Theory Hered
section ‹Hereditary Termination -- cf. Martin Lo\"f›
theory Hered
imports Type
begin
text ‹
  Note that this is based on an untyped equality and so ‹lam
  x. b(x)› is only hereditarily terminating if ‹ALL x. b(x)›
  is.  Not so useful for functions!
›
definition HTTgen :: "i set ⇒ i set" where
  "HTTgen(R) ==
    {t. t=true | t=false | (EX a b. t= <a, b> ∧ a : R ∧ b : R) |
      (EX f. t = lam x. f(x) ∧ (ALL x. f(x) : R))}"
definition HTT :: "i set"
  where "HTT == gfp(HTTgen)"
subsection ‹Hereditary Termination›
lemma HTTgen_mono: "mono(λX. HTTgen(X))"
  apply (unfold HTTgen_def)
  apply (rule monoI)
  apply blast
  done
lemma HTTgenXH: 
  "t : HTTgen(A) ⟷ t=true | t=false | (EX a b. t=<a,b> ∧ a : A ∧ b : A) |  
                                        (EX f. t=lam x. f(x) ∧ (ALL x. f(x) : A))"
  apply (unfold HTTgen_def)
  apply blast
  done
lemma HTTXH: 
  "t : HTT ⟷ t=true | t=false | (EX a b. t=<a,b> ∧ a : HTT ∧ b : HTT) |  
                                   (EX f. t=lam x. f(x) ∧ (ALL x. f(x) : HTT))"
  apply (rule HTTgen_mono [THEN HTT_def [THEN def_gfp_Tarski], THEN XHlemma1, unfolded HTTgen_def])
  apply blast
  done
subsection ‹Introduction Rules for HTT›
lemma HTT_bot: "¬ bot : HTT"
  by (blast dest: HTTXH [THEN iffD1])
lemma HTT_true: "true : HTT"
  by (blast intro: HTTXH [THEN iffD2])
lemma HTT_false: "false : HTT"
  by (blast intro: HTTXH [THEN iffD2])
lemma HTT_pair: "<a,b> : HTT ⟷ a : HTT ∧ b : HTT"
  apply (rule HTTXH [THEN iff_trans])
  apply blast
  done
lemma HTT_lam: "lam x. f(x) : HTT ⟷ (ALL x. f(x) : HTT)"
  apply (rule HTTXH [THEN iff_trans])
  apply auto
  done
lemmas HTT_rews1 = HTT_bot HTT_true HTT_false HTT_pair HTT_lam
lemma HTT_rews2:
  "one : HTT"
  "inl(a) : HTT ⟷ a : HTT"
  "inr(b) : HTT ⟷ b : HTT"
  "zero : HTT"
  "succ(n) : HTT ⟷ n : HTT"
  "[] : HTT"
  "x$xs : HTT ⟷ x : HTT ∧ xs : HTT"
  by (simp_all add: data_defs HTT_rews1)
lemmas HTT_rews = HTT_rews1 HTT_rews2
subsection ‹Coinduction for HTT›
lemma HTT_coinduct: "⟦t : R; R <= HTTgen(R)⟧ ⟹ t : HTT"
  apply (erule HTT_def [THEN def_coinduct])
  apply assumption
  done
lemma HTT_coinduct3: "⟦t : R; R <= HTTgen(lfp(λx. HTTgen(x) Un R Un HTT))⟧ ⟹ t : HTT"
  apply (erule HTTgen_mono [THEN [3] HTT_def [THEN def_coinduct3]])
  apply assumption
  done
lemma HTTgenIs:
  "true : HTTgen(R)"
  "false : HTTgen(R)"
  "⟦a : R; b : R⟧ ⟹ <a,b> : HTTgen(R)"
  "⋀b. (⋀x. b(x) : R) ⟹ lam x. b(x) : HTTgen(R)"
  "one : HTTgen(R)"
  "a : lfp(λx. HTTgen(x) Un R Un HTT) ⟹ inl(a) : HTTgen(lfp(λx. HTTgen(x) Un R Un HTT))"
  "b : lfp(λx. HTTgen(x) Un R Un HTT) ⟹ inr(b) : HTTgen(lfp(λx. HTTgen(x) Un R Un HTT))"
  "zero : HTTgen(lfp(λx. HTTgen(x) Un R Un HTT))"
  "n : lfp(λx. HTTgen(x) Un R Un HTT) ⟹ succ(n) : HTTgen(lfp(λx. HTTgen(x) Un R Un HTT))"
  "[] : HTTgen(lfp(λx. HTTgen(x) Un R Un HTT))"
  "⟦h : lfp(λx. HTTgen(x) Un R Un HTT); t : lfp(λx. HTTgen(x) Un R Un HTT)⟧ ⟹
    h$t : HTTgen(lfp(λx. HTTgen(x) Un R Un HTT))"
  unfolding data_defs by (genIs HTTgenXH HTTgen_mono)+
subsection ‹Formation Rules for Types›
lemma UnitF: "Unit <= HTT"
  by (simp add: subsetXH UnitXH HTT_rews)
lemma BoolF: "Bool <= HTT"
  by (fastforce simp: subsetXH BoolXH iff: HTT_rews)
lemma PlusF: "⟦A <= HTT; B <= HTT⟧ ⟹ A + B  <= HTT"
  by (fastforce simp: subsetXH PlusXH iff: HTT_rews)
lemma SigmaF: "⟦A <= HTT; ⋀x. x:A ⟹ B(x) <= HTT⟧ ⟹ SUM x:A. B(x) <= HTT"
  by (fastforce simp: subsetXH SgXH HTT_rews)
lemma "Nat <= HTT"
  apply (simp add: subsetXH)
  apply clarify
  apply (erule Nat_ind)
   apply (fastforce iff: HTT_rews)+
  done
lemma NatF: "Nat <= HTT"
  apply clarify
  apply (erule HTT_coinduct3)
  apply (fast intro: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI] dest: NatXH [THEN iffD1])
  done
lemma ListF: "A <= HTT ⟹ List(A) <= HTT"
  apply clarify
  apply (erule HTT_coinduct3)
  apply (fast intro!: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI]
    subsetD [THEN HTTgen_mono [THEN ci3_AI]]
    dest: ListXH [THEN iffD1])
  done
lemma ListsF: "A <= HTT ⟹ Lists(A) <= HTT"
  apply clarify
  apply (erule HTT_coinduct3)
  apply (fast intro!: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI]
    subsetD [THEN HTTgen_mono [THEN ci3_AI]] dest: ListsXH [THEN iffD1])
  done
lemma IListsF: "A <= HTT ⟹ ILists(A) <= HTT"
  apply clarify
  apply (erule HTT_coinduct3)
  apply (fast intro!: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI]
    subsetD [THEN HTTgen_mono [THEN ci3_AI]] dest: IListsXH [THEN iffD1])
  done
end