Theory OrdQuant
section ‹Special quantifiers›
theory OrdQuant imports Ordinal begin
subsection ‹Quantifiers and union operator for ordinals›
definition
  
  oall :: "[i, i ⇒ o] ⇒ o"  where
    "oall(A, P) ≡ ∀x. x<A ⟶ P(x)"
definition
  oex :: "[i, i ⇒ o] ⇒ o"  where
    "oex(A, P)  ≡ ∃x. x<A ∧ P(x)"
definition
  
  OUnion :: "[i, i ⇒ i] ⇒ i"  where
    "OUnion(i,B) ≡ {z: ⋃x∈i. B(x). Ord(i)}"
syntax
  "_oall"     :: "[idt, i, o] ⇒ o"  (‹(‹indent=3 notation=‹binder ∀<››∀_<_./ _)› 10)
  "_oex"      :: "[idt, i, o] ⇒ o"  (‹(‹indent=3 notation=‹binder ∃<››∃_<_./ _)› 10)
  "_OUNION"   :: "[idt, i, i] ⇒ i"  (‹(‹indent=3 notation=‹binder ⋃<››⋃_<_./ _)› 10)
syntax_consts
  "_oall" ⇌ oall and
  "_oex" ⇌ oex and
  "_OUNION" ⇌ OUnion
translations
  "∀x<a. P" ⇌ "CONST oall(a, λx. P)"
  "∃x<a. P" ⇌ "CONST oex(a, λx. P)"
  "⋃x<a. B" ⇌ "CONST OUnion(a, λx. B)"
subsubsection ‹simplification of the new quantifiers›
lemma [simp]: "(∀x<0. P(x))"
by (simp add: oall_def)
lemma [simp]: "¬(∃x<0. P(x))"
by (simp add: oex_def)
lemma [simp]: "(∀x<succ(i). P(x)) <-> (Ord(i) ⟶ P(i) ∧ (∀x<i. P(x)))"
apply (simp add: oall_def le_iff)
apply (blast intro: lt_Ord2)
done
lemma [simp]: "(∃x<succ(i). P(x)) <-> (Ord(i) ∧ (P(i) | (∃x<i. P(x))))"
apply (simp add: oex_def le_iff)
apply (blast intro: lt_Ord2)
done
subsubsection ‹Union over ordinals›
lemma Ord_OUN [intro,simp]:
     "⟦⋀x. x<A ⟹ Ord(B(x))⟧ ⟹ Ord(⋃x<A. B(x))"
by (simp add: OUnion_def ltI Ord_UN)
lemma OUN_upper_lt:
     "⟦a<A;  i < b(a);  Ord(⋃x<A. b(x))⟧ ⟹ i < (⋃x<A. b(x))"
by (unfold OUnion_def lt_def, blast )
lemma OUN_upper_le:
     "⟦a<A;  i≤b(a);  Ord(⋃x<A. b(x))⟧ ⟹ i ≤ (⋃x<A. b(x))"
apply (unfold OUnion_def, auto)
apply (rule UN_upper_le )
apply (auto simp add: lt_def)
done
lemma Limit_OUN_eq: "Limit(i) ⟹ (⋃x<i. x) = i"
by (simp add: OUnion_def Limit_Union_eq Limit_is_Ord)
lemma OUN_least:
     "(⋀x. x<A ⟹ B(x) ⊆ C) ⟹ (⋃x<A. B(x)) ⊆ C"
by (simp add: OUnion_def UN_least ltI)
lemma OUN_least_le:
     "⟦Ord(i);  ⋀x. x<A ⟹ b(x) ≤ i⟧ ⟹ (⋃x<A. b(x)) ≤ i"
by (simp add: OUnion_def UN_least_le ltI Ord_0_le)
lemma le_implies_OUN_le_OUN:
     "⟦⋀x. x<A ⟹ c(x) ≤ d(x)⟧ ⟹ (⋃x<A. c(x)) ≤ (⋃x<A. d(x))"
by (blast intro: OUN_least_le OUN_upper_le le_Ord2 Ord_OUN)
lemma OUN_UN_eq:
     "(⋀x. x ∈ A ⟹ Ord(B(x)))
      ⟹ (⋃z < (⋃x∈A. B(x)). C(z)) = (⋃x∈A. ⋃z < B(x). C(z))"
by (simp add: OUnion_def)
lemma OUN_Union_eq:
     "(⋀x. x ∈ X ⟹ Ord(x))
      ⟹ (⋃z < ⋃(X). C(z)) = (⋃x∈X. ⋃z < x. C(z))"
by (simp add: OUnion_def)
lemma atomize_oall [symmetric, rulify]:
     "(⋀x. x<A ⟹ P(x)) ≡ Trueprop (∀x<A. P(x))"
by (simp add: oall_def atomize_all atomize_imp)
subsubsection ‹universal quantifier for ordinals›
lemma oallI [intro!]:
    "⟦⋀x. x<A ⟹ P(x)⟧ ⟹ ∀x<A. P(x)"
by (simp add: oall_def)
lemma ospec: "⟦∀x<A. P(x);  x<A⟧ ⟹ P(x)"
by (simp add: oall_def)
lemma oallE:
    "⟦∀x<A. P(x);  P(x) ⟹ Q;  ¬x<A ⟹ Q⟧ ⟹ Q"
by (simp add: oall_def, blast)
lemma rev_oallE [elim]:
    "⟦∀x<A. P(x);  ¬x<A ⟹ Q;  P(x) ⟹ Q⟧ ⟹ Q"
by (simp add: oall_def, blast)
lemma oall_simp [simp]: "(∀x<a. True) <-> True"
by blast
lemma oall_cong [cong]:
    "⟦a=a';  ⋀x. x<a' ⟹ P(x) <-> P'(x)⟧
     ⟹ oall(a, λx. P(x)) <-> oall(a', λx. P'(x))"
by (simp add: oall_def)
subsubsection ‹existential quantifier for ordinals›
lemma oexI [intro]:
    "⟦P(x);  x<A⟧ ⟹ ∃x<A. P(x)"
apply (simp add: oex_def, blast)
done
lemma oexCI:
   "⟦∀x<A. ¬P(x) ⟹ P(a);  a<A⟧ ⟹ ∃x<A. P(x)"
apply (simp add: oex_def, blast)
done
lemma oexE [elim!]:
    "⟦∃x<A. P(x);  ⋀x. ⟦x<A; P(x)⟧ ⟹ Q⟧ ⟹ Q"
apply (simp add: oex_def, blast)
done
lemma oex_cong [cong]:
    "⟦a=a';  ⋀x. x<a' ⟹ P(x) <-> P'(x)⟧
     ⟹ oex(a, λx. P(x)) <-> oex(a', λx. P'(x))"
apply (simp add: oex_def cong add: conj_cong)
done
subsubsection ‹Rules for Ordinal-Indexed Unions›
lemma OUN_I [intro]: "⟦a<i;  b ∈ B(a)⟧ ⟹ b: (⋃z<i. B(z))"
by (unfold OUnion_def lt_def, blast)
lemma OUN_E [elim!]:
    "⟦b ∈ (⋃z<i. B(z));  ⋀a.⟦b ∈ B(a);  a<i⟧ ⟹ R⟧ ⟹ R"
apply (unfold OUnion_def lt_def, blast)
done
lemma OUN_iff: "b ∈ (⋃x<i. B(x)) <-> (∃x<i. b ∈ B(x))"
by (unfold OUnion_def oex_def lt_def, blast)
lemma OUN_cong [cong]:
    "⟦i=j;  ⋀x. x<j ⟹ C(x)=D(x)⟧ ⟹ (⋃x<i. C(x)) = (⋃x<j. D(x))"
by (simp add: OUnion_def lt_def OUN_iff)
lemma lt_induct:
    "⟦i<k;  ⋀x.⟦x<k;  ∀y<x. P(y)⟧ ⟹ P(x)⟧  ⟹  P(i)"
apply (simp add: lt_def oall_def)
apply (erule conjE)
apply (erule Ord_induct, assumption, blast)
done
subsection ‹Quantification over a class›
definition
  "rall"     :: "[i⇒o, i⇒o] ⇒ o"  where
    "rall(M, P) ≡ ∀x. M(x) ⟶ P(x)"
definition
  "rex"      :: "[i⇒o, i⇒o] ⇒ o"  where
    "rex(M, P) ≡ ∃x. M(x) ∧ P(x)"
syntax
  "_rall"     :: "[pttrn, i⇒o, o] ⇒ o"  (‹(‹indent=3 notation=‹binder ∀[]››∀_[_]./ _)› 10)
  "_rex"      :: "[pttrn, i⇒o, o] ⇒ o"  (‹(‹indent=3 notation=‹binder ∃[]››∃_[_]./ _)› 10)
syntax_consts
  "_rall" ⇌ rall and
  "_rex" ⇌ rex
translations
  "∀x[M]. P" ⇌ "CONST rall(M, λx. P)"
  "∃x[M]. P" ⇌ "CONST rex(M, λx. P)"
subsubsection‹Relativized universal quantifier›
lemma rallI [intro!]: "⟦⋀x. M(x) ⟹ P(x)⟧ ⟹ ∀x[M]. P(x)"
by (simp add: rall_def)
lemma rspec: "⟦∀x[M]. P(x); M(x)⟧ ⟹ P(x)"
by (simp add: rall_def)
lemma rev_rallE [elim]:
    "⟦∀x[M]. P(x);  ¬ M(x) ⟹ Q;  P(x) ⟹ Q⟧ ⟹ Q"
by (simp add: rall_def, blast)
lemma rallE: "⟦∀x[M]. P(x);  P(x) ⟹ Q;  ¬ M(x) ⟹ Q⟧ ⟹ Q"
by blast
lemma rall_triv [simp]: "(∀x[M]. P) ⟷ ((∃x. M(x)) ⟶ P)"
by (simp add: rall_def)
lemma rall_cong [cong]:
    "(⋀x. M(x) ⟹ P(x) <-> P'(x)) ⟹ (∀x[M]. P(x)) <-> (∀x[M]. P'(x))"
by (simp add: rall_def)
subsubsection‹Relativized existential quantifier›
lemma rexI [intro]: "⟦P(x); M(x)⟧ ⟹ ∃x[M]. P(x)"
by (simp add: rex_def, blast)
lemma rev_rexI: "⟦M(x);  P(x)⟧ ⟹ ∃x[M]. P(x)"
by blast
lemma rexCI: "⟦∀x[M]. ¬P(x) ⟹ P(a); M(a)⟧ ⟹ ∃x[M]. P(x)"
by blast
lemma rexE [elim!]: "⟦∃x[M]. P(x);  ⋀x. ⟦M(x); P(x)⟧ ⟹ Q⟧ ⟹ Q"
by (simp add: rex_def, blast)
lemma rex_triv [simp]: "(∃x[M]. P) ⟷ ((∃x. M(x)) ∧ P)"
by (simp add: rex_def)
lemma rex_cong [cong]:
    "(⋀x. M(x) ⟹ P(x) <-> P'(x)) ⟹ (∃x[M]. P(x)) <-> (∃x[M]. P'(x))"
by (simp add: rex_def cong: conj_cong)
lemma rall_is_ball [simp]: "(∀x[λz. z∈A]. P(x)) <-> (∀x∈A. P(x))"
by blast
lemma rex_is_bex [simp]: "(∃x[λz. z∈A]. P(x)) <-> (∃x∈A. P(x))"
by blast
lemma atomize_rall: "(⋀x. M(x) ⟹ P(x)) ≡ Trueprop (∀x[M]. P(x))"
by (simp add: rall_def atomize_all atomize_imp)
declare atomize_rall [symmetric, rulify]
lemma rall_simps1:
     "(∀x[M]. P(x) ∧ Q)   <-> (∀x[M]. P(x)) ∧ ((∀x[M]. False) | Q)"
     "(∀x[M]. P(x) | Q)   <-> ((∀x[M]. P(x)) | Q)"
     "(∀x[M]. P(x) ⟶ Q) <-> ((∃x[M]. P(x)) ⟶ Q)"
     "(¬(∀x[M]. P(x))) <-> (∃x[M]. ¬P(x))"
by blast+
lemma rall_simps2:
     "(∀x[M]. P ∧ Q(x))   <-> ((∀x[M]. False) | P) ∧ (∀x[M]. Q(x))"
     "(∀x[M]. P | Q(x))   <-> (P | (∀x[M]. Q(x)))"
     "(∀x[M]. P ⟶ Q(x)) <-> (P ⟶ (∀x[M]. Q(x)))"
by blast+
lemmas rall_simps [simp] = rall_simps1 rall_simps2
lemma rall_conj_distrib:
    "(∀x[M]. P(x) ∧ Q(x)) <-> ((∀x[M]. P(x)) ∧ (∀x[M]. Q(x)))"
by blast
lemma rex_simps1:
     "(∃x[M]. P(x) ∧ Q) <-> ((∃x[M]. P(x)) ∧ Q)"
     "(∃x[M]. P(x) | Q) <-> (∃x[M]. P(x)) | ((∃x[M]. True) ∧ Q)"
     "(∃x[M]. P(x) ⟶ Q) <-> ((∀x[M]. P(x)) ⟶ ((∃x[M]. True) ∧ Q))"
     "(¬(∃x[M]. P(x))) <-> (∀x[M]. ¬P(x))"
by blast+
lemma rex_simps2:
     "(∃x[M]. P ∧ Q(x)) <-> (P ∧ (∃x[M]. Q(x)))"
     "(∃x[M]. P | Q(x)) <-> ((∃x[M]. True) ∧ P) | (∃x[M]. Q(x))"
     "(∃x[M]. P ⟶ Q(x)) <-> (((∀x[M]. False) | P) ⟶ (∃x[M]. Q(x)))"
by blast+
lemmas rex_simps [simp] = rex_simps1 rex_simps2
lemma rex_disj_distrib:
    "(∃x[M]. P(x) | Q(x)) <-> ((∃x[M]. P(x)) | (∃x[M]. Q(x)))"
by blast
subsubsection‹One-point rule for bounded quantifiers›
lemma rex_triv_one_point1 [simp]: "(∃x[M]. x=a) <-> ( M(a))"
by blast
lemma rex_triv_one_point2 [simp]: "(∃x[M]. a=x) <-> ( M(a))"
by blast
lemma rex_one_point1 [simp]: "(∃x[M]. x=a ∧ P(x)) <-> ( M(a) ∧ P(a))"
by blast
lemma rex_one_point2 [simp]: "(∃x[M]. a=x ∧ P(x)) <-> ( M(a) ∧ P(a))"
by blast
lemma rall_one_point1 [simp]: "(∀x[M]. x=a ⟶ P(x)) <-> ( M(a) ⟶ P(a))"
by blast
lemma rall_one_point2 [simp]: "(∀x[M]. a=x ⟶ P(x)) <-> ( M(a) ⟶ P(a))"
by blast
subsubsection‹Sets as Classes›
definition
  setclass :: "[i,i] ⇒ o"  (‹(‹open_block notation=‹prefix setclass››##_)› [40] 40)  where
   "setclass(A) ≡ λx. x ∈ A"
lemma setclass_iff [simp]: "setclass(A,x) <-> x ∈ A"
by (simp add: setclass_def)
lemma rall_setclass_is_ball [simp]: "(∀x[##A]. P(x)) <-> (∀x∈A. P(x))"
by auto
lemma rex_setclass_is_bex [simp]: "(∃x[##A]. P(x)) <-> (∃x∈A. P(x))"
by auto
ML
‹
val Ord_atomize =
  atomize ([(\<^const_name>‹oall›, @{thms ospec}), (\<^const_name>‹rall›, @{thms rspec})] @
    ZF_conn_pairs, ZF_mem_pairs);
›
declaration ‹fn _ =>
  Simplifier.map_ss (Simplifier.set_mksimps (fn ctxt =>
    map mk_eq o Ord_atomize o Variable.gen_all ctxt))
›
text ‹Setting up the one-point-rule simproc›
simproc_setup defined_rex ("∃x[M]. P(x) ∧ Q(x)") = ‹
  K (Quantifier1.rearrange_Bex (fn ctxt => unfold_tac ctxt @{thms rex_def}))
›
simproc_setup defined_rall ("∀x[M]. P(x) ⟶ Q(x)") = ‹
  K (Quantifier1.rearrange_Ball (fn ctxt => unfold_tac ctxt @{thms rall_def}))
›
end