lemma prod_chain_cases:
  assumes chain: "chain Y"
  obtains A B
  where "chain A" and "chain B" and "Y = (λi. (A i, B i))"
proof
  from chain show "chain (λi. fst (Y i))"
    by (rule ch2ch_fst)
  from chain show "chain (λi. snd (Y i))"
    by (rule ch2ch_snd)
  show "Y = (λi. (fst (Y i), snd (Y i)))"
    by simp
qed
subsection ‹Product type is a cpo›
lemma is_lub_Pair: "range A <<| x ⟹ range B <<| y ⟹ range (λi. (A i, B i)) <<| (x, y)"
  by (simp add: is_lub_def is_ub_def below_prod_def)
lemma lub_Pair: "chain A ⟹ chain B ⟹ (⨆i. (A i, B i)) = (⨆i. A i, ⨆i. B i)"
  for A :: "nat ⇒ 'a" and B :: "nat ⇒ 'b"
  by (fast intro: lub_eqI is_lub_Pair elim: thelubE)
lemma is_lub_prod:
  fixes S :: "nat ⇒ ('a × 'b)"
  assumes "chain S"
  shows "range S <<| (⨆i. fst (S i), ⨆i. snd (S i))"
  using assms by (auto elim: prod_chain_cases simp: is_lub_Pair cpo_lubI)
lemma lub_prod: "chain S ⟹ (⨆i. S i) = (⨆i. fst (S i), ⨆i. snd (S i))"
  for S :: "nat ⇒ 'a × 'b"
  by (rule is_lub_prod [THEN lub_eqI])
instance prod :: (cpo, cpo) cpo
proof
  fix S :: "nat ⇒ ('a × 'b)"
  assume "chain S"
  then have "range S <<| (⨆i. fst (S i), ⨆i. snd (S i))"
    by (rule is_lub_prod)
  then show "∃x. range S <<| x" ..
qed
instance prod :: (discrete_cpo, discrete_cpo) discrete_cpo
proof
  show "x ⊑ y ⟷ x = y" for x y :: "'a × 'b"
    by (simp add: below_prod_def prod_eq_iff)
qed
subsection ‹Product type is pointed›
lemma minimal_prod: "(⊥, ⊥) ⊑ p"
  by (simp add: below_prod_def)
instance prod :: (pcpo, pcpo) pcpo
  by intro_classes (fast intro: minimal_prod)
lemma inst_prod_pcpo: "⊥ = (⊥, ⊥)"
  by (rule minimal_prod [THEN bottomI, symmetric])
lemma Pair_bottom_iff [simp]: "(x, y) = ⊥ ⟷ x = ⊥ ∧ y = ⊥"
  by (simp add: inst_prod_pcpo)
lemma fst_strict [simp]: "fst ⊥ = ⊥"
  unfolding inst_prod_pcpo by (rule fst_conv)
lemma snd_strict [simp]: "snd ⊥ = ⊥"
  unfolding inst_prod_pcpo by (rule snd_conv)
lemma Pair_strict [simp]: "(⊥, ⊥) = ⊥"
  by simp
lemma split_strict [simp]: "case_prod f ⊥ = f ⊥ ⊥"
  by (simp add: split_def)
subsection ‹Continuity of \emph{Pair}, \emph{fst}, \emph{snd}›
lemma cont_pair1: "cont (λx. (x, y))"
  apply (rule contI)
  apply (rule is_lub_Pair)
   apply (erule cpo_lubI)
  apply (rule is_lub_const)
  done
lemma cont_pair2: "cont (λy. (x, y))"
  apply (rule contI)
  apply (rule is_lub_Pair)
   apply (rule is_lub_const)
  apply (erule cpo_lubI)
  done
lemma cont_fst: "cont fst"
  apply (rule contI)
  apply (simp add: lub_prod)
  apply (erule cpo_lubI [OF ch2ch_fst])
  done
lemma cont_snd: "cont snd"
  apply (rule contI)
  apply (simp add: lub_prod)
  apply (erule cpo_lubI [OF ch2ch_snd])
  done
lemma cont2cont_Pair [simp, cont2cont]:
  assumes f: "cont (λx. f x)"
  assumes g: "cont (λx. g x)"
  shows "cont (λx. (f x, g x))"
  apply (rule cont_apply [OF f cont_pair1])
  apply (rule cont_apply [OF g cont_pair2])
  apply (rule cont_const)
  done
lemmas cont2cont_fst [simp, cont2cont] = cont_compose [OF cont_fst]
lemmas cont2cont_snd [simp, cont2cont] = cont_compose [OF cont_snd]
lemma cont2cont_case_prod:
  assumes f1: "⋀a b. cont (λx. f x a b)"
  assumes f2: "⋀x b. cont (λa. f x a b)"
  assumes f3: "⋀x a. cont (λb. f x a b)"
  assumes g: "cont (λx. g x)"
  shows "cont (λx. case g x of (a, b) ⇒ f x a b)"
  unfolding split_def
  apply (rule cont_apply [OF g])
   apply (rule cont_apply [OF cont_fst f2])
   apply (rule cont_apply [OF cont_snd f3])
   apply (rule cont_const)
  apply (rule f1)
  done
lemma prod_contI:
  assumes f1: "⋀y. cont (λx. f (x, y))"
  assumes f2: "⋀x. cont (λy. f (x, y))"
  shows "cont f"
proof -
  have "cont (λ(x, y). f (x, y))"
    by (intro cont2cont_case_prod f1 f2 cont2cont)
  then show "cont f"
    by (simp only: case_prod_eta)
qed
lemma prod_cont_iff: "cont f ⟷ (∀y. cont (λx. f (x, y))) ∧ (∀x. cont (λy. f (x, y)))"
  apply safe
    apply (erule cont_compose [OF _ cont_pair1])
   apply (erule cont_compose [OF _ cont_pair2])
  apply (simp only: prod_contI)
  done
lemma cont2cont_case_prod' [simp, cont2cont]:
  assumes f: "cont (λp. f (fst p) (fst (snd p)) (snd (snd p)))"
  assumes g: "cont (λx. g x)"
  shows "cont (λx. case_prod (f x) (g x))"
  using assms by (simp add: cont2cont_case_prod prod_cont_iff)
text ‹The simple version (due to Joachim Breitner) is needed if
  either element type of the pair is not a cpo.›
lemma cont2cont_split_simple [simp, cont2cont]:
  assumes "⋀a b. cont (λx. f x a b)"
  shows "cont (λx. case p of (a, b) ⇒ f x a b)"
  using assms by (cases p) auto
text ‹Admissibility of predicates on product types.›
lemma adm_case_prod [simp]:
  assumes "adm (λx. P x (fst (f x)) (snd (f x)))"
  shows "adm (λx. case f x of (a, b) ⇒ P x a b)"
  unfolding case_prod_beta using assms .
subsection ‹Compactness and chain-finiteness›
lemma fst_below_iff: "fst x ⊑ y ⟷ x ⊑ (y, snd x)" for x :: "'a × 'b"
  by (simp add: below_prod_def)
lemma snd_below_iff: "snd x ⊑ y ⟷ x ⊑ (fst x, y)" for x :: "'a × 'b"
  by (simp add: below_prod_def)
lemma compact_fst: "compact x ⟹ compact (fst x)"
  by (rule compactI) (simp add: fst_below_iff)
lemma compact_snd: "compact x ⟹ compact (snd x)"
  by (rule compactI) (simp add: snd_below_iff)
lemma compact_Pair: "compact x ⟹ compact y ⟹ compact (x, y)"
  by (rule compactI) (simp add: below_prod_def)
lemma compact_Pair_iff [simp]: "compact (x, y) ⟷ compact x ∧ compact y"
  apply (safe intro!: compact_Pair)
   apply (drule compact_fst, simp)
  apply (drule compact_snd, simp)
  done
instance prod :: (chfin, chfin) chfin
  apply intro_classes
  apply (erule compact_imp_max_in_chain)
  apply (case_tac "⨆i. Y i", simp)
  done
section ‹Discrete cpo types›