Theory ILL
theory ILL
imports Sequents
begin
consts
  Trueprop       :: "two_seqi"
  tens :: "[o, o] ⇒ o"        (infixr ‹><› 35)
  limp :: "[o, o] ⇒ o"        (infixr ‹-o› 45)
  FShriek :: "o ⇒ o"          (‹! _› [100] 1000)
  lconj :: "[o, o] ⇒ o"       (infixr ‹&&› 35)
  ldisj :: "[o, o] ⇒ o"       (infixr ‹++› 35)
  zero :: "o"                  (‹0›)
  top :: "o"                   (‹1›)
  eye :: "o"                   (‹I›)
  
 Context      :: "two_seqi"
  
  PromAux :: "three_seqi"
syntax
  "_Trueprop" :: "single_seqe" (‹(‹notation=judgment›(_)/ ⊢ (_))› [6,6] 5)
  "_Context"  :: "two_seqe"   (‹(‹notation=‹infix Context››(_)/ :=: (_))› [6,6] 5)
  "_PromAux"  :: "three_seqe" (‹promaux {_||_||_}›)
parse_translation ‹
  [(\<^syntax_const>‹_Trueprop›, K (single_tr \<^const_syntax>‹Trueprop›)),
   (\<^syntax_const>‹_Context›, K (two_seq_tr \<^const_syntax>‹Context›)),
   (\<^syntax_const>‹_PromAux›, K (three_seq_tr \<^const_syntax>‹PromAux›))]
›
print_translation ‹
  [(\<^const_syntax>‹Trueprop›, K (single_tr' \<^syntax_const>‹_Trueprop›)),
   (\<^const_syntax>‹Context›, K (two_seq_tr' \<^syntax_const>‹_Context›)),
   (\<^const_syntax>‹PromAux›, K (three_seq_tr' \<^syntax_const>‹_PromAux›))]
›
definition liff :: "[o, o] ⇒ o"  (infixr ‹o-o› 45)
  where "P o-o Q == (P -o Q) >< (Q -o P)"
definition aneg :: "o⇒o"  (‹(‹open_block notation=‹prefix ~››~_)›)
  where "~A == A -o 0"
axiomatization where
identity:        "P ⊢ P" and
zerol:           "$G, 0, $H ⊢ A" and
  
derelict:   "$F, A, $G ⊢ C ⟹ $F, !A, $G ⊢ C" and
  
contract:  "$F, !A, !A, $G ⊢ C ⟹ $F, !A, $G ⊢ C" and
weaken:     "$F, $G ⊢ C ⟹ $G, !A, $F ⊢ C" and
  
  
promote2:        "promaux{ || $H || B} ⟹ $H ⊢ !B" and
promote1:        "promaux{!A, $G || $H || B}
                  ⟹ promaux {$G || $H, !A || B}" and
promote0:        "$G ⊢ A ⟹ promaux {$G || || A}" and
tensl:     "$H, A, B, $G ⊢ C ⟹ $H, A >< B, $G ⊢ C" and
impr:      "A, $F ⊢ B ⟹ $F ⊢ A -o B" and
conjr:           "⟦$F ⊢ A ;
                 $F ⊢ B⟧
                ⟹ $F ⊢ (A && B)" and
conjll:          "$G, A, $H ⊢ C ⟹ $G, A && B, $H ⊢ C" and
conjlr:          "$G, B, $H ⊢ C ⟹ $G, A && B, $H ⊢ C" and
disjrl:          "$G ⊢ A ⟹ $G ⊢ A ++ B" and
disjrr:          "$G ⊢ B ⟹ $G ⊢ A ++ B" and
disjl:           "⟦$G, A, $H ⊢ C ;
                   $G, B, $H ⊢ C⟧
                 ⟹ $G, A ++ B, $H ⊢ C" and
      
tensr:           "⟦$F, $J :=: $G;
                   $F ⊢ A ;
                   $J ⊢ B⟧
                     ⟹ $G ⊢ A >< B" and
impl:            "⟦$G, $F :=: $J, $H ;
                   B, $F ⊢ C ;
                   $G ⊢ A⟧
                     ⟹ $J, A -o B, $H ⊢ C" and
cut: "⟦ $J1, $H1, $J2, $H3, $J3, $H2, $J4, $H4 :=: $F ;
        $H1, $H2, $H3, $H4 ⊢ A ;
        $J1, $J2, A, $J3, $J4 ⊢ B⟧ ⟹ $F ⊢ B" and
  
context1:     "$G :=: $G" and
context2:     "$F, $G :=: $H, !A, $G ⟹ $F, A, $G :=: $H, !A, $G" and
context3:     "$F, $G :=: $H, $J ⟹ $F, A, $G :=: $H, A, $J" and
context4a:    "$F :=: $H, $G ⟹ $F :=: $H, !A, $G" and
context4b:    "$F, $H :=: $G ⟹ $F, !A, $H :=: $G" and
context5:     "$F, $G :=: $H ⟹ $G, $F :=: $H"
text "declarations for lazy classical reasoning:"
lemmas [safe] =
  context3
  context2
  promote0
  disjl
  conjr
  tensl
lemmas [unsafe] =
  context4b
  context4a
  context1
  promote2
  promote1
  weaken
  derelict
  impl
  tensr
  impr
  disjrr
  disjrl
  conjlr
  conjll
  zerol
  identity
lemma aux_impl: "$F, $G ⊢ A ⟹ $F, !(A -o B), $G ⊢ B"
  apply (rule derelict)
  apply (rule impl)
  apply (rule_tac [2] identity)
  apply (rule context1)
  apply assumption
  done
lemma conj_lemma: " $F, !A, !B, $G ⊢ C ⟹ $F, !(A && B), $G ⊢ C"
  apply (rule contract)
  apply (rule_tac A = " (!A) >< (!B) " in cut)
  apply (rule_tac [2] tensr)
  prefer 3
  apply (subgoal_tac "! (A && B) ⊢ !A")
  apply assumption
  apply best
  prefer 3
  apply (subgoal_tac "! (A && B) ⊢ !B")
  apply assumption
  apply best
  apply (rule_tac [2] context1)
  apply (rule_tac [2] tensl)
  prefer 2 apply assumption
  apply (rule context3)
  apply (rule context3)
  apply (rule context1)
  done
lemma impr_contract: "!A, !A, $G ⊢ B ⟹ $G ⊢ (!A) -o B"
  apply (rule impr)
  apply (rule contract)
  apply assumption
  done
lemma impr_contr_der: "A, !A, $G ⊢ B ⟹ $G ⊢ (!A) -o B"
  apply (rule impr)
  apply (rule contract)
  apply (rule derelict)
  apply assumption
  done
lemma contrad1: "$F, (!B) -o 0, $G, !B, $H ⊢ A"
  apply (rule impl)
  apply (rule_tac [3] identity)
  apply (rule context3)
  apply (rule context1)
  apply (rule zerol)
  done
lemma contrad2: "$F, !B, $G, (!B) -o 0, $H ⊢ A"
  apply (rule impl)
  apply (rule_tac [3] identity)
  apply (rule context3)
  apply (rule context1)
  apply (rule zerol)
  done
lemma ll_mp: "A -o B, A ⊢ B"
  apply (rule impl)
  apply (rule_tac [2] identity)
  apply (rule_tac [2] identity)
  apply (rule context1)
  done
lemma mp_rule1: "$F, B, $G, $H ⊢ C ⟹ $F, A, $G, A -o B, $H ⊢ C"
  apply (rule_tac A = "B" in cut)
  apply (rule_tac [2] ll_mp)
  prefer 2 apply (assumption)
  apply (rule context3)
  apply (rule context3)
  apply (rule context1)
  done
lemma mp_rule2: "$F, B, $G, $H ⊢ C ⟹ $F, A -o B, $G, A, $H ⊢ C"
  apply (rule_tac A = "B" in cut)
  apply (rule_tac [2] ll_mp)
  prefer 2 apply (assumption)
  apply (rule context3)
  apply (rule context3)
  apply (rule context1)
  done
lemma or_to_and: "!((!(A ++ B)) -o 0) ⊢ !( ((!A) -o 0) && ((!B) -o 0))"
  by best
lemma o_a_rule: "$F, !( ((!A) -o 0) && ((!B) -o 0)), $G ⊢ C ⟹
          $F, !((!(A ++ B)) -o 0), $G ⊢ C"
  apply (rule cut)
  apply (rule_tac [2] or_to_and)
  prefer 2 apply (assumption)
  apply (rule context3)
  apply (rule context1)
  done
lemma conj_imp: "((!A) -o C) ++ ((!B) -o C) ⊢ (!(A && B)) -o C"
  apply (rule impr)
  apply (rule conj_lemma)
  apply (rule disjl)
  apply (rule mp_rule1, best)+
  done
lemma not_imp: "!A, !((!B) -o 0) ⊢ (!((!A) -o B)) -o 0"
  by best
lemma a_not_a: "!A -o (!A -o 0) ⊢ !A -o 0"
  apply (rule impr)
  apply (rule contract)
  apply (rule impl)
  apply (rule_tac [3] identity)
  apply (rule context1)
  apply best
  done
lemma a_not_a_rule: "$J1, !A -o 0, $J2 ⊢ B ⟹ $J1, !A -o (!A -o 0), $J2 ⊢ B"
  apply (rule_tac A = "!A -o 0" in cut)
  apply (rule_tac [2] a_not_a)
  prefer 2 apply assumption
  apply best
  done
ML ‹
  val safe_pack =
    \<^context>
    |> fold_rev Cla.add_safe @{thms conj_lemma ll_mp contrad1
        contrad2 mp_rule1 mp_rule2 o_a_rule a_not_a_rule}
    |> Cla.add_unsafe @{thm aux_impl}
    |> Cla.get_pack;
  val power_pack =
    Cla.put_pack safe_pack \<^context>
    |> Cla.add_unsafe @{thm impr_contr_der}
    |> Cla.get_pack;
›
method_setup best_safe =
  ‹Scan.succeed (fn ctxt => SIMPLE_METHOD' (Cla.best_tac (Cla.put_pack safe_pack ctxt)))›
method_setup best_power =
  ‹Scan.succeed (fn ctxt => SIMPLE_METHOD' (Cla.best_tac (Cla.put_pack power_pack ctxt)))›
lemma "!((!A) -o ((!B) -o 0)) ⊢ (!(A && B)) -o 0"
  by best_safe
lemma "!((!(A && B)) -o 0) ⊢ !((!A) -o ((!B) -o 0))"
  by best_safe
lemma "!( (!((! ((!A) -o B) ) -o 0)) -o 0) ⊢
        (!A) -o ( (!  ((!B) -o 0)) -o 0)"
  by best_safe
lemma "!(  (!A) -o ( (!  ((!B) -o 0)) -o 0) ) ⊢
          (!((! ((!A) -o B) ) -o 0)) -o 0"
  by best_power
end