Theory Equality
section "Equality reasoning by rewriting"
theory Equality
  imports "../CTT"
begin
lemma split_eq: "p : Sum(A,B) ⟹ split(p,pair) = p : Sum(A,B)"
  apply (rule EqE)
  apply (rule elim_rls, assumption)
  apply rew
  done
lemma when_eq: "⟦A type; B type; p : A+B⟧ ⟹ when(p,inl,inr) = p : A + B"
  apply (rule EqE)
  apply (rule elim_rls, assumption)
   apply rew
  done
text ‹in the "rec" formulation of addition, $0+n=n$›
lemma "p:N ⟹ rec(p,0, λy z. succ(y)) = p : N"
  apply (rule EqE)
  apply (rule elim_rls, assumption)
   apply rew
  done
text ‹the harder version, $n+0=n$: recursive, uses induction hypothesis›
lemma "p:N ⟹ rec(p,0, λy z. succ(z)) = p : N"
  apply (rule EqE)
  apply (rule elim_rls, assumption)
   apply hyp_rew
  done
text ‹Associativity of addition›
lemma "⟦a:N; b:N; c:N⟧
  ⟹ rec(rec(a, b, λx y. succ(y)), c, λx y. succ(y)) =
    rec(a, rec(b, c, λx y. succ(y)), λx y. succ(y)) : N"
  apply (NE a)
    apply hyp_rew
  done
text ‹Martin-Löf (1984) page 62: pairing is surjective›
lemma "p : Sum(A,B) ⟹ <split(p,λx y. x), split(p,λx y. y)> = p : Sum(A,B)"
  apply (rule EqE)
  apply (rule elim_rls, assumption)
  apply (tactic ‹DEPTH_SOLVE_1 (rew_tac \<^context> [])›) 
  done
lemma "⟦a : A; b : B⟧ ⟹ (❙λu. split(u, λv w.<w,v>)) ` <a,b> = <b,a> : ∑x:B. A"
  by rew
text ‹a contrived, complicated simplication, requires sum-elimination also›
lemma "(❙λf. ❙λx. f`(f`x)) ` (❙λu. split(u, λv w.<w,v>)) =
      ❙λx. x  :  ∏x:(∑y:N. N). (∑y:N. N)"
  apply (rule reduction_rls)
    apply (rule_tac [3] intrL_rls)
     apply (rule_tac [4] EqE)
     apply (erule_tac [4] SumE)
    
     apply rew
  done
end