Theory Hard_Quantifiers
theory Hard_Quantifiers
imports "../LK"
begin
lemma "⊢ (∀x. P(x) ∧ Q(x)) ⟷ (∀x. P(x)) ∧ (∀x. Q(x))"
  by fast
lemma "⊢ (∃x. P ⟶ Q(x)) ⟷ (P ⟶ (∃x. Q(x)))"
  by fast
lemma "⊢ (∃x. P(x) ⟶ Q) ⟷ (∀x. P(x)) ⟶ Q"
  by fast
lemma "⊢ (∀x. P(x)) ∨ Q ⟷ (∀x. P(x) ∨ Q)"
  by fast
text "Problems requiring quantifier duplication"
lemma "⊢ (∀x. P(x) ⟶ P(f(x))) ∧ P(d) ⟶ P(f(f(f(d))))"
  by best_dup
lemma "⊢ ∃x. P(x) ⟶ P(a) ∧ P(b)"
  by fast_dup
lemma "⊢ ∃z. P(z) ⟶ (∀x. P(x))"
  by best_dup
text "Hard examples with quantifiers"
text "Problem 18"
lemma "⊢ ∃y. ∀x. P(y)⟶P(x)"
  by best_dup
text "Problem 19"
lemma "⊢ ∃x. ∀y z. (P(y)⟶Q(z)) ⟶ (P(x)⟶Q(x))"
  by best_dup
text "Problem 20"
lemma "⊢ (∀x y. ∃z. ∀w. (P(x) ∧ Q(y)⟶R(z) ∧ S(w)))
    ⟶ (∃x y. P(x) ∧ Q(y)) ⟶ (∃z. R(z))"
  by fast
text "Problem 21"
lemma "⊢ (∃x. P ⟶ Q(x)) ∧ (∃x. Q(x) ⟶ P) ⟶ (∃x. P ⟷ Q(x))"
  by best_dup
text "Problem 22"
lemma "⊢ (∀x. P ⟷ Q(x)) ⟶ (P ⟷ (∀x. Q(x)))"
  by fast
text "Problem 23"
lemma "⊢ (∀x. P ∨ Q(x)) ⟷ (P ∨ (∀x. Q(x)))"
  by best
text "Problem 24"
lemma "⊢ ¬ (∃x. S(x) ∧ Q(x)) ∧ (∀x. P(x) ⟶ Q(x) ∨ R(x)) ∧
     ¬ (∃x. P(x)) ⟶ (∃x. Q(x)) ∧ (∀x. Q(x) ∨ R(x) ⟶ S(x))
    ⟶ (∃x. P(x) ∧ R(x))"
  by pc
text "Problem 25"
lemma "⊢ (∃x. P(x)) ∧
        (∀x. L(x) ⟶ ¬ (M(x) ∧ R(x))) ∧
        (∀x. P(x) ⟶ (M(x) ∧ L(x))) ∧
        ((∀x. P(x)⟶Q(x)) ∨ (∃x. P(x) ∧ R(x)))
    ⟶ (∃x. Q(x) ∧ P(x))"
  by best
text "Problem 26"
lemma "⊢ ((∃x. p(x)) ⟷ (∃x. q(x))) ∧
      (∀x. ∀y. p(x) ∧ q(y) ⟶ (r(x) ⟷ s(y)))
  ⟶ ((∀x. p(x)⟶r(x)) ⟷ (∀x. q(x)⟶s(x)))"
  by pc
text "Problem 27"
lemma "⊢ (∃x. P(x) ∧ ¬ Q(x)) ∧
              (∀x. P(x) ⟶ R(x)) ∧
              (∀x. M(x) ∧ L(x) ⟶ P(x)) ∧
              ((∃x. R(x) ∧ ¬ Q(x)) ⟶ (∀x. L(x) ⟶ ¬ R(x)))
          ⟶ (∀x. M(x) ⟶ ¬ L(x))"
  by pc
text "Problem 28.  AMENDED"
lemma "⊢ (∀x. P(x) ⟶ (∀x. Q(x))) ∧
        ((∀x. Q(x) ∨ R(x)) ⟶ (∃x. Q(x) ∧ S(x))) ∧
        ((∃x. S(x)) ⟶ (∀x. L(x) ⟶ M(x)))
    ⟶ (∀x. P(x) ∧ L(x) ⟶ M(x))"
  by pc
text "Problem 29.  Essentially the same as Principia Mathematica *11.71"
lemma "⊢ (∃x. P(x)) ∧ (∃y. Q(y))
    ⟶ ((∀x. P(x) ⟶ R(x)) ∧ (∀y. Q(y) ⟶ S(y)) ⟷
         (∀x y. P(x) ∧ Q(y) ⟶ R(x) ∧ S(y)))"
  by pc
text "Problem 30"
lemma "⊢ (∀x. P(x) ∨ Q(x) ⟶ ¬ R(x)) ∧
        (∀x. (Q(x) ⟶ ¬ S(x)) ⟶ P(x) ∧ R(x))
    ⟶ (∀x. S(x))"
  by fast
text "Problem 31"
lemma "⊢ ¬ (∃x. P(x) ∧ (Q(x) ∨ R(x))) ∧
        (∃x. L(x) ∧ P(x)) ∧
        (∀x. ¬ R(x) ⟶ M(x))
    ⟶ (∃x. L(x) ∧ M(x))"
  by fast
text "Problem 32"
lemma "⊢ (∀x. P(x) ∧ (Q(x) ∨ R(x)) ⟶ S(x)) ∧
        (∀x. S(x) ∧ R(x) ⟶ L(x)) ∧
        (∀x. M(x) ⟶ R(x))
    ⟶ (∀x. P(x) ∧ M(x) ⟶ L(x))"
  by best
text "Problem 33"
lemma "⊢ (∀x. P(a) ∧ (P(x) ⟶ P(b)) ⟶ P(c)) ⟷
     (∀x. (¬ P(a) ∨ P(x) ∨ P(c)) ∧ (¬ P(a) ∨ ¬ P(b) ∨ P(c)))"
  by fast
text "Problem 34  AMENDED (TWICE!!)"
lemma "⊢ ((∃x. ∀y. p(x) ⟷ p(y))  ⟷
               ((∃x. q(x)) ⟷ (∀y. p(y))))     ⟷
              ((∃x. ∀y. q(x) ⟷ q(y))  ⟷
               ((∃x. p(x)) ⟷ (∀y. q(y))))"
  by best_dup
text "Problem 35"
lemma "⊢ ∃x y. P(x,y) ⟶ (∀u v. P(u,v))"
  by best_dup
text "Problem 36"
lemma "⊢ (∀x. ∃y. J(x,y)) ∧
         (∀x. ∃y. G(x,y)) ∧
         (∀x y. J(x,y) ∨ G(x,y) ⟶
         (∀z. J(y,z) ∨ G(y,z) ⟶ H(x,z)))
         ⟶ (∀x. ∃y. H(x,y))"
  by fast
text "Problem 37"
lemma "⊢ (∀z. ∃w. ∀x. ∃y.
           (P(x,z)⟶P(y,w)) ∧ P(y,z) ∧ (P(y,w) ⟶ (∃u. Q(u,w)))) ∧
        (∀x z. ¬ P(x,z) ⟶ (∃y. Q(y,z))) ∧
        ((∃x y. Q(x,y)) ⟶ (∀x. R(x,x)))
    ⟶ (∀x. ∃y. R(x,y))"
  by pc
text "Problem 38"
lemma "⊢ (∀x. p(a) ∧ (p(x) ⟶ (∃y. p(y) ∧ r(x,y))) ⟶
                 (∃z. ∃w. p(z) ∧ r(x,w) ∧ r(w,z)))  ⟷
         (∀x. (¬ p(a) ∨ p(x) ∨ (∃z. ∃w. p(z) ∧ r(x,w) ∧ r(w,z))) ∧
                 (¬ p(a) ∨ ¬ (∃y. p(y) ∧ r(x,y)) ∨
                 (∃z. ∃w. p(z) ∧ r(x,w) ∧ r(w,z))))"
  by pc
text "Problem 39"
lemma "⊢ ¬ (∃x. ∀y. F(y,x) ⟷ ¬ F(y,y))"
  by fast
text "Problem 40.  AMENDED"
lemma "⊢ (∃y. ∀x. F(x,y) ⟷ F(x,x)) ⟶
         ¬ (∀x. ∃y. ∀z. F(z,y) ⟷ ¬ F(z,x))"
  by fast
text "Problem 41"
lemma "⊢ (∀z. ∃y. ∀x. f(x,y) ⟷ f(x,z) ∧ ¬ f(x,x))
         ⟶ ¬ (∃z. ∀x. f(x,z))"
  by fast
text "Problem 42"
lemma "⊢ ¬ (∃y. ∀x. p(x,y) ⟷ ¬ (∃z. p(x,z) ∧ p(z,x)))"
  oops
text "Problem 43"
lemma "⊢ (∀x. ∀y. q(x,y) ⟷ (∀z. p(z,x) ⟷ p(z,y)))
          ⟶ (∀x. (∀y. q(x,y) ⟷ q(y,x)))"
  oops
text "Problem 44"
lemma "⊢ (∀x. f(x) ⟶
                 (∃y. g(y) ∧ h(x,y) ∧ (∃y. g(y) ∧ ¬ h(x,y)))) ∧
         (∃x. j(x) ∧ (∀y. g(y) ⟶ h(x,y)))
         ⟶ (∃x. j(x) ∧ ¬ f(x))"
  by fast
text "Problem 45"
lemma "⊢ (∀x. f(x) ∧ (∀y. g(y) ∧ h(x,y) ⟶ j(x,y))
                      ⟶ (∀y. g(y) ∧ h(x,y) ⟶ k(y))) ∧
      ¬ (∃y. l(y) ∧ k(y)) ∧
      (∃x. f(x) ∧ (∀y. h(x,y) ⟶ l(y))
                   ∧ (∀y. g(y) ∧ h(x,y) ⟶ j(x,y)))
      ⟶ (∃x. f(x) ∧ ¬ (∃y. g(y) ∧ h(x,y)))"
  by best
text "Problems (mainly) involving equality or functions"
text "Problem 48"
lemma "⊢ (a = b ∨ c = d) ∧ (a = c ∨ b = d) ⟶ a = d ∨ b = c"
  by (fast add!: subst)
text "Problem 50"
lemma "⊢ (∀x. P(a,x) ∨ (∀y. P(x,y))) ⟶ (∃x. ∀y. P(x,y))"
  by best_dup
text "Problem 51"
lemma "⊢ (∃z w. ∀x y. P(x,y) ⟷ (x = z ∧ y = w)) ⟶
         (∃z. ∀x. ∃w. (∀y. P(x,y) ⟷ y = w) ⟷ x = z)"
  by (fast add!: subst)
text "Problem 52"  
lemma "⊢ (∃z w. ∀x y. P(x,y) ⟷ (x = z ∧ y = w)) ⟶
         (∃w. ∀y. ∃z. (∀x. P(x,y) ⟷ x = z) ⟷ y = w)"
  by (fast add!: subst)
text "Problem 56"
lemma "⊢ (∀x.(∃y. P(y) ∧ x = f(y)) ⟶ P(x)) ⟷ (∀x. P(x) ⟶ P(f(x)))"
  by (best add: symL subst)
  
text "Problem 57"
lemma "⊢ P(f(a,b), f(b,c)) ∧ P(f(b,c), f(a,c)) ∧
         (∀x y z. P(x,y) ∧ P(y,z) ⟶ P(x,z)) ⟶ P(f(a,b), f(a,c))"
  by fast
text "Problem 58!"
lemma "⊢ (∀x y. f(x) = g(y)) ⟶ (∀x y. f(f(x)) = f(g(y)))"
  by (fast add!: subst)
text "Problem 59"
lemma "⊢ (∀x. P(x) ⟷ ¬ P(f(x))) ⟶ (∃x. P(x) ∧ ¬ P(f(x)))"
  using [[unify_trace_bound = 50]]
  by best_dup
text "Problem 60"
lemma "⊢ ∀x. P(x,f(x)) ⟷ (∃y. (∀z. P(z,y) ⟶ P(z,f(x))) ∧ P(x,y))"
  by fast
text "Problem 62 as corrected in JAR 18 (1997), page 135"
lemma "⊢ (∀x. p(a) ∧ (p(x) ⟶ p(f(x))) ⟶ p(f(f(x)))) ⟷
      (∀x. (¬ p(a) ∨ p(x) ∨ p(f(f(x)))) ∧
              (¬ p(a) ∨ ¬ p(f(x)) ∨ p(f(f(x)))))"
  by fast
end